Fuzzy Prime Ideals of ADL's

Chigurupalli Santhi Sundar Raj, Natnael Teshale Amare and Uppasetti Madana Swamy

Abstract—In this paper the concept of prime L-fuzzy ideals and L-fuzzy prime ideals of an ADL A with truth values in a complete lattice L satisfying the infinite meet distributive law are introduced. All prime L-fuzzy ideals of a given ADL A are determined by establishing a one-to- one correspondence between prime L-fuzzy ideals of an ADL A and the pairs (P,α) , where P is a prime ideal of A and α is a prime element in L. Also, here minimal prime L-fuzzy ideals and L-fuzzy minimal prime ideals of an ADL A are introduced and characterized.

Index Terms—Almost Distributive Lattice (ADL), complete lattice, L-fuzzy minimal prime ideal L-fuzzy prime ideal, minimal prime L-fuzzy ideal, prime L-fuzzy ideal.

I. INTRODUCTION

fuzzy subset of a set X is a function from X into I = [0,1], as in [1]. J.A. Goguen [2] explored, generalized and continued the work of L.A. Zadeh and realized that the unit interval [0,1] is not sufficient to take the truth values of general fuzzy statements. Wang-Jing Liu [3] introduced the notion of a fuzzy ideal of a ring in the case when L = [0,1] of real numbers and T.K. Mukherjee and M.K. Sen [4] introduced the notion of a fuzzy prime ideal and continued the study of fuzzy ideals. U.M. Swamy and K.L.N. Swamy [5] introduced the concept of fuzzy prime ideal of a ring with truth values in a complete lattice satisfying the infinite meet distributive law.

The concept of prime ideal of an Almost Distributive Lattice was introduced by U.M. Swamy and G.C. Rao, in 1981 [6]. U.M. Swamy, Ch. Santhi Sundar Raj and Natnael Teshale A [7] have introduced the notion of *L*-fuzzy ideals of an ADL with the truth values in a complete lattice *L* satisfying the infinite meet distributive law.

In this paper, we introduce and study prime *L*-fuzzy ideals and *L*-fuzzy prime ideals of an ADL *A*, where *L* is a complete lattice satisfying the infinite meet distributive law. Also, in this paper we introduce minimal prime *L*-fuzzy ideals and *L*-fuzzy minimal prime ideals of an ADL *A*.

II. PRELIMINARIES

First we give necessary definitions and results mostly taken from [6] and [7] which will be used in the later text.

Definition 2.1: An algebra $A = (A, \land, \lor, 0)$ of type (2,2,0) is called an Almost Distributive Lattice (abbreviated as ADL) if it satisfies the following conditions for all a,b and $c \in A$.

1)
$$0 \land a = 0$$

Manuscript received December 19, 2017; accepted May 10, 2018.

Ch. Santhi Sundar Raj and A. Natnael Teshale are with the Department of Engineering Mathematics, Andhra University, Visakhapatnam- 530003, A.P., India. E-mail: santhisundarraj@yahoo.com

A. Natnael Teshale is with the Department of Mathematics, University of Gondar, Ethiopia. E-mail: yenatnaelau@yahoo.com

U.M. Swamy is with the Department of Mathematics, Andhra University, Visakhapatnam- 530003, A.P., India. E-mail: umswamy@yahoo.com

- 2) $a \lor 0 = a$
- 3) $a \wedge (b \vee c) = (a \wedge b) \vee (a \wedge c)$
- 4) $a \lor (b \land c) = (a \lor b) \land (a \lor c)$
- 5) $(a \lor b) \land c = (a \land c) \lor (b \land c)$
- 6) $(a \lor b) \land b = b$.

Any bounded below distributive lattice is an ADL, where 0 is the smallest element. Any nonempty set X can be made into an ADL by fixing an arbitrarily chosen element 0 in X and by defining the binary operations \wedge and \vee on X by

$$a \wedge b = \begin{cases} 0, & \text{if } a = 0 \\ b, & \text{if } a \neq 0 \end{cases}$$
 and $a \vee b = \begin{cases} b, & \text{if } a = 0 \\ a, & \text{if } a \neq 0. \end{cases}$

This ADL $(X, \wedge, \vee, 0)$ is called a discrete ADL.

Definition 2.2: Let $A=(A,\wedge,\vee,0)$ be an ADL. For any a and $b\in A$, define $a\leq b$ if $a=a\wedge b$ ($\Leftrightarrow a\vee b=b$). Then \leq is a partial order on A with respect to which 0 is the smallest element in A.

