Perbandingan Pengaruh Redaman Gilbert dan Ketebalan Bahan Terhadap Perubahan Dinamika Magnetisasi pada Nanodot Pt/MnSb dan CoFeAl

Ivana Helga Iriani, Andreas Setiawan, Nur Aji Wibowo

Abstract


Penelitian ini menyajikan perbandingan pengaruh redaman Gilbert dan ketebalan nanodot terhadap dinamika magnetisasi dari Pt/MnSb dan CoFeAl dengan menyelesaikan persamaan Landau-Lifshift Gilbert menggunakan Simulator Mikromagnetik. Parameter magnetik yang digunakan dalam penelitian ini mewakili karakteristik Pt/MnSb dan CoFeAl dengan variasi redaman Gilbert 0,4 – 0,9. Kedua bahan dimodelkan dalam bentuk balok dengan ukuran permukaan 50×50 nm2 dan dengan variasi ketebalan 5 – 100 nm. Skema simulasi yang digunakan adalah Reduced Barrier Writing dimana sampel berada pada suhu ruang 298 K sembari diinduksi dengan medan magnetik eksternal yang besarnya meningkat dari 0 hingga 2 Tesla selama 2,5 ns. Hasil penelitian menunjukkan bahwa Pt/MnSb dan CoFeAl memiliki kestabilan termal yang baik untuk berbagai nilai redaman Gilbert dan variasi ketebalan yang dipakai (>60 kBT). Peningkatan redaman Gilbert memperbesar nilai medan nukleasi kedua bahan. Medan nukleasi meningkat pada ketebalan 5 – 35 nm namun menurun pada ketebalan 40 – 100 nm. Penguatan redaman Gilbert menyebabkan perbesaran nilai medan koersif bahan CoFeAl dan penurunan untuk bahan Pt/MnSb. Sementara itu, mempertebal bahan menyebabkan peningkatan medan koersif pada ketebalan 5 – 35 nm dan penurunan pada ketebalan 40 – 100 nm. Laju magnetisasi kedua jenis bahan semakin cepat seiring menguatnya nilai redaman Gilbert dan melambat seiring meningkatnya ketebalan.


Keywords


Gilbert damping; magnetization; thickness.

Full Text:

PDF

References


I. A. T. Hashem, I. Yaqoob, N. B. Anuar, S. Mokhtar, A. Gani, and S. Ullah Khan, “The Rise of ‘Big Data’ on Cloud Computing: Review and Open Research Issues,” Information Systems, vol. 47, pp. 98–115, Jan. 2015. [DOI]: 10.1016/j.is.2014.07.006

Y. Shiroishi et al., “Future Options for HDD Storage,” IEEE Transactions on Magnetics, vol. 45, no. 10, pp. 3816–3822, Oct. 2009. [DOI]: 10.1109/TMAG.2009.2024879

R. Wood, “Future Hard Disk Drive Systems,” Journal of Magnetism and Magnetic Materials, vol. 321, no. 6, pp. 555–561, Mar. 2009. [DOI]: 10.1016/j.jmmm.2008.07.027

“The Evolution of HDDs in the Near Future: Speaking with Seagate CTO, Mark Re.” [Online]. Available: https://www.anandtech.com/show/10470/the-evolution-of-hdds-in-the-near-future-speaking-with-seagate-cto-mark-re. [Accessed: 06-Nov-2018].

R. Radhakrishnan, B. Vasi, M. Erden, and C. He, “Characterization of Heat-Assisted Magnetic Recording Channels,” DIMACS Series in Discrete Mathematics and Theoretical Computer Science Volume, vol. 73, Jan. 2007. [DOI]: 10.1090/dimacs/073/02

D. Weller et al., “High Ku Materials Approach to 100 Gbits/in2,” IEEE Transactions on Magnetics, vol. 36, no. 1, pp. 10–15, Jan. 2000. [DOI]: 10.1109/20.824418

