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Modeling and Forecasting Rainfall in Ethiopia
Tesfahun Berhane, Nurilign Shibabaw, Gurju Awgichew and Tesfaye Kebede

Abstract—Ethiopian economy is extremely dependent on agri-
cultural sector, which contributes 45% to the Gross Domestic
Product (GDP), 85% foreign earnings and provides livelihood to
80% of the population. Ethiopian agriculture is highly dependent
on natural rainfall, with irrigation agriculture accounting for
less than 1% of the country’s total cultivated land. Therefore,
modeling and forecasting the rainfall dynamics of the country has
a great importance. This paper aims at examining the rainfall
dynamics and fit appropriate model for forecasting Ethiopian
rainfall. In this research, we apply Box-Jenkins approach,
Seasonal Autoregressive Integrated Moving Average (SARIMA)
model in order to forecast monthly rainfall of Ethiopia for the
period of twelve months ahead. Monthly rainfall data from 1901
to 2015 were used from world bank group (climate change
portal). Appropriate SARIMA model has been identified based on
an Akaike information criteria (AIC) and Bayesian information
criteria (BIC) for forecasting the amount of monthly average
rainfall. Farmers, in general agricultural sectors, policy makers,
tourists, and investors engaged in the construction industry are
some of the sectors benefited from this result.

Index Terms—Ethiopia, SARIMA, seasonal differencing, rain-
fall, stationarity.

I. INTRODUCTION

AGRICULTURE plays the major role in the economy of
Ethiopia. The agricultural sector contributes 45% to the

Gross Domestic Product (GDP), 85% foreign earnings and
provides livelihood to 80% of the population. Ethiopian agri-
culture is highly dependent on natural rainfall, with irrigation
agriculture accounting for less than 1% of the countrys total
cultivated land. Thus, the amount and temporal distribution
of rainfall during the growing season are critical to crop
yields and can induce food shortages and famine [1]. Studies
in Ethiopia have shown that rainfall variability, unreliable
occurrences insufficient amount and delay in onset dates
contribute to decline in crop yields with reasonable amount
in almost all parts of the country [2]. Rainfall variability has
historically been found as a major cause of food insecurity
and famine in the country [3]. This is clearly due to the fact
that the agricultural sector is facing increased and continued
risks of climate change. It is apparent that crop yield primarily
depends on rainfall conditions of the country. Close linkage
between climate and Ethiopian economy is demonstrated by
close pattern of rainfall variability and gross domestic product
(GDP) growth [4]. The trends in the contribution of agriculture
to the country’s total GDP clearly explain the presence of
strong relationship between the performance of agriculture
and rainfall conditions. Annual as well as seasonal crop yield
variations in Ethiopia can be partly explained by rainfall
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patterns. Rainfall variability usually result in reduction of
20% production and 25% raise in poverty rates in Ethiopia
[5], [6]. This rainfall variability has a great impact on the
income of every house holds rely on agriculture. Therefore,
modeling and forecasting rainfall pattern is very important
for the country in order to reduce these risks. In this paper,
we present parsimonious model for short-term forecasting of
rainfall dynamics of the country.

The paper is structured as follows. Section 2 presents
methodology. Section 3 describes model formulation. Section
4 discusses result and discussion and finally Section 5 dis-
cusses conclusion.

II. METHODOLOGY

A. Study Area
Ethiopia is located in the north eastern part of Africa

between the equator and tropic of cancer in the horn of Africa
and covers an area of about 1.1×106 km2 land.