Theorem 2.3: The following hold for any a,b and c in an ADL A.

- (1) $a \wedge 0 = 0 = 0 \wedge a$ and $a \vee 0 = a = 0 \vee a$
- (2) $a \wedge a = a = a \vee a$
- (3) $a \wedge b \leq b \leq b \vee a$
- (4) $a \wedge b = a \Leftrightarrow a \vee b = b$
- (5) $a \wedge b = b \Leftrightarrow a \vee b = a$
- (6) $(a \wedge b) \wedge c = a \wedge (b \wedge c)$ (i.e., \wedge is associative)
- (7) $a \lor (b \lor a) = a \lor b$
- (8) $a \le b \Rightarrow a \land b = a = b \land a \ (\Leftrightarrow a \lor b = b = b \lor a)$
- (9) $(a \wedge b) \wedge c = (b \wedge a) \wedge c$
- (10) $(a \lor b) \land c = (b \lor a) \land c$
- (11) $a \wedge b = b \wedge a \Leftrightarrow a \vee b = b \vee a$
- $(12) a \wedge b = \inf\{a, b\} \Leftrightarrow a \wedge b = b \wedge a \Leftrightarrow a \vee b = \sup\{a, b\}.$

An element $m \in A$ is said to be maximal if, for any $x \in A$, $m \le x$ implies m = x. It can be easily observed that m is maximal if and only if $m \land x = x$ for all $x \in A$.

Definition 2.4: Let I be a non empty subset of an ADL A. Then I is called an ideal of A if $a,b \in I \Rightarrow a \lor b \in I$ and $a \land x \in I$ for all $x \in A$.

As a consequence, for any ideal I of A, $x \land a \in I$ for all $a \in I$ and $x \in A$. For any $S \subseteq A$, the smallest ideal of A containing S is called the ideal generated by S in A and is denoted by (S]. It is known that

$$(S] = \left\{ \left(\bigvee_{i=1}^{n} x_i \right) \land a \mid n \ge 0, x_i \in S \text{ and } a \in A \right\}.$$

when $S = \{x\}$, we write (x] for $(\{x\}]$. Note that $(x] = \{x \land a \mid a \in A\}$.

Definition 2.5: An L-fuzzy subset λ of X is a mapping from X into L, where L is a complete lattice satisfying the infinite meet distributive law. If L is the unit interval [0,1] of real numbers, then these are the usual fuzzy subsets of X.

For any $\alpha \in L$, the set $\lambda_{\alpha} = \{x \in X : \alpha \leq \lambda(x)\}$ is called the α -cut of λ .

Definition 2.6: An L -fuzzy subset λ of A is said to be an L -fuzzy ideal of A, if $\lambda(0) = 1$ and $\lambda(x \vee y) = \lambda(x) \wedge \lambda(y)$, for all $x, y \in A$.

Lemma 2.7: Let λ be an L-fuzzy ideal of A, S a non-empty subset of A and $x, y \in A$. Then we have the following.

- (1) $x \wedge y = y$ and $y \wedge x = x \Longrightarrow \lambda(x) = \lambda(y)$
- (2) $\lambda(x \wedge y) = \lambda(y \wedge x)$
- (3) $x \in (S] \Longrightarrow \lambda(x) \ge \bigwedge_{i=1}^n \lambda(a_i)$ for some $a_1, a_2, ..., a_n \in S$
- (4) $x \in (y] \Longrightarrow \lambda(x) \ge \lambda(y)$
- (5) If m is a maximal element in A then $\lambda(m) < \lambda(x)$, for all x
- (6) $\lambda(m) = \lambda(n)$ for all maximal elements m and n in A.

Theorem 2.8: The set of all L-fuzzy ideals of A is a complete distributive lattice, in which the supremum $\bigvee_{i \in \Delta} \lambda_i$ and infimum $\bigwedge_{i \in \Delta} \lambda_i$ of any family

 $\{\lambda_i : i \in \Delta\}$ of *L*-fuzzy ideals of *A* are given by

$$\left(\bigvee_{i\in\Delta}\lambda_i\right)(x)=\bigvee\Big\{\bigwedge_{a\in F}\left(\bigvee_{i\in\Delta}\lambda_i(a)\right):x\in(F],F\subset\subset A\Big\}$$

and
$$\left(\bigwedge_{i\in\Delta}\lambda_i\right)(x) = \bigwedge_{i\in\Delta}\lambda_i(x)$$