C. Kim et al., “FePt Nanodot Arrays with Perpendicular Easy Axis, Large Coercivity, and Extremely High Density,” Applied Physics Letters, vol. 91, no. 17, p. 172508, Oct. 2007. [DOI]: 10.1063/1.2802038

B. Purnama, M. Koga, Y. Nozaki, and K. Matsuyama, “Stochastic Simulation of Thermally Assisted Magnetization Reversal in Sub-100nm Dots With Perpendicular Anisotropy,” Journal of Magnetism and Magnetic Materials, vol. 321, no. 9, pp. 1325–1330, May 2009. [DOI]: 10.1016/j.jmmm.2008.12.003

U. M. N. Azizah and N. A. Wibowo, “Characteristic of Nano-barium-ferrite as Recording Media Using HAMR Technology,” Chiang Mai Journal of Science, vol. 44, no. 4, pp. 1669-1675, Oct. 2017 [URL]: http://it.science.cmu.ac.th/ejournal/journalDetail.php?journal_id=8492

C. Augustine et al., “Numerical Analysis of Domain Wall Propagation for Dense Memory Arrays,” in 2011 International Electron Devices Meeting, Washington, DC, USA, 2011, pp. 17.6.1-17.6.4. [DOI]: 10.1109/IEDM.2011.6131575

P. Krone, “Magnetization Reversal Processes of Nanostructure Arrays,” Sep. 2011. [URL]: https://nbn-resolving.org/urn:nbn:de:bsz:ch1-qucosa-71358

N. A. Wibowo, F. S. Rondonuwu, and B. Purnama, “Low Writing Field on Perpendicular Nano-ferromagnetic,” Journal of Magnetics, vol. 19, no. 3, pp. 237–240, Sep. 2014. [DOI]: 10.4283/JMAG.2014.19.3.237

I. Galanakis, “Surface Properties of the Half-and Full-Heusler Alloys,” Journal of Physics: Condensed Matter, vol. 14, no. 25, pp. 6329–6340, Jul. 2002. [DOI]: 10.1088/0953-8984/14/25/303

U. M. N. Azizah, S. Trihandaru, and N. A. Wibowo, “Micromagnetic Study of Exchange Interaction Effect on Magnetization Reversal Mode of CoFeAl,” AIP Conference Proceedings, vol. 1710, no. 1, p. 030014, Feb. 2016. [DOI]: 10.1063/1.4941480

M. Belmeguenai et al., “Magnetic and Structural Properties of Co2FeAl Thin Films Grown on Si Substrate,” Journal of Magnetism and Magnetic Materials, vol. 373, pp. 140–143, Jan. 2015. [DOI]: 10.1016/j.jmmm.2014.02.014

S. Alebrand et al., “Light-induced Magnetization Reversal of High-Anisotropy TbCo Alloy Films,” Applied Physics Letters, vol. 101, no. 16, p. 162408, Oct. 2012. [DOI]: 10.1063/1.4759109

M. Oogane et al., “Magnetic Damping in Ferromagnetic Thin Films,” Japanese Journal of Applied Physics, vol. 45, no. 5A, pp. 3889–3891, May 2006. [DOI]: 10.1143/JJAP.45.3889

Y. Zhao et al., “Experimental Investigation of Temperature-Dependent Gilbert Damping in Permalloy Thin Films,” Scientific Reports, vol. 6, no. 1, Sep. 2016. [DOI]: 10.1038/srep22890

Y. Hou and K. M. Krishnan, “Thickness-Dependent Magnetization Reversal Behavior of Lithographic IrMn/Fe Ring Structures,” Journal of Applied Physics, vol. 111, no. 7, p. 07B905, Mar. 2012. [DOI]: 10.1063/1.3672827

N. A. Wibowo and C. Handoyo and L. R. Sasongko, “Thermally Activated Magnetic Switching Mode for Various Thicknesses of Perpendicularly Ferromagnetic Nano-dot,” Nanoscience & Nanotechnology-Asia, Volume 9, Issue 2, 31-May-2019. [DOI]: 10.2174/2210681208666180507101809