Fig. 1. Map of Ethiopia

B. Box-Jenkins algorithm
In this study, we follow the Univariate Box-Jenkins Autore-

gressive Integrated Moving Average (UBJ-ARIMA) algorithm
which is appropriate for a stationary data series. The same
approach has been used by different researchers to describe
monthly rainfall in different parts of the world for instance
[7], [8], [9]. The algorithm was first introduced by Box and
Jenkins (1976) and now it becomes the most popular models
for forecasting univariate time series data. A stationary series
has a mean, variance, and autocorrelation coefficients that are
essentially constant through time. Often, a nonstationary series
can be made stationary with appropriate transformations. The
most common type of nonstationarity occurs when the mean of
a realization changes over time. A nonstationary series of this
type can frequently be rendered to stationary by differencing.
Our goal is to find a statistically adequate and parsimonious
model that represents the observed rainfall time series data.
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III. MODEL FORMULATION

A time series is said to be seasonal of order s if there exists
a tendency for the series to exhibit periodic behavior after
every time interval s. Seasonality is one common source of
non stationary series. Seasonal non stationary series is elimi-
nated by applying seasonal differencing. Seasonal differencing
means differencing by the order of seasonal periodicity. That
means, replacing the value of the series at each point in time
t with the difference between the value at time t and the value
of the series at time t− s. One can transform non-stationary
series into stationary by taking regular differences, that is, the
difference from one period with respect to the next. For clar-
ification, suppose Xt is a seasonal non-stationary series, then
the first-order regular difference is given as ∇Xt = Xt −Xt−1
while, the first-order seasonal difference with seasonal period s
is defined as ∇sXt = Xt−Xt−s, t > s. Jointly, these differencing
techniques can be written as equation (1).

wt = ∇
D
s ∇

dXt (1)

where ∇s = (1− Bs)D, ∇d = (1− B)d , B is the regular lag
operator (back-shift operator) defined as BXt = Xt−1, Bs is
the seasonal lag operator defined as BsXt = Xt−s, D is the
number of seasonal differences and d is the number of regular
differences. Seasonal ARIMA model (SARIMA) can be gen-
erated by incorporating seasonal components in the ARIMA
model, that means the ARMA model for stationary series
incorporating both the regular dependence, that is associated
with the measurement intervals of the series, as well as the
seasonal dependence, which is associated with observations
separated by s periods. Modeling the regular and seasonal
dependence separately and then incorporating both models
multiplicatively, a multiplicative seasonal ARIMA model is
obtained and it has the form:

ΦP(Bs)Ψp(B)wt = ΘQ(Bs)θq(B)εt (2)

Substituting equation (1) in (2), we get

ΦP(Bs)Ψp(B)(1−Bs)D(1−B)dXt = ΘQ(Bs)θq(B)εt (3)

where ΦP(Bs) and ΘQ(Bs) are seasonal autoregressive
and moving average operators respectively and defined as
ΦP(Bs) = 1−ΣP

k=1φkBks, ΘQ(Bs) = 1−Σ
Q
k=1ΘkBks, Ψp(B) and

θq(B) are regular autoregressive and moving average operators
respectively and defined as Ψp(B) = 1−Σ

p
k=1ψkBk, θq(B) =

1−Σ
q
k=1θkBk. Equation (3) is a seasonal ARIMA model and

usually it is written in the form ARIMA(p,d,q)× (P,D,Q)s
where lowercase letters respectively representing the regular
autoregressive, integration, and moving average orders of the
model. uppercase letters respectively represent the seasonal
components of the model, εt is the white noise , B is the regular
lag operator and defined as BXt = Xt−1, Bs is the seasonal lag
operator and defined as BsXt = Xt−s, s is the seasonal period,
d is the order of regular differencing and D is the order of
seasonal differencing.

Figures 2 and 3 show the plot of Ethiopia’s monthly rainfall
data in the period 1901 to 2015.

In this section, we analyze the identification, estimation,
and diagnostic checking using the rainfall data in Fig. 2 and

Fig. 2. Time series plot from 1901 to 2015.

Fig. 3. Time series plot from 2000 to 2015 for visibility

3. We discuss also the stationarity and invertibility conditions
for seasonal models and present the forecast profile for our
rainfall model.

A. Identification

Here, we compare the estimated autocorrelation functions
(ACFs) and partial autocorrelation functions (PACFs) with
various theoretical ACFs and PACFs to find a match. We
choose, the ARIMA process whose theoretical ACF and PACF
best match the estimated ACF and PACF. In choosing the
model, we keep in mind the principle of parsimony: we want a
model that fits the given realization with the smallest number
of estimated parameters. The sample ACFs and PACFs are
the primary tools for model identification. Figure 4 shows the
sample ACFs and PACFs of observed monthly rainfall data of
Ethiopia.