III. PRIME L-FUZZY IDEALS

Let us recall from [6] that a proper ideal P of an ADL $A^{(3)}$ λ_1 is a prime ideal of A. is said to be prime if for any $x, y \in A$, $x \land y \in P$ implies that $x \in P$ or $y \in P$; (equivalently, for any ideals I and J of A, $I \cap J \subseteq P \Rightarrow I \subseteq P \text{ or } J \subseteq P.$

The following definition is analogous to that of a prime ideal of A. Here after A stands for an ADL with a maximal element. An L-fuzzy ideal λ of A is called proper if $\lambda(x) \neq 1$ for some $x \in A$.

Definition 3.1: A proper L-fuzzy ideal λ of A is called a prime L-fuzzy ideal if for any L-fuzzy ideals v and μ of A, $v \wedge \mu \leq \lambda$ implies either $v \leq \lambda$ or $\mu \leq \lambda$.

An element $x \neq 1$ in L is called prime if for any $a, b \in L$ $a \wedge b \leq x$ implies either $a \leq x$ or $b \leq x$.

Now, we determine all prime L-fuzzy ideals of A by establishing a correspondence between prime L-fuzzy ideals and pairs (I, α) , where I is a prime ideal of A and α is a prime element in L. First, we recall from [7] that for any ideal I of A and $\alpha \in L$, the L-fuzzy ideal α_I of A defined by

$$\alpha_I(x) = \begin{cases} 1 & \text{if } x \in I \\ \alpha & \text{if } x \notin I. \end{cases}$$

and that α_I is called the α -level L-fuzzy ideal correspondence to I.

Theorem 3.2: Let I be an ideal of an ADL A and $\alpha \in L$. Then α_I is a prime L-fuzzy ideal of A if and only if I is a prime ideal of A and α is a prime element in L.

Proof: Suppose that α_I is a prime L-fuzzy ideal of A. Since α_I is proper, $\alpha_I(x) \neq 1$, for some $x \in A$. Therefore $x \notin I$ and hence $I \subseteq A$. If J and K are ideals of A such that $J \cap K \subseteq I$. Then $\alpha_J \wedge \alpha_K = \alpha_{J \wedge K} \leq \alpha_I$ and hence $\alpha_J \leq \alpha_I$ or $\alpha_K \leq \alpha_I$, so that $J \subseteq I$ or $K \subseteq I$. Therefore, I is a prime ideal of A. Also, for any $\gamma, \beta \in L$,

$$\gamma \land \beta \leq \alpha \Rightarrow (\gamma \land \beta)_I \leq \alpha_I
\Rightarrow \gamma_I \land \beta_I \leq \alpha_I
\Rightarrow \gamma_I \leq \alpha_I \text{ or } \beta_I \leq \alpha_I
\Rightarrow \gamma \leq \alpha \text{ or } \beta \leq \alpha.$$

Therefore, α is a prime element in L.

Conversely, suppose that I is a prime ideal of A and α is a prime element in L. Since I is proper and $\alpha \neq 1, \alpha_I$ is clearly a proper L-fuzzy ideal of A. Let λ and μ be any L-fuzzy ideals of A such that $\lambda \not\leq \alpha_I$ and $\mu \not\leq \alpha_I$. Then there exists $x, y \in A$ such that $\lambda(x) \nleq \alpha_I(x)$ and $\mu(y) \nleq \alpha_I(y)$. This implies that $\alpha_I(x) = \alpha = \alpha_I(y)$ (otherwise, $\alpha_I(x) = 1 \ge \lambda(x)$ and $\alpha_I(y) = 1$ $1 > \mu(y)$) and hence $x \notin I$ and $y \notin I$. Since I is a prime ideal, $x \wedge y \notin I$. Also, since α is prime and $\lambda(x) \nleq \alpha$ and $\mu(y) \nleq \alpha$, we have that $\lambda(x) \wedge \mu(y) \nleq \alpha$.

Now, $(\lambda \wedge \mu)(x \wedge y) = \lambda(x \wedge y) \wedge \mu(x \wedge y) \geq \lambda(x) \wedge \mu(y)$ (since λ and μ are antitones) and hence $(\lambda \wedge \mu)(x \wedge y) \nleq \alpha =$ $\alpha_I(x \wedge y)$ so that, $(\lambda \wedge \mu) \nleq \alpha_I$. Hence, α_I is a prime L-fuzzy ideal of A.