N. A. Herianto, F. S. Rondonuwu, and N. A. Wibowo, “Damping Dependence of Reversal Magnetic Field on Co-based Nano-Ferromagnetic with Thermal Activation,” Smart Science, vol. 3, no. 1, pp. 16–20, Jan. 2015. [DOI]: 10.1080/23080477.2015.11665632

B. Purnama, I. Ismail, and S. Suharyana, “Kajian Simulasi Mikromagnetik: Ketergantungan Medan Koersif dengan Besaran Intrinsik Nano-Dot Magnetik dengan Anisotropi Tegak Lurus,” Jurnal Fisika dan Aplikasinya, vol. 9, no. 1, pp. 30-33–33, Jan. 2013. [DOI]: 10.12962/j24604682.v9i1.835

T. Schrefl, H. Forster, D. Suess, W. Scholz, V. Tsiantos, and J. Fidler, “Micromagnetic Simulation of Switching Events,” in Advances in Solid State Physics, B. Kramer, Ed. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001, pp. 623–635. [DOI]: 10.1007/3-540-44946-9_50

W. Natalis Handayani, A. Setiawan, and N. Wibowo, “Gilbert Damping Effect on Thermally Assisted Magnetization Reversal of Perpendicular Magnetized Nano-Dot,” International Journal of Science and Engineering Investigations, vol. 2, no. 16, pp. 26–31, May 2013. [URL]: http://www.ijsei.com/papers/ijsei-21613-06.pdf

B. Purnama, “Karakteristik Magnetik Lapisan Tipis Ni-Fe Sebagai Flat Core Flux Gate Sensor,” Jurnal Pendidikan Fisika Indonesia, vol. 9, no.2, p. 6. [DOI]: 10.15294/jpfi.v9i2.3039

Y. Hui, W. Cheng, P. Yan, J. Chen, and X. Miao, “Thickness Dependence of Magnetic Properties in La-Co Substituted Strontium Hexaferrite Films With Perpendicular Anisotropy,” Journal of Magnetism and Magnetic Materials, vol. 390, pp. 56–60, 2015. [DOI]: 10.1016/j.jmmm.2015.04.081

T. Schrefl, J. Fidler, D. Suess, W. Scholz, and V. Tsiantos, “Micromagnetic Simulation of Dynamic and Thermal Effects,” in Handbook of Advanced Magnetic Materials, Y. Liu, D. J. Sellmyer, and D. Shindo, Eds. Boston, MA: Springer US, 2006, pp. 128–146. [DOI]: 10.1007/1-4020-7984-2_4

H. J. Richter and S. D. Harkness, “Media for Magnetic Recording Beyond 100 Gbit/in.2,” MRS Bulletin, vol. 31, no. 5, pp. 384–388, May 2006. [DOI]: 10.1557/mrs2006.98

R. Belhi, A. A. Adjanoh, J. Vogel, M. Ayadi, and K. Abdelmoula, “Magnetization Reversal Dynamics, Nucleation, Pinning, and Domain Wall Propagation in Perpendicularly Magnetized Ultrathin Cobalt Films: Influence of The Co Deposition Rate,” Journal of Applied Physics, vol. 108, no. 9, p. 093924, Nov. 2010. [DOI]: 10.1063/1.3506533

P. P. Aji, F. S. Rondonuwu, and N. A. Wibowo, “Thickness Dependence of Magnetic Switching Dynamics of Barium-Ferrite as A High-Density Perpendicular Magnetic Storage Media,” Jurnal Pendidikan Fisika Indonesia, vol. 13, no. 2, pp. 112–118, Jul. 2017. [DOI]: 10.15294/jpfi.v13i2.8499

C. F. Irawan, A. Pamilih, F. S. Meta, and N. A. Wibowo, “Magnetization Switching Dynamics in Barium-Ferrite Nano-Dot: Dependence on Magnetic Damping Constant,” Journal of Physics: Conference Series, vol. 1153, p. 012055, Feb. 2019. [DOI]: 10.1088/1742-6596/1153/1/012055




DOI: http://dx.doi.org/10.12962/j24604682.v16i3.5460

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.