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Spinning Q-balls in Five-Dimensional Spacetime
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We investigate q-balls in the d=5 dimensional Minkowski spacetime background with axially symmetric
ansatz. In this case, q-balls have non-zero angular momentum for spinning problems. We construct spinning
q-balls in five dimensions and solve the solutions of second order elliptic partial differential equations both
using analytical and numerical approach since no closed form of the equations following by appropriate
boundary conditions. This work only considers the case with equal angular momentum rather than two
different angular momenta. Passing the solutions, we discuss the global charge and their properties compared
to Coleman q-balls. The solutions exist in some range of frequencies. The main features of q-balls are still
recovered in this construction.
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I. INTRODUCTION

The solitons entered the realm of physics in a very wide
range from a wave traveling down Edinburghs Union Canal
to condensed matter and cosmology as well [1–3]. In high
energy physics, soliton can be regarded as an important in-
gredient in some models [4]. In this work, solitons refer to
any particle-like solution of non-linear field theory. Such con-
figurations are asymptotically flat and globally stationary, al-
though not necessarily stable, their energy is localized in a
finite region of space.

The solitons can be classified into two general types: topo-
logical solitons and non-topological solitons. The magnetic
monopole solution of t Hooft [5] and Polyakov [6] is the best-
known example of the topological soliton. Their stability is
ensured by the presence of a conserved topological charge.
On the other hand, the non-topological solitons do not possess
a conserved topological and thus might be unstable. The first
systematic study of non-topological solitons has been worked
out in the 70s by Freidberg, Lee, and Sirlin [7] in the context
of the quantum chromodynamics hadron (quark bag) model.
In this context, they also performed the study of particle-like
solutions in an effective model with a complex non-linear
scalar field. Several years later, the terminology of Q-balls
was proposed by Coleman in 1985 [8] to describe such solu-
tions. Their main feature is that the complex scalar field pos-
sesses a harmonic time dependence. These solutions also exist
for a certain range of frequencies, some of the configurations
being stable.

The studies of q-balls in four-dimensional spacetime, as
well as their spinning generalization, have been made in many
references . When q-balls coupled to gravity, boson stars arise.

Their solutions are also localized with finite energy. The spin-
ning counterpart of boson stars was studied by Yoshida [8]
and continued systematically in [9]. In curved spacetime, bo-
son stars show the same behavior approaching the maximum
of frequency and show the inspiraling pattern as approach-
ing their minimal value of frequency. The q-balls and boson
stars in the anti de-Sitter (AdS) spacetime background was
also studied with and without self-interaction potential [10].

The main purpose of this article is to study the gener-
alization and also the existence of spinning q-balls in five-
dimensional Minkowski spacetime. The solutions are solved
numerically of a set partial differential equations. In section II
we construct the action and the field equations by taking stan-
dard variation to the action. In order to get axially symmet-
ric solutions, we employ suitable ansatz and boundary condi-
tions. Thus, we can calculate the global charges. In section
III we discuss the solutions in five dimension as we also men-
tion the solutions in four dimension. In section IV, we present
our results on spinning cases for the field and also their global
charges. In the last section, we discuss some further remark
as well in the present of gravity coupled to the field.

II. THE MODEL

A. Action and the field equation

In order to construct q-balls, we consider a complex scalar
field, Φ, on five-dimensional spacetime background described
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as

S =

∫
dDx
√
−g LM

=

∫
d5x
√
−g
[
−1

2
gµν

(
Φ∗,µΦ,ν − Φ∗,νΦ,µ

)]
(1)

where g is metric determinant, asterisk mark (∗) denote com-
plex conjugate of the scalar field, Φ,µ = ∂Φ/∂xµ, and U(|Φ|)
is the scalar field potential. Lagrangian in the action (1) con-
tains the usual kinetic term and the potential term.