Theorem 3.3: A proper L-fuzzy ideal λ of A is prime if and only if the following are satisfied.

- (1) λ is two valued
- (2) $\lambda(m)$ is a prime element in L, for any maximal element m in

Proof: Suppose that λ is a prime L-fuzzy ideal of A. (1): Suppose λ assumes more than two values. Then there exists $x, y \in A$ and $\alpha \neq \beta \in L - \{1\}$ such that $\lambda(x) = \alpha, \lambda(y) = \alpha$ β and $\lambda(0) = 1$. Now, define L-fuzzy subsets ν and μ of Aas follows:

$$v(z) = \begin{cases} 1 & \text{if } z \in (x] \\ 0 & \text{if } z \notin (x] \end{cases} \quad \text{and} \quad \mu(z) = \begin{cases} 1 & \text{if } z = 0 \\ \alpha & \text{if } z \neq 0. \end{cases}$$

Then, clearly $\nu=0_{(x]}$ and $\mu=lpha_{(0]}$ and hence ν and μ are L-fuzzy ideals. Also, for

$$z = 0 \Rightarrow (\mathbf{v} \wedge \boldsymbol{\mu})(0) = \mathbf{v}(0) \wedge \boldsymbol{\mu}(0) = 1 \wedge 1 = 1 = \lambda(0).$$

 $0 \neq z \in (x] \Rightarrow \mathbf{v}(z) \wedge \boldsymbol{\mu}(z) = 1 \wedge \alpha = \alpha = \lambda(x) \leq \lambda(z)$ (since λ is an antitone and $z \wedge x \leq x$, we have $\lambda(x) \leq \lambda(z \wedge x) = \lambda(x \wedge z) = \lambda(z)$)

and $z \notin (x] \Rightarrow v(z) \land \mu(z) = 0 \land \alpha = 0 \le \lambda(z)$. Therefore, $v \land \alpha = 0 \le \lambda(z)$. $\mu \leq \lambda$. Since λ is prime, $\nu \leq \lambda$ or $\mu \leq \lambda$. But $\nu \nleq \lambda$ (since $v(x) = 1, \lambda(x) = \alpha \text{ and } 1 \neq \alpha$).

Therefore, $\mu \leq \lambda$. In particular, $\mu(y) \leq \lambda(y) \neq \lambda(0)$, we get that $y \neq 0$ and $\alpha = \mu(y) = \beta$, which is a contradiction.

(2): Let m be a maximal element in A. Since λ is proper, $\lambda(x) \neq 1$, for some $x \in A$ and hence $\lambda(m) \neq \lambda(0) = 1$ $(\lambda(m) = 1 \Rightarrow \lambda(m \lor x) = 1 \Rightarrow \lambda(m) \land \lambda(x) = 1 \Rightarrow \lambda(x) = 1.$

Let α and $\beta \in L$ such that $\alpha \wedge \beta \leq \lambda(m)$. Define ν and μ of

$$v(x) = \begin{cases} 1 & \text{if } x = 0 \\ \alpha & \text{if } x \neq 0 \end{cases} \quad \text{and} \quad \mu(x) = \begin{cases} 1 & \text{if } x = 0 \\ \beta & \text{if } x \neq 0. \end{cases}$$

Then, it can be easily proved that ν and μ are L-fuzzy ideals of A and $v \wedge \mu \leq \lambda$. Since λ is prime, $v \leq \lambda$ or $\mu \leq \lambda$, inparticular, $v(m) \leq \lambda(m)$ or $\mu(m) \leq \lambda(m)$. Therefore, $\alpha \leq$ $\lambda(m)$ or $\beta < \lambda(m)$ and hence $\lambda(m)$ is prime.

(3): Let $I = \{x \in A : \lambda(x) = 1\}$. Clearly, I is a proper ideal of A, since λ is proper. Let α be the other value of λ . Then

$$\lambda(x) = \begin{cases} 1 & \text{if } x \in I \\ \alpha & \text{if } x \notin I \end{cases}$$

and hence $\lambda = \alpha_I$. By theorem 3.2, I is prime.

