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Abstract
A finite one-dimensional, linearly Bragg grating with chirp parameter C and index modulation depth n1 or

coupling constantκ ∝ n1is considered for numerical analysis of its performances by converting its coupled
equations into a confluent hypergeometric equation. The operational parameters considered for the analysis
consist of the group delay, the reflectance (R), the reflectance ripple (RR), the reflectance bandwidth (BW)
and the group delay ripple (GDR). It is shown that increasing C leads to decreasing GDR and increasing BW
which are favorable to the device performance. However, the RR is relatively unaffected while R suffers from an
undesirable diminution. On the other hand, increasingκ results in the enhancement of R and BW while reducing
RR whenκ is increased beyond a certain turning point. But these are attained at the expense on enlarged GDR.
The results of this study clearly points to the need of compromising between C andκ for the optimal operation
of the device.
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I. INTRODUCTION

Since the successful application of erbium-doped ampli-
fiers, the only major factor limiting the performance of high-
speed optical-fiber communication systems is its optical chro-
matic dispersion responsible for the potentially errors gener-
ating pulse broadening effect. Dispersion compensating fiber
is currently used as the standard solution for the chromatic
dispersion compensation.

Various schemes for dispersion compensation have been
proposed since the late nineteen seventies and early nineteen
eighties [1]. Most of these proposals are nevertheless either
unsuitable for on-line implementation or short of meeting the
cost-effective criterion for their applications. In a later study,
Ouelette [2] explored further the advantage of early works on
linearly chirped Bragg grating [3–5] which was known to al-
low large dispersion effects of either sign when operated in the
reflection mode. The dispersion compensation module con-
sists of a circulator and a fiber Bragg grating, as depicted in
Fig. 1. This module works as a signal repeater in a conven-
tional optical-fiber communication systems .

FIG. 1: The idea of a dispersion compensator.
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However, this scheme was invariably plagued by the un-
desired irregular oscillatory behavior or simply ripple of the
dispersion effect which will lead to power penalty and uncon-
trollable compensation effect in the system. Oulette [2] argued
that this detrimental behavior was mainly due to the presence
of side lobes in the reflectivity of the unchirped grating, giv-
ing rise to wave coupling at the side lobes frequencies outside
the desired resonance region. He went on to show that this
effect could be minimized by decreasing the coupling coeffi-
cient gradually toward the ends of the coupling region. It was
also demonstrated in a more recent experimental study [6] that
apodization of the linearly chirped grating leads to reduce side
lobes and hence the reduction of unwanted in the dispersion
delay ripple as well.

Despite advances achieved so far on both recent experi-
mental and theoretical studies as briefly described above, ex-
act analytical result on dispersion/group delay characteristics
are relatively short in supply. It was only recently that Belai
et. al. [7] succeeded in driving simple analytical expressions
for reflection coefficient and group delay of a linearly chirped
Bragg grating employing the confluent hypergeometric func-
tions at their asymptotic limit. It was found in their analysis
that in order to comply with the needs of suppressing disper-
sion delay ripples as well as maintaining high reflectivity, both
the chirp parameter and index modulation depth must be made
as large as possible, leading to possibly unrealistic demand on
the refractive index.

We report in this paper a detailed numerical investigation
of the effects of chirp parameter and refractive index mod-
ulation depth of a linearly chirped one-dimensional grating.
The basic formulation of Belai et. al [7] will be adopted here
without submitting ourselves to the asymptotic condition. It
was shown that the results of this work complements to the
result of Ref. [7] in the optimization of the system parameters
for the best performance specified in terms of high reflectance
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with small ripple, minimum ripple in group delay and wide
operational bandwidth.

II. THE MODEL

The structure of one-dimensional chirped fiber Bragg grat-
ing is sketched in Figure 2, indicating the propagation of the
forward and backward waves along the z-axe. The refractive
index of the chirped grating is given by

n(z) = n◦ + n1cos [G(z)z] (1)

where n◦ is the fixed background refractive index while n1

is a parameter denoting the modulation depth with n1/n◦ <<
1 representing a shallow grating, and G(z) denoting the local
spatial frequency of the system.

The linear chirp considered in this work is specified by the
following expression for G(z),

G(z) = G◦ + Cz (2)

Here G◦ is the center of the spatial frequency and C is the
chirp parameter which is held constant within the grating (-
L/2 ≤ z≤ L/2) and is equal to zero outside the grating.