The sample autocorrelation function (ACF) plots given in
Fig. 4(a) indicates a monthly seasonality, s = 12, as ACF
values at lags 12,24,36 are significant and does not show any
significant decreasing. The sample ACF for the rainfall time
series data appears in Fig. 4(a) shows that the autocorrelations
at the seasonal lags (12, 24, 36) fails to die out quickly. This
confirms the nonstationary character of the seasonal pattern
and calls for seasonal differencing. In addition to this, the
autocorrelations at the seasonal lags in Fig. 4(a) are surrounded
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Fig. 4. Sample ACF and PACF for rainfall data.

by other large autocorrelations (especially lags 10, 11, 13, 23,
and 25) and also there are other large autocorrelations at half
seasonal lags and around it. This is an indicator of the presence
of strong seasonal pattern.

In this series, seasonal differencing is sufficient to remove
all these large surrounding values as shown by the estimated
ACF for the seasonally differenced series that is, wt = (1−
B12)Xt as indicated in Fig. 6(a). Figure 5 shows the graph of
the seasonally differenced data wt = (1−B12)Xt .

Fig. 5. Time series plot of wt = (1−B12)Xt .

The estimated ACF in Fig. 6(a) of the seasonally differenced
data shows that differencing clears up the waves of significant
values surrounding the half-seasonal lags. Looking at the
estimated ACF and PACF in Fig. 6, seasonal differencing
has created a stationary series since the estimated ACF falls
quickly to zero at both the short lags (1, 2, 3) and the seasonal
lags (24 and 36 ).

B. Determining the Orders of the Model

The correct order of ARIMA model is specified by de-
termining the appropriate order of the autoregressive (AR),
moving average (MA) and the integrated parts or the order

Fig. 6. ACF and PACF plot of of seasonal differenced series wt .

of differencing. The major tools in the identification process
are the sample autocorrelation function (ACF) and partial
autocorrelation function (PACF). In figure 6(a) the sample
ACF with a significant value at lag 12 followed by a cut off
to very small values in the rest of the lags and the sample
PCAF in figure 6(b) with exponential decaying pattern at lags
12,24 and 36 along with Table 1 confirms that an MA term
is appropriate at the seasonal lag 12 and we expect Θ12, to
be negative. These analysis all together leads us to choose a
seasonal ARIMA(0,0,0)× (0,1,1)12 model.

TABLE I
PRIMARY DISTINGUISHING CHARACTERISTICS OF THEORETICAL ACFS

AND PACFS FOR STATIONARY PROCESSES.

Model ACF PACF
AR(p) Tails off towards zero

(Decays exponentially
or damped oscillation

Cuts off to zero (after
p lags)

MA(q) Cuts off to zero (after
q lags)

Tails off towards zero
(Decays exponentially
or damped oscillation)

ARMA(p,q) Tails off towards zero
(Decays exponentially
after lag q)

Tails off towards zero
(Decays exponentially
after lag p)

In addition to the above model selection criteria, we also
apply the Akakie information criteria (AIC) and Bayesian
information criteria (BIC) in order to choose best model
among different candidates, accordingly, we identify the sea-
sonal ARIMA(1,0,0)× (0,1,1)12 model is the best model to
represent our monthly rainfall data with smallest AIC= 12565
and BIC=12705. The model can be written as

(1−φ1B)(1−B12)Xt = (1−Θ12B12)εt (4)

C. Parameter Estimation
Table 2 gives the maximum likelihood estimates and the

standard errors of the seasonal ARIMA (1,0,0)× (0,1,1)12
model parameters.

