Fabrikasi Kanal Mikro pada Substrat Akrilik menggunakan Laser Cutting CO2

S Sudarsono, Gatut Yudoyono, F Faridawati, Hasto Sunarno, Nurrisma Puspitasari, Yono Hadi Pramono

Abstract


Mesin pemotong CO2 Laser adalah alat yang digunakan dalam mengerjakan Cutting (Pemotongan) dan Engraving (Grafir) beberapa bahan seperti polimer, kaca, kertas, kain dan beberapa bahan non-logam. Laser mesin pemotong CO2 banyak digunakan untuk membuat dekorasi Interior dan eksterior di pabrik, rumah, gedung, toko, kantor, Showroom, outlet dan bangunan umum lainnya. Dalam penelitian ini akan dipelajari tentang pengaruh kecepatan pemotongan laser CO2 terhadap bentuk, lebar, dan kedalaman dalam pembuatan microchannel pandu gelombang opik pada PMMA. Hasil pabrikasi diamati menggunakan mikroskop optik serta perhitungan lebar dan kedalaman menggunakan mikrometer bergeser. Dari hasil observasi dan analisis fabrikasi, hasilnya menunjukkan bahwa semakin tinggi kecepatan laser CO2 semakin dangkal kedalaman yang dihasilkan. Dalam penelitian ini daya yang digunakan adalah 2.4W dan menghasilkan microchannel dengan kedalaman terkecil 190,91 μm dengan kecepatan laser 100 mm/s dan terbesar 604.17 μm dengan kecepatan laser 50 mm/s.


Keywords


laser cutting, PMMA, CO2, microchanel.

Full Text:

PDF

References


A. Madani and H. R. Azarinia, “Design and fabrication of all-polymeric photonic waveguides in optical integrated circuits,” Opt. - Int. J. Light Electron Opt., vol. 138, pp. 33–39, Jun. 2017.

H.-H. Kim et al., “Fabrication of tapered waveguide by ashed photoresist,” Microelectron. Eng., vol. 88, no. 8, pp. 2721–2724, Aug. 2011.

M. Wang et al., “Fabrication of optical inverted-rib waveguides using UV-imprinting,” Microelectron. Eng., vol. 88, no. 2, pp. 175–178, Feb. 2011.

M. Rezem, A. Günther, M. Rahlves, B. Roth, and E. Reithmeier, “Fabrication and Sensing Applications of Multilayer Polymer Optical Waveguides,” Procedia Technol., vol. 26, pp. 517–523, Jan. 2016.

F. Faridawati, “Fabrikasi Pandu Gelombang Lima Lapis Berbasis Polimer Polystyrene (PS) dan Polymethyl Methacrylate (PMMA),” J. Fis. Dan Apl., vol. 11, no. 2, pp. 91–94, Jun. 2015.

L. D. Scintilla, L. Tricarico, A. Wetzig, and E. Beyer, “Investigation on disk and CO2 laser beam fusion cutting differences based on power balance equation,” Int. J. Mach. Tools Manuf., vol. 69, pp. 30–37, Jun. 2013.

D. Patko, Z. Mártonfalvi, B. Kovacs, F. Vonderviszt, M. Kellermayer, and R. Horvath, “Microfluidic channels laser-cut in thin double-sided tapes: Cost-effective biocompatible fluidics in minutes from design to final integration with optical biochips,” Sens. Actuators B Chem., vol. 196, pp. 352–356, Jun. 2014.

N. Syafiqah Mohamed-Kassim and M. Kamil Abd-Rahman, “High resolution tunable POF multimode power splitter,” Opt. Commun., vol. 400, pp. 136–143, Oct. 2017.

I. A. Choudhury and S. Shirley, “Laser cutting of polymeric materials: An experimental investigation,” Opt. Laser Technol., vol. 42, no. 3, pp. 503–508, Apr. 2010.

D. Yuan and S. Das, “Experimental and theoretical analysis of direct-write laser micromachining of polymethyl methacrylate by CO2 laser ablation,” J. Appl. Phys., vol. 101, no. 2, p. 24901, Jan. 2007.

S. Prakash and S. Kumar, “Experimental investigations and analytical modeling of multi-pass CO2 laser processing on PMMA,” Precis. Eng., vol. 49, pp. 220–234, Jul. 2017.

V. Kumar, M. Pallapa, P. Rezai, and P. R. Selvaganapathy, “Polymers,” in Reference Module in Materials Science and Materials Engineering, Elsevier, 2016.

T.-F. Hong, W.-J. Ju, M.-C. Wu, C.-H. Tai, C.-H. Tsai, and L.-M. Fu, “Rapid prototyping of PMMA microfluidic chips utilizing a CO2 laser,” Microfluid. Nanofluidics, vol. 9, no. 6, pp. 1125–1133, Dec. 2010.

M. F. Jensen, M. Noerholm, L. H. Christensen, and O. Geschke, “Microstructure fabrication with a CO2 laser system: characterization and fabrication of cavities produced by raster scanning of the laser beam,” Lab. Chip, vol. 3, no. 4, pp. 302–307, Nov. 2003.

D. Mihalache, D.-M. Baboiu, and D. Mazilu, “Propagation effects in nonlinear strip optical waveguides,” Opt. Commun., vol. 110, no. 1, pp. 67–74, Aug. 1994.

“laser engraving cutting machine BS-1490 - GUANGZHOU BAISHENG ELECTRONICES TECHNOLOGY CO.,LTD.” [Online]. Available: http://www.baisheng.dpes.com.cn/product/2011/11/1066.html. [Accessed: 02-Sep-2017].

Sudarsono -, G. Yudoyono, B. Indarto, Y. H. Pramono, and Faridawati -, “Fabrikasi Lapisan Antirefleksi dengan Bahan Methyl Methacrylate (MMA) Menggunakan Metode Spin Coating (Halaman 30 s.d. 33),” J. Fis. Indones., vol. 19, no. 56, Nov. 2015.

S. Prakash and S. Kumar, “Profile and depth prediction in single-pass and two-pass CO 2 laser microchanneling processes,” J. Micromechanics Microengineering, vol. 25, no. 3, p. 35010, 2015.

K. Salonitis, A. Stournaras, G. Tsoukantas, P. Stavropoulos, and G. Chryssolouris, “A theoretical and experimental investigation on limitations of pulsed laser drilling,” J. Mater. Process. Technol., vol. 183, no. 1, pp. 96–103, Mar. 2007.

J. M. Li, C. Liu, and L. Y. Zhu, “The formation and elimination of polymer bulges in CO2 laser microfabrication,” J. Mater. Process. Technol., vol. 209, no. 10, pp. 4814–4821, Jun. 2009.

L. Romoli, G. Tantussi, and G. Dini, “Experimental approach to the laser machining of PMMA substrates for the fabrication of microfluidic devices,” Opt. Lasers Eng., vol. 49, no. 3, pp. 419–427, Mar. 2011.

A. Ascari, A. Fortunato, A. H. A. Lutey, G. Guerrini, and N. Pagano, “Long Pulse Laser Wire Deposition of Hard Steels,” Phys. Procedia, vol. 83, pp. 723–732, Jan. 2016.




DOI: http://dx.doi.org/10.12962/j24604682.v14i3.3867

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.