III. COUPLED-MODE EQUATIONS AND THEIR
SOLUTION

The steady state electric field E(z) in the grating satisfies the
Helmholtz equation for the case of shallow grating, namely

d2E(z)
dz2

+
ω2

c2
n2(z)E(z) = 0 (3)

Expressing the electric field as a superposition of the counter
propagating waves,

E(z) = A(z)eikz + B(z)e−ikz (4)

If A(z) and Bz are slow varying amplitudes, and k=n◦ω/c is
close around G◦/2, substitution of eq. (4) into eq. (3) results
in the following coupled-mode equations,

dA

dz
− iδA = iκBe−iφ

dB

dz
+ iδB = −iκAeiφ (5)

FIG. 2: Sketch of a chirped fiber Bragg grating of total length L.

In those equations the frequency detuningδ is given by

δ =
ω

c
n◦ −

G◦

2
=

n◦
c

(ω − ωB) (6)

whereωB=cG◦/(2n◦) is the Bragg angular frequency at the
center of the grating. Further, the coupling constantκ is

κ = G◦
n1

2n◦
(7)

while

φ(z) = [G(z)−G◦] z = Cz2 (8)

Now we consider,

A(z) = a(z)eiδz

B(z) = b(z)e−iδz (9)

then the coupled-mode equations in eq. (5) changes to be

da

dz
= iκbe−i(2δz−Cz2)

db

dz
= −iκaei(2δz−Cz2) (10)

Using eq.(10) we get the following second order differential
equations,

d2a

dz2
− i2C(z − q)

da

dz
− κ2a = 0

d2b

dz2
− i2C(z − q)

db

dz
+ κ2b = 0 (11)

where

q =
δ

C
(12)

By substitution of

x = iC (z − q)2 (13)

into eq. (11) we have the following second order differential
equations,

x
d2a

dx2
+

(
1
2
− x

)
da

dx
+ iγa = 0

x
d2b

dx2
+

(
1
2
− x

)
db

dx
− iγb = 0 (14)

where

γ =
κ2

4C
(15)

Eq’s. (14) are known as theConfluent Hypergeometric Differ-
ential Equations, and their solutions are [2, 4]

a(z) = P1u1(z) + P2u2(z)
b(z) = Q1U

∗
1 (z) + Q2u

∗
2(z) (16)
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Here, P’s and Q’s are constants and

u1(z) = F

(
−iγ;

1
2
; iC(z − q)2

)
u2(z) = (z − q)F

(
1
2
− iγ;

3
2
; iC(z − q)2

)
(17)

and the confluent hypergeometric function F(a;c;x) has the
following form [8 ],

F (a; c;x) = 1 +
a

c

x

1!
+

a(a + 1)
c(c + 1)

x2

2!

+
a(a + 1)(a + 2)
c(c + 1)(c + 2)

x3

3!
+ · · · (18)

From eq.(9) and eq. (16) we have the coefficient of reflectivity
at z=-L/2 as

r(−1
2
L, δ) =

b(− 1
2L)

a(− 1
2L)

eiδL (19)

=
Q1
P2

u∗1(− 1
2L) + Q2

P2
u∗2(− 1

2L)
P1
P2

u1(− 1
2L) + u2(− 1

2L)
eiδL

The constants P’s and Q’s are determined as follows:
(i) For z≈q, eq’s. (17) and (18) give u1(z)≈1, and u2(z)≈(z-
q), so that

a(z) = P1 + P2(z − q) + O(z − q)2

b(z) = Q1 + Q2(z − q) + O(z − q)2

Then, by using eq. (10) we get

P2 ≈ iκQ1e
−i(2δz−Cz2)

Q2 ≈ −iκP1e
i(2δz−Cz2) (20)

(ii) Because of b(L/2) = 0, eq.(16) givesQ1u
∗
1(L/2) +

Q2u
∗
2(L/2) = 0, or

Q2

Q1
= −

u∗1(
1
2L)

u∗2(
1
2L)

(21)

Then from eq. (20) and (21) we get

P1

P2
=

Q2

κ2Q1
= − 1

κ2

u∗1(
1
2L)

u∗2(
1
2L)

(22)

Eq.’s (20), (21) and (22) give us

Q1

P2
=

1
κ2

Q2

P1
= −i

1
κ

ej(2δz−Cz2) (23)

Q2

P2
=

Q2

P1
× P1

P2
= iei(2δz−Cz2) u∗1(

1
2L)

κu∗2(
1
2L)

(24)

Using eq. (16) for z=-L/2, and eq’s (22), (23) and (24) we
have the following coefficient reflection

r(−1
2
L, δ) =

i

κ
e−iCL2/4

[ −u∗1(− 1
2L)u∗2(

1
2L) + u∗1(

1
2L)u∗2(− 1

2L)
− 1

κ2 u∗1(
1
2L)u1(− 1

2L) + u∗2(
1
2L)u2(− 1

2L)