Conversely suppose that λ is an L-fuzzy ideal of A satisfying the conditions (1),(2) and (3). By (1), there exists $\alpha \neq 1 \in \mathbb{R}$ L such that $\lambda(x) = \alpha$, for each $x \in A - \{0\}$. Then for any maximal element m of A, $\lambda(m) = \alpha$. By (2), α is prime. Let $I = \{x \in A : \lambda(x) = 1\}$. Then I is a prime ideal of A (by (3)). Therefore, $\lambda = \alpha_I$ and hence λ is a prime L-fuzzy ideal of A (by theorem 3.2).

The results 3.2 and 3.3 yield the following.

Theorem 3.4: Let λ be an L-fuzzy subset of A. Then λ is a prime L-fuzzy ideal of A if and only if there exists a prime ideal P of A and a prime element α in L such that $\lambda = \alpha_P$.

IV. L-FUZZY PRIME IDEALS

In this section, we introduce the notion of an L-fuzzy prime ideal which is weaker than that of a prime L-fuzzy ideal.

Definition 4.1: A proper L-fuzzy ideal λ of A is called an L-fuzzy prime ideal of A if for any $x, y \in A$, $\lambda(x \wedge y) = \lambda(x) \text{ or } \lambda(y).$

The following theorem gives a characterization of an Lfuzzy prime ideal.

Theorem 4.2: Let λ be a proper L-fuzzy ideal of A. Then the following are equivalent to each other.

- (1) for each $\alpha \in L$, $\lambda_{\alpha} = A$ or λ_{α} is a prime ideal of A
- (2) λ is an L-fuzzy prime ideal of A
- (3) for any $x, y \in A$, $\lambda(x \wedge y) \leq \lambda(x) \vee \lambda(y)$ and either $\lambda(x) \leq \lambda(x) \vee \lambda(y)$ $\lambda(y)$ or $\lambda(y) \leq \lambda(x)$.

Proof: $(1) \Rightarrow (2)$: Let $x, y \in A$ and $\alpha = \lambda(x \land y)$. Then $x \wedge y \in \lambda_{\alpha}$ and hence $x \in \lambda_{\alpha}$ or $y \in \lambda_{\alpha}$.

$$x \in \lambda_{\alpha} \Rightarrow \lambda(x \wedge y) = \alpha \leq \lambda(x) \leq \lambda(x \wedge y)$$

$$\Rightarrow \lambda(x \wedge y) = \lambda(x)$$

Similarly, $y \in \lambda_{\alpha} \Rightarrow \lambda(x \land y) = \lambda(y)$.

 $(2) \Rightarrow (3)$: Let $x, y \in A$. Then, $\lambda(x \land y) = \lambda(x)$ or $\lambda(y)$.

 $\lambda(y) < \lambda(x \wedge y) = \lambda(x).$

 $\lambda(x) < \lambda(y)$.

 $(3) \Rightarrow (1)$: Let $\alpha \in L$ be fixed. If $\lambda_{\alpha} \neq A$, then λ_{α} is a proper (3) Suppose that 0 be a prime element in L. Then, I is a prime ideal of A. Also, for any $x, y \in A$,

$$x \wedge y \in \lambda_{\alpha} \Rightarrow \alpha \leq \lambda(x \wedge y) \leq \lambda(x) \vee \lambda(y) = \lambda(x) \text{ or } \lambda(y)$$

 $\Rightarrow \alpha \leq \lambda(x) \text{ or } \alpha \leq \lambda(y)$
 $\Rightarrow x \in \lambda_{\alpha} \text{ or } y \in \lambda_{\alpha}$
Therefore, λ_{α} is prime.

Theorem 4.3: A prime L-fuzzy ideal of A is an L-fuzzy prime ideal of A.

Proof: Let λ be a prime L-fuzzy ideal of A. Then $\lambda = \alpha_I$ for some prime ideal P of A and α a prime element in L. Since $\alpha < 1$, λ is a proper.

Let $x, y \in A$. Then

$$x \land y \in I \Rightarrow \lambda(x \land y) = 1 \text{ and } x \in I \text{ or } y \in I$$

 $\Rightarrow \lambda(x \land y) = 1 = \lambda(x) \text{ or } \lambda(y)$

and
$$x \land y \notin I \Rightarrow x \notin I$$
 and $y \notin I$
 $\Rightarrow \lambda(x \land y) = \alpha = \lambda(x) = \lambda(y)$

Therefore, λ is an *L*-fuzzy prime ideal of *A*.

The converse of the above theorem is not true; for consider the given example below.