In order to get non-topological solutions, q-balls, the po-
tential has to obey special conditions, the non-linear potential.
One of the potentials which fulfill our conditions is the non-
renormalizable potential [7],

U(|Φ|) = λ|Φ|2
(
|Φ|4 − a|Φ|2 + b

)
. (2)

The parameters λ, a, and b in this work are picked as 1, 2 and
1.1 respectively following the work of [7, 9, 10]. The potential
has a minimum U(|Φ|) = 0 at Φ = 0 and in other finite value
of Φ determined by the parameters of potential. If we take the
square term of potential as U(|Φ|) = m|Φ|2, then the boson
mass is m =

√
λb. The boson mass depend on the coefficient

of square term of potential.
Lagrangian density in the action (1) is invariant to global

phase transformation Φ → Φeiα resulting in conserved cur-
rent density

jµ = −i(Φ∗Φ,µ − ΦΦ∗,µ), jµµ = 0. (3)

The total charge of q-balls can be obtained from the integra-
tion of current density, j0. Variation of action (1) respect to
scalar field yield the equation of motion,

1√
−g

∂µ
(√
−g ∂µΦ

)
=

∂U

∂|Φ|2
Φ. (4)

The equation (4) is the Klein-Gordon equation for the scalar
field as usual. The energy-momentum tensor Tµν can be ob-
tained from

Tµν = gµνLM − 2
∂LM
∂gµν

=
(
Φ∗,µΦ,ν + Φ∗,νΦ,µ

)
−

gµν

[
1

2
gαβ

(
Φ∗,αΦ,β + Φ∗,βΦ,α

)
+ U(|Φ|)

]
(5)

In this work, we solved equation (4) and their corresponding
energy of equation (5) numerically.

B. Ansatz

In five dimension, we have two directions of angular mo-
menta. However, in this work, we consider only a single
angular momentum and set to vanish one of the other angu-
lar momenta. We are interested in constructing the stationary
and axially symmetric solutions of q-balls with an azimuthal

isotropic coordinate. Thus, the geometry of spacetime admits
two-Killing vector fields. They are asymptotically timelike
Killing vector fields, ∂t, and spacelike Killing vector fields,
∂ϕ. In term of spherical coordinate (t, r, θ, ψ, ϕ) , a line ele-
ment of five-dimensional Minkowski spacetime can be written
as

ds25 = −dt2 + dr2 + r2dθ2 + r2 cos2 θdψ2 +

r2 sin2 θdϕ2 (6)

In (6), all of the metric functions depend on r and θ only. For
the scalar field, we use the stationary ansatz

Φ(t, r, θ, ψ, ϕ) = φ(r, θ)ei(nϕ−ωt), (7)

where φ(r, θ) is a real function, ω and n are real constants.
The requirement of single-valuedness of the scalar field needs
that Φ(ϕ) = Φ(2π + ϕ). Consequently, n must be an integer
and known as an azimuthal winding number. Together with
the axially symmetric ansatz (7) and Lagrangian, one shell
get a partial differential equation to be solved in order to ob-
tain the q-balls solutions. When n = 0 and the scalar field
depend on r only, then the ansatz will approach the stationary
spherical symmetric limit.

C. The boundary conditions

To find the solutions, we consider that q-balls must be glob-
ally regular and they have finite energy and energy density
as well. Our solutions have to meet boundary conditions in
conjunction with equation (4). For rotating axially symmet-
ric q-balls, boundary conditions must be specified both at the
origin, at infinity, on the θ = 0, and, using the reflection sym-
metry in the θ = π/2 plane. Power series analysis around
origin, r = 0, pointed out the following boundary conditions
which are also true for spherically symmetric

Φ‖r=0 = 0. (8)

At the infinity, the scalar fields have to vanish

Φ‖r→∞ = 0. (9)

For θ = 0, π we employ the boundary conditions

Φ‖θ=0,π = 0, (10)

and for equatorial plane solutions

Φ‖θ=π/2 = 0 (11)

D. The global charges

The energy and angular momentum of q-balls can be ob-
tained directly from the energy-momentum tensor. The ex-
pression for the mass-energy E and angular momentum J of
the configurations given by

E =

∫
Tttd

4x (12)
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and

J =

∫
Ttϕd

4x (13)

The conserved scalar charge Q is obtained from the time-
component of the current

Q = −
∫
J td4x (14)

In the equations (12-14), integrations work over space vol-
ume. The charge and angular momentum are not independent
quantities. From equations (13) and (14), one can obtain the
quantization relation for the angular momentum

J = n Q (15)

The relation (15) derived first in [10]. Thus a spherically sym-
metric solution with has no angular momentum, .