]
(25)

The phase of the output B(-L/2) can be obtained relatively to
input A(-L/2) as

ϕ = tan−1 Im(r)
Re(r)

(26)

while the group delay is expressed as

τ = −∂ϕ

∂ω
= −n◦

c

∂ϕ

∂δ
(27)

Finally, the reflectance of the grating is given by

R(−1
2
L, δ) =

∣∣∣∣r(−1
2
L, δ)

∣∣∣∣2 (28)

IV. RESULTS AND DISCUSSION

The grating length L in this work is 10 mm and the
background refractive index n◦is 1.5. The center of the

operational wavelengthλB is 1550 nm (f◦=193.55 THz)
and the Bragg spatial periodicity at the center of grating is
ΛB=λB /2n◦ = 517 nm, while the center of the spatial fre-
quency Go=2π/ΛB=12.147x103 mm−1. From eq. (7), the
value of coupling parameterκ=1 mm−1 corresponds to the
modulation depth of refractive index n1/no=1.65x10−4. By
use of eq. (6), the relationship betweenλ andδ is

λ ≈ λB

(
1− λBδ

2πn◦

)
(29)

Using eq. (29) thenδ =1/mm corresponds toλ-λB = -0.255
nm. Using eq. (27), the group delay can be formulated as

τ(ps) = 5
∂ϕ(rad)

∂δ(mm−1)
(30)

The definition of the reflectance (R), the reflectance ripple
(RR), the reflectance bandwidth (BW), and the group delay
ripple (GDR) used in this work are shown in Figure 3, where
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(a) (b)

FIG. 3: The definition of reflectance (R), the reflectance ripple (RR), the reflectance bandwidth (BW), and the group delay ripple (GDR) in
this work.

R is the maximum value of reflectance, RR is the maximum
value of the peak to peak of the ripple, BW is the bandwidth
of the reflectance at 50% of maximum reflectance and GDR is
the maximum peak to peak of group delay.

Theκ dependence of R for various values of the chirp pa-
rameter C is shown in Figure 4(a). We see that for each value
of C the maximum values of reflectance (R) are higher for the
higher value ofκ, and at each value ofκ, the values of R are
higher for the lower value of C. From the curves in that figure
we can expressed theκ and C dependence of R as

R = 1− exp

(
−aκb1

Cb2

)
(31)

where a=2 mm, b1=2 and b2=0.5 will fit the curves.
The reflectance ripple (RR) in Figure 3(b) has the maximum

value around the coupling parameterκ=1.05 mm−1; the cou-
pling parameter reduces RR atκ > 1.05 mm−1. From Figure
4 (a) and (b) we find that increasing [106b] beyond a certain
turning point will result in the higher R and lower RR. These
characteristic are very important in designing the device.

Theκ dependence of BW for various values of the chirp pa-
rameter C is shown in Figure 4(c). We see that the bandwidth
BW is a linear function of the chirp parameter C. We can see
also that at a given value ofκ, the values of BW are higher for
the higher the values of C. From the curves in this figure, we
can express BW as a function ofκ and C as follows:

BW = 2C + 0.5κ (32)

In Figure 4(d), we see that for each value of C, the values of
GDR are higher for the higher value ofκ; but at each value of
κ, the values of GDR are lower for higher values of C. From
the curves in this figure, we can express GDR as a function of

κ and C as follows:

GDR = αC +
βκ

C
(33)

whereα=0.25 ps mm2, andβ=15 ps mm.
From eqs. (32) and (33) we find the good relationship be-

tween BW and GDR at each value ofκ. However, the C
dependence of BW and GDR are in contradiction with re-
flectance R. A good device for dispersion compensation has
characteristics with a high reflectance, a wide bandwidth, a
low reflectance ripple and a low group delay ripple. From the
above results, we have to make compromising values between
coupling and chirp parameters.

V. CONCLUSION

It is shown that increasing C leads to decreasing GDR
and increasing BW, which are favorable to the device per-
formance. However, the RR is relatively unaffected while R
suffers from an undesirable diminution. On the other hand,
increasingκ results in the enhancement of R and BW while
reducing RR whenκ is increased beyond a certain turning
point. But these are attained at the expense on enlarged GDR.
The results of this study clearly points to the need of com-
promising between C andκ for the optimal operation of the
device.
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(a) (b)

(c) (d)

FIG. 4: Theκ dependence of R, RR, BW and GDR for various values of C; C=3 mm−2(♦), C=4 mm−2(�), C=5 mm−2 (∆)
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