Example 4.4: Let $A = \{0, a, b, c\}, L = \{0, t, 1\}$ with 0 < t < 1and let \vee and \wedge be binary operations on A defined by

0	a	b	C
0	а	h	_
	-	D	C
a	a	a	a
b	b	b	b
С	а	b	С
	a b c		b b b

^	0	a,	b	C
0	0	0	0	0
а	0	а	b	С
b	0	a	b	C
C	0	С	C	С

Then, $(A, \land, \lor, 0)$ is an ADL. Now define $\lambda : A \to L$ by $\lambda(0) = 1$

 $\lambda(a) = \lambda(b) = 0$ and $\lambda(c) = t$. Therefore, $\lambda_0 = A$, $\lambda_t = \{0, c\}$ and $\lambda_1 = \{0\}$ are prime ideals of A. Therefore, λ is an L-fuzzy prime ideal of A, while λ is not a prime L-fuzzy ideal of A, since λ is not exactly two valued.

Finally, in this section we slightly generalize α -level fuzzy ideals of A and identify general prime ideals of A with L-fuzzy prime ideals of A.

Theorem 4.5: Let I a proper ideal of A and $\alpha, \beta \in L$. Let $\langle \alpha, \beta \rangle_I$ be an L-fuzzy subset of A defined by

$$\langle \alpha, \beta \rangle_I(x) = \begin{cases} 1 & \text{if } x = 0 \\ \alpha & \text{if } 0 \neq x \in I \\ \beta & \text{if } x \notin I. \end{cases}$$

- $\lambda(x \wedge y) = \lambda(x) \Rightarrow \lambda(x \wedge y) = \lambda(x) \leq \lambda(x) \vee \lambda(y)$ and (1) $\langle \alpha, \beta \rangle_I$ is an L-fuzzy ideal of A if and only if $\beta \leq \alpha$ and, in this case $\langle \alpha, \beta \rangle_I$ is proper if and only if $\beta < 1$.
- Similarly, $\lambda(x \wedge y) = \lambda(y) \Rightarrow \lambda(x \wedge y) \leq \lambda(x) \vee \lambda(y)$ and (2) I is a prime ideal of A if and only if χ_I is an L-fuzzy prime ideal of A
 - ideal of A if and only if $\langle \alpha, \beta \rangle_I$ is an L-fuzzy prime ideal of *A* for all $1 \neq \beta \leq \alpha$ in *L*.

Proof: (1) and (2) are striaght forward and simple verifications.

(3): Suppose that *I* is a prime ideal of *A* and $1 \neq \beta \leq \alpha$ in *L*. Let $x, y \in I$. Then,

$$x \wedge y = 0 \Rightarrow x = 0 \text{ or } y = 0$$

$$\Rightarrow \langle \alpha, \beta \rangle_I (x \wedge y) = 1 = \langle \alpha, \beta \rangle_I (x) \text{ or } \langle \alpha, \beta \rangle_I (y)$$

$$0 \neq x \wedge y \in I \Rightarrow 0 \neq x \in I \text{ or } 0 \neq y \in I$$

$$\Rightarrow \langle \alpha, \beta \rangle_I (x \wedge y) = \alpha = \langle \alpha, \beta \rangle_I (x) \text{ or } \langle \alpha, \beta \rangle_I (y)$$
and $x \wedge y \notin I \Rightarrow x \notin I \text{ and } y \notin I$

 $\Rightarrow \langle \alpha, \beta \rangle_I(x \wedge y) = \beta = \langle \alpha, \beta \rangle_I(x) = \langle \alpha, \beta \rangle_I(y).$

Converse follows from the fact that $\chi_I = \langle 1, 0 \rangle_I$.

V. MINIMAL PRIME L-FUZZY IDEALS

Let us recall from [?] that a prime ideal P an ADL of A containing an ideal I is said to be a minimal prime ideal belonging to I if there is no prime ideal of A containing I and properly contained in P.

Definition 5.1: Let λ be a prime L-fuzzy ideal of A. Then λ is said to be minimal if λ is a minimal member in the set of all prime L-fuzzy ideals of A under the point-wise partial ordering. A minimal prime L-fuzzy ideal belonging to $\chi_{\{0\}}$ is simply called a minimal prime L-fuzzy ideal.

In this section, we characterize all minimal prime L-fuzzy ideals of A in terms of minimal prime ideals of A and minimal prime elements of L.

As usual, by a minimal prime element of L we mean a minimal element in the poset of all prime elements of L.