D. Model Adequacy
At the diagnostic-checking stage we examine the residuals

of the estimated model to see if they are independent. If they
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TABLE II
PARAMETER ESTIMATION FOR ARIMA (1,0,0)× (0,1,1)12 MODEL.

parameter value standard error t value
φ1 0.11 0.024 4.40

Θ12 -0.90 0.010 -85.71

are not, we return to the identification stage to tentatively
select another model. A statistically adequate model satisfies
the assumption that the random shocks are independent. If the
residuals are independent, we accept the hypothesis that the
shocks are independent. The residual ACF is used to test the
hypothesis that the shocks are independent. The residual ACFs
is shown in Fig. 7. Ljung and Box test suggests a test statistic
based on all the residual autocorrelations as a set. For a given
K residual autocorrelations, we test the following joint null
hypothesis about the correlations among the random shocks.

H0 : ρ1(ε) = ρ2(ε) = ρ3(ε) = ...= ρk(ε) = 0 (5)

where, ρi(ε) are the theoretical autocorrelations. Using the
following test statistic given in[10] that is:

Q = n(n+2)ΣK
k=1(n− k)−1

γ
2
k (ε) (6)

where, n is the number of observations used to estimate the
model parameters, Q follows approximately a chi-squared dis-
tribution with (K−m) degrees of freedom, γk is the correlation
of the residuals and m is the number of parameters involved in
the model. We calculate Q for K = 40 (sample autocorrelation
of the residual), and obtain Q= 0.92304. According to the chi-
squared distribution table, the critical value corresponding to
the degree of freedom (DF = 38) at 10% level is 40, which is
much greater than our calculated chi-squared value. Therefore,
we conclude that the residual autocorrelations in Fig. 6 are not
significantly different form zero as a set. Hence, we accept the
hypothesis (5), that is the random shocks are independent.

Fig. 7. Standardized residual, QQplot, sample ACF and PACF of the residual.

Furthermore, the mean of the standard residual is nearly
zero that is 0.00032 and the variance of the standardized
residual is 0.996 from these and the plots of the residual we
can conclude that the residuals are independent, that means,
the residuals are reasonably normally distributed. Moreover,

the stationarity and invertibility conditions are satisfied that
is, |φ1| = |0.11| = 0.11 < 1 and the invertibility condition
|Θ12| = | − 0.90| = 0.90 < 1 both conditions are satisfied.
Therefore, our model is adequate.

IV. RESULTS AND DISCUSSIONS

On the basis of the developed model, the forecasted monthly
rainfall along with the 95% confidence intervals for the year
2015 is presented in Fig. 8. Table 3 reveals the forecasted
values using our SARIMA (1,0,0)× (0,1,1)12 model. All
forecasted values lies within 95% confidence interval which
shows that the model is neither over forecasting nor under
forecasting. Negative values in the lower confidence interval
is treated as zero or no rain.

TABLE III
FORECASTED VALUES USING SARIMA (1,0,0)× (0,1,1)12

Months Rainfall in
mm

Lower
confidence
level

Upper
confidence
level

January 2015 11.82 0 50.14
February 2015 14.83 0 53.36
March 2015 39.96 0 77.56
April 2015 81.27 3.00 97.44
May 2015 104.29 84.48 178.91
June 2015 71.93 51.83 146.27
July 2015 127.75 68.52 162.96
August 2015 143.47 88.54 182.97
September 2015 93.08 54.17 148.60
October 2015 88.04 44.46 138.89
November 2015 33.85 0 89.54
December 2015 13.24 0 63.54

Fig. 8. Graph of actual vs forecasted values of the Rainfall data

Figure 9 shows that Ethiopia experience much rainfall in
the months of July and August, while least amount of rainfall
in the months of January, February and December.

V. CONCLUSIONS

In this paper, SARIMA(1,0,0)× (0,1,1)12 has been iden-
tified as an appropriate model for forecasting the amount of
monthly rainfall of Ethiopia. Using the model, we forecast
twelve months ahead. All forecasted values lies within the
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Fig. 9. Time series plot of rainy season in Ethiopia estimated using the model

95% confidence interval which shows that the model is neither
over forecasting nor under forecasting.
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