III. THE SOLUTIONS

We shall emphasize that our solutions are focusing only
with rotation on a single plane instead of two planes, implies
that Ttϕ 6= 0. Before entering into five-dimensional cases, we
shall mention some basic results of four-dimensional q-balls.

A. Spherically symmetric solutions

In the static model solutions, the ansatz (7) have to take
n = 0 and the scalar field depend on r only, ϕ(r). In this

limit, the mass-energy of spinning q-balls given by

E =

∫ ∞
0

Ttt d
4x

= 2π2

∫ ∞
0

r3
[
ω2φ2 + (∂rφ)2 + U(|φ|)

]
dr (16)

and their charge

Q = 4π2ω

∫ ∞
0

φ2 r3 dr (17)

The fundamental solutions of static q-balls also behave like
their four-dimensional counterparts. The mass-energy and
charge are going to diverge approaching the limiting value of
maximum and minimum frequencies. The scalar field φ and
energy density Ttt localized.

The main features of four dimensional q-balls show that
the energy-mass increased as the frequency goes to maximum
and minimum bound. Thus, the q-balls solutions only exist
between the range of frequency.

B. Spinning q-balls in five dimension

The axially spinning solutions are obtained when we con-
sider in the case of n 6= 0 and the scalar field depend on r and
θ. In five dimensional spherical coordinate, the scalar field
equations (4) take the form

∂rrφ+
1

r2
∂θθφ+

(
1

r2 sin θ cos θ
− 2

r2
tan θ

)
∂θφ+

(
ω2 − n2

r2 sin2 θ

)
φ− dU

dφ
= 0. (18)

The mass-energy of spinning q-balls have additional term compared to spherically symmetric solutions,

E =

∫ ∞
0

Ttt d
4x = 4π2

∫ ∞
0

[
(∂rφ)2 +

1

r2
φω2φ2 + (∂rφ)2 + U(|φ|)

]
r3 sin2 θ dr dθ (19)

For rotating Q-balls, the charge and range of frequency are
not changed. These features are also found in four dimen-
sional cases [7–9], which are determined only by their shape
of the potentials. The spinning q-balls also exist in the fre-
quency range of ω2

min < ω2 < ω2
max, where

ω2
min = λ

(
b− a2

4

)
. (20)

and the maximal value of frequency given by the boson mass,

ω2
max = λb = m2. (21)

IV. THE RESULTS

In this work, we present the simplest non-topological soli-
tons solutions, q-balls, even in five dimensional spacetime
background. The solutions are found by combining both us-
ing a numerical approach. For simplicity, we consider only
the fundamental q-balls without nodes. The model in this
work provides the simplest non-topological soliton even in
five dimensions. The approaches and numerical techniques
for solving the problems based on solving the elliptic differ-
ential equation(s).
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FIG. 1: (color online) The q-balls solutions for ω = 0.5, (a) for n = 1 and (b) for n = 2 while the q-balls solutions with
ω = 1.048, (c) for n = 1 and (d) for n = 2

FIG. 2: The mass-energy (M) of q-balls are shown as a
function of the frequency for several values of winding

number, n

The stationary axially symmetric ansatz is applied on the
field equations and solve them numerically. We solved non-
linear elliptic partial differential equations subject to boundary
conditions. The equations are solved in the grid system with
251× 30 points. Integration is covering the region 0 ≤ r̄ ≤ 1
and 0 ≤ θ ≤ 2π. We employ radial compactified coordi-
nate, r̄ = r/(1 + r), which maps radial infinity into r̄ = 1.
The numerical calculations are based on the Newton-Raphson
method and are carried out with the help of the FIDISOL
package [11, 12].