Now we have the following:

Theorem 5.2: Let λ be an L-fuzzy ideal of A. Then λ is a minimal prime L-fuzzy ideal of A if and only if $\lambda = \alpha_I$, for some minimal prime ideal I of A and a minimal prime element α in L.

Proof: Suppose that $\lambda = \alpha_I$ for some minimal prime ideal I of A and minimal prime element in L. Then by theorem 3.4, λ is prime L-fuzzy ideal of A. Let μ be a prime L-fuzzy ideal of A and $\mu \leq \lambda$. Then by theorem 3.4, $\mu = \beta_I$ for some prime ideal I of I and a prime element I in I. Therefore, I is implies that, I is I and I in I

Conversely suppose that λ is a minimal prime L-fuzzy ideal of A. Then by theorem 3.4, there exists a prime ideal I of A and a prime element α in L such that

 $\lambda = \alpha_I$. Let J be a prime ideal of A such that $J \subseteq I$. Then $\alpha_J \le \alpha_I$, by the minimality of λ , $\alpha_J = \alpha_I$. Therefore, J = I and hence I is minimal prime ideal of A. Let β be a prime element in L and $\beta \le \alpha$. Then $\beta_I \le \alpha_I$. This implies, $\beta_I = \alpha_I$ and hence $\beta = \alpha$. Thus α is a minimal prime element in L.

If the smallest element 0 in L is prime, then 0 will be the only minimal prime element in L. Note that $\chi_P = 0_P$, for any ideal P of A.

The following is a simple verification.

Theorem 5.3: Let 0 be a prime element in L. Then an L-fuzzy ideal λ of A is a minimal prime L-fuzzy ideal of A if and only if $\lambda = \chi_P$, for some minimal prime ideal P of A. More over, $P \mapsto \chi_P$ is a bijection of the set of minimal prime ideals of A onto the set of minimal prime L-fuzzy ideals of A.

VI. L-FUZZY MINIMAL PRIME IDEALS

By an L-fuzzy minimal prime ideal of A we mean, as usual, a minimal element in the set of all L-fuzzy prime ideals of A under the point-wise partial ordering. In this section, we characterize all L-fuzzy minimal prime ideals of A in terms of their α -cuts.

Theorem 6.1: (1) If λ is an L-fuzzy prime ideal of A, then $\lambda_1 = \{x \in A : \lambda(x) = 1\}$ is a prime ideal of A.

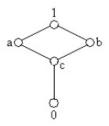
(2) Let λ be an *L*-fuzzy prime ideal of *A*. If λ is an *L*-fuzzy minimal prime ideal of *A*, then λ_1 is a minimal prime ideal of *A*.

Proof: (1) Let λ be an *L*-fuzzy prime ideal of *A*. Then λ_1 is a proper ideal of *A* since λ is proper. Let $x, y \in A$. Then, $x \wedge y \in \lambda_1 \Rightarrow \lambda(x \wedge y) = 1$

$$\Rightarrow 1 = \lambda(x \land y) = \lambda(x) \text{ or } \lambda(y) \text{ (by 4.1)}$$
$$\Rightarrow x \in \lambda_1 \text{ or } y \in \lambda_1.$$

Thus, λ_1 is a prime ideal of A.

The converse is not true. For, consider the lattice $A = \{0, a, b, c, 1\}$ represented by the Hasse diagram is given below.



Define $\lambda: A \to [0,1]$ by $\lambda(0) = 1$, $\lambda(c) = 0.75$, $\lambda(b) = 0.5$ and $\lambda(a) = \lambda(1) = 0$. Then, $\lambda_1 = \{0\}$ which is a prime ideal of A, while , λ is not an L-fuzzy prime ideal of A, since $\lambda(a \wedge b) = \lambda(c) = 0.75 \neq \lambda(a)$ and $\lambda(b)$.

(2) Suppose that λ is an L-fuzzy minimal prime ideal of A. Let Q be a prime ideal of A and $Q \subset \lambda_1$. Then χ_Q is an L-fuzzy prime ideal of A and $\chi_Q \subseteq \lambda$. This implies that λ is not an L-fuzzy minimal prime ideal of A, which is a contradiction. Thus λ_1 is a minimal prime ideal of A.

