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Abstract Generally the concrete behavior can be observed by the experimental analysis. However, since the computer 

technology development has been increased rapidly, the computer simulations are also able to represent the detail 

behavior of concrete. This paper presents the modeling response of concrete material subjected to biaxial loading using 

finite element method software based. The plain concrete plates with dimensions 200mm x 200mm x 50mm and 150mm x 

150mm x 50mm are analyzed using various combinations of biaxial loading. The results of the biaxial load combinations 

are covering the three non-linear regions of compression–compression, compression–tension, and tension–tension. The 

results of finite element analysis are also show good agreement to the experimental results that been taken from the 

previous study. The comparison results the difference between analytical and experimental study are less than 5%. 

Therefore, the concrete material model based on this finite element method software can be used to simulate the 

responses in the real condition. 
 

 

Keywords Concrete, Material, Biaxial, Finite Element Method Software Based 

 

I. INTRODUCTION
1
 

nerally, the understanding of the structural 

behaviour is obtained from the experimental 

research and studies. The experimental testing is very 

important in order to obtain the detail behaviour of the 

structural component which is based on the real 

condition. However, to obtain the detail and accurate 

experimental results it is also consuming significant 

efforts, time and funding. Until now, those are the major 

obstacle of the experimental research and studies. 

Nowadays, advances in computer technology and 

numerical methods have allowed the simulation of 

engineering problems that traditionally have been 

addressed via experimentation and theoretical models. 

Some industries have been able to design sophisticated 

engineered systems based solely on computer simulation. 

In addition, many complex phenomena, such as airplane 

crashes and car accidents, can already be analyzed by 

computer simulations instead of the experimental testing. 

In the context of structural engineering, using 

computer simulation to realistically represent the 

behaviour of structural systems in detail in various 

situations, such as the global response and the detailed 

damage to a structure during a severe loading, is also a 

goal which must be achieved by engineers. 
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One of the numerical methods that commonly able to 

perform the detail response of the structural component 

is using finite element method and analysis. The basic 

concept of finite element analysis is dividing the 

continuum element into several elements and connected 

of each others with nodal element. Each element also has 

several nodes which are also have appropriate degree of 

freedom.  

In order to perform the detailed damage of the 

reinforced concrete structural component, the computer 

simulation of the concrete material basic response such 

as uniaxial and biaxial loading should be also presented 

with very well [1]. Therefore, this paper presents the 

computer modelling response of concrete material due to 

biaxial loading using finite element method software 

based. The behaviour of concrete material is simulated 

and verified with the experimental results that conduct by 

[2] and [3]. The linear as well as non-linear response of 

the concrete material model is simulate and observed to 

obtain the detail response of the concrete material model. 

Hence, the concrete material model based on this finite 

element method software can be used to simulate the 

responses in the real condition. 

II. CONCRETE MATERIAL PROPERTIES SUBJECTED TO 

BIAXIAL LOADING BY EXPERIMENTAL OBSERVATION 

Figure 1 show a typical biaxial strength envelops for 

concrete subjected to proportional biaxial loading. 

Experimental studies by [2] present concrete under 

conditions of biaxial compression shows values of 

increased compressive strength is up to about 1.25 f’c. 

Another result of the investigation conducted by [3] 
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illustrates a failure surface that is slightly stronger than 

that developed by [2]. The maximum ratio of equibiaxial 

and uniaxial compressive yield stress is about 1.45 f’c. 

The difference in the failure surfaces may be due to a 

number of factors such as rate of loading, conditions of 

the specimens during testing, preparation of the 

specimens, properties of the mixes or size effects. 

Research by [3] has propose that the discrepancies are 

due in part to differences in the type of coarse aggregate 

used in the two studies and in part to the use by [2] of a 

slower rate of loading than is currently standard. Under 

biaxial tension, concrete material reveals a constant 

tensile strength, compared with values obtained under 

uniaxial loading. Under combination of tension and 

compression, concrete material shows a noticeably 

reduced strength. For biaxial compression, concrete 

material exhibits an increased initial stiffness that may be 

attributed to the Poisson effect and an increased degree 

of ductility at the peak stress, which is an indication of 

the reduction in the degree of internal damage as 

compared to uniaxial loading, as shown in Figure 2 and 

Figure 3 as presented by [2] and [3] respectively. 

III. CONCRETE MATERIAL CONSTITUTIVE MODEL 

DEVELOPMENT 

Concrete can behave as either a linear or nonlinear 

material which is depending on the level and the nature 

of the stresses to which it is subjected. Under low levels 

of stress, concrete are able to behave as a linear elastic 

material, while for higher values of stress and for 

sustained loading it shows highly nonlinear properties 

which have a considerable effect on the behaviour of 

reinforced concrete structure. 

In order to predict the concrete behavior, this study 

adopts the concrete damage plasticity model proposed by 

[4]. The damaged plasticity model constitutive is offered 

for the analysis of concrete material at low confining 

pressures. The damaged plasticity model for concrete 

material is based on the assumption of scalar isotropic 

damage and is designed for applications in which the 

concrete is subjected to arbitrary loading conditions, 

including cyclic loading. The model takes into 

consideration the degradation of the elastic stiffness 

induced by plastic straining both in tension as well as 

compression 

A. Concrete Linear Elastic