FIG. 3: The mass-energy (M) and Noether charge (Q) of
q-balls are plotted

The rotating generalization of q-balls in five dimensions is
obtained by taking the value of in the field ansatz. The solu-
tions at the maximum and minimum value of frequency show
the generic features, both static and spinning q-balls, of four-
dimensional one. The mass-energy and angular momentum
approach infinity toward their limiting frequencies as shown
in Fig. 1. The field solutions, picture in figure 1, exhibit lo-
calized rotating soliton solution. The peak of the solutions
turn to narrow when increasing the frequency. The solutions
are exist in certain range of frequency as figured out in Fig.
2 Approaching the limiting value of frequency, numerics also
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become more tricky since in this limit they go to diverge.
The mass-energy M and charge of rotating q-balls in five

dimension exhibit in Fig. 3. The relation of global charge on
frequency are analogous between five and four dimensional
rotating q-balls. We shall mention also stability of the solu-
tions. The situations of rotating q-balls stability can be read
off from Fig. 3. One can see two branches of solutions. The
lower branch of the solutions are classically stable. The lower
branch ends at the critical point occur at the mass and charge
approaching minimal values. Otherwise, the upper branch
start from this critical point.

V. FURTHER REMARKS

In this work, we present the solution of axially spinning q-
balls in five dimensional spacetime. This study was motivated
by development of field theory in higher spacetime dimension.
The results show that many feature of their four dimensional
counter part also be exhibited in this work. All solutions have
upper and lower bound frequencies which is determined by
scalar field mass and also the constant in the potentials.

This solutions can be expanded in some directions. One can

study a straightforward generalization in more higher dimen-
sion. We expect most of the features will be covered in this
approach. When gravity are coupled to the scalar field, we
have boson stars that have different behaviour as the gravity
contribute the non-linearity to the theory.

In the end, we shall say that the study of Q-balls and their
gratating counterpart is interesting from yet many point of
view. This work also ideal cases for investigating simple var-
ious numerical approach on solving axially symmetric prob-
lems, which can be applied into more complex models.

Acknowledgments

B. S. thank Doni L. Anggara for collaboration in some
stages of this work. We gratefully acknowledge partial sup-
port by the Institut Teknologi Sepuluh Nopember local grant.

VI. REFERENSI

[1] P.G. Drazin, R. S. Johnson, ”Solitons: an introduction”, Cam-
bridge University Press, 1989.

[2] G.’t Hooft, ”Magnetic Monopoles in Unified Gauge Theories”,
Nucl. Phys. B, vol. 79, pp. 276, 1974.

[3] A.M. Polyakov, ”Particle Spectrum in the Quantum Field The-
ory”, JETP Lett. vol. 20, pp. 194, 1974. [Pisma Zh. Eksp. Teor.
Fiz. vol. 20, pp. 430, 1974].

[4] S.R. Coleman, ”Q Balls”, Nucl. Phys. B, vol. 262, pp. 263, 1985
[Erratum-ibid. B, vol. 269, pp. 744, 1986].

[5] R. Friedberg, T. D. Lee and A. Sirlin, ”A Class of Scalar-Field
Soliton Solutions in Three Space Dimensions”, Phys. Rev. D,
vol. 13, pp. 2739, 1976.

[6] M.S. Volkov and E. Wohnert, ”Spinning Q balls”, Phys. Rev. D,
vol. 66, pp. 085003, 2002 [hep-th/0205157].

[7] E. Radu and M. S. Volkov, ”Existence of stationary, non-

radiating ring solitons in field theory: knots and vortons”, Phys.
Rept. vol. 468, pp. 101, 2008 [arXiv:0804.1357 [hep-th]].

[8] S. Yoshida and Y. Eriguchi, ”Rotating boson stars in general
relativity”, Phys. Rev. D, vol. 56, pp. 762, 1997.

[9] B. Kleihaus, J. Kunz and M. List, ”Rotating boson stars and Q-
balls”, Phys. Rev. D, vol.72, pp. 064002, 2005 [gr-qc/0505143].

[10] E. Radu and B. Subagyo, ”Spinning scalar solitons in anti-
de Sitter spacetime”, Phys. Lett. B, vol. 717, pp. 450, 2012
doi:10.1016/j.physletb.2012.09.050 [arXiv:1207.3715 [gr-qc]].

[11] W. Schönauer and R. Weiß, J. Comput. Appl. Math., vol. 27,
pp. 279, 1989.

[12] M. Schauder, R. Weiß and W. Schönauer, The CADSOL Pro-
gram Package, Universität Karlsruhe, Interner Bericht Nr. 46/92
(1992).