The converse is not true; for in the above example, if $\lambda(0) = 1$ and $\lambda(x) = 0.5$ for all $x \neq 0$, then it can be easily checked that λ is an L-fuzzy prime ideal of A and $\lambda_{\alpha} = A$ if $0 \leq \alpha \leq 0.5$ and $\lambda_{\alpha} = \{0\}$ if $0.5 < \alpha \leq 1$. In particular, λ_1 is a minimal prime ideal of A. But, λ is not an L-fuzzy minimal prime ideal of A, since if we define $\mu(0) = 1$ and $\mu(x) = 0.25$ for all $x \neq 0$, then μ is an L-fuzzy prime ideal of A and $\mu \leq \lambda$.

The following theorem is a characterization of L-fuzzy minimal prime ideals of A.

Theorem 6.2: Let λ be an L-fuzzy prime ideal of A and 0 be a prime element in L. Then λ is an L-fuzzy minimal prime ideal of A if and only if λ_{α} is a minimal prime ideal of A, for all $\alpha \in L$.

Proof: Suppose λ is an L-fuzzy minimal prime ideal of A and λ_{α} is not minimal prime ideal of A, for some $0 < \alpha < 1$ in L. Then there exists a prime ideal Q of A such that $Q \subset \lambda_{\alpha}$. Define $\mu: A \to L$ by

$$\mu(x) = \begin{cases} 1 & \text{if } x = 0 \\ \alpha & \text{if } 0 \neq x \in Q \\ 0 & \text{if } x \notin Q. \end{cases}$$

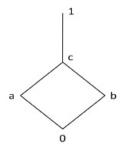
Then, clearly $\mu = (\alpha, 0)_Q$ and hence μ is an L-fuzzy prime ideal of A (by theorem 4.5 (3)). Also, $\mu \leq \lambda$. Since $Q \subset \lambda_\alpha$, there exists $y \in \lambda_\alpha$ such that $y \notin Q$. Therefore, $\mu(y) = 0 < \infty$

 $\alpha \le \lambda(y)$. Therefore, $\mu \le \lambda$, which is a contradiction. Thus for each $\alpha \in L$, λ_{α} is a minimal prime ideal of A.

Conversely, suppose for each $\alpha \in L$, λ_{α} is a minimal prime ideal of A. Let μ be an L-fuzzy prime ideal of A such that $\mu \leq \lambda$. Then for each $\alpha \in L$, $\mu_{\alpha} \subseteq \lambda_{\alpha}$. By the minimality of λ_{α} , we have $\mu_{\alpha} = \lambda_{\alpha}$ and hence $\mu = \lambda$. Therefore λ is an L-fuzzy minimal prime ideal of A.

Remark 6.3: If λ is an L-fuzzy minimal prime ideal of A, the each α -cut of λ need not be minimal prime ideal of A.

For, consider the example given in the following. Let $A = \{0, a, b, c, 1\}$ be the lattice represented by the Hasse diagram is given below.



Define $\lambda: A \to [0,1]$ by $\lambda(0) = \lambda(a) = 1$, $\lambda(b) = \lambda(c) = 0.5$ and $\lambda(1) = 0$. It can be easily verified that, λ is an L-fuzzy prime ideal of A and for any $t \in [0,0.5]$, $\lambda_t = \{0,a,b,c\}$ is a prime ideal of A but not minimal.

REFERENCES

- [1] L. Zadeh, "Information and control," Fuzzy sets, vol. 8, no. 3, pp. 338–353, 1965.
- [2] J. Goguen, "L-fuzzy sets," *Journal of mathematical analysis and applications*, vol. 18, no. 1, pp. 145–174, 1967.
- [3] W.-j. Liu, "Fuzzy invariant subgroups and fuzzy ideals," Fuzzy sets and systems, vol. 8, no. 2, pp. 133–139, 1982.
- [4] T. Mukherjee and M. Sen, "On fuzzy ideals of a ring i," Fuzzy Sets and systems, vol. 21, no. 1, pp. 99–104, 1987.
- [5] U. Swamy and K. Swamy, "Fuzzy prime ideals of rings," *Journal of Mathematical Analysis and Applications*, vol. 134, no. 1, pp. 94–103, 1988.
- [6] U. Swamy and G. Rao, "Almost distributive lattices," *Journal of the Australian Mathematical Society*, vol. 31, no. 1, pp. 77–91, 1981.
- [7] U. Swamy, C. S. S. Raj, and N. Teshale, "Fuzzy ideals of almost distributive lattices," *Annals of Fuzzy Mathematics and Informatics*, vol. 14, no. 4, pp. 371–379, 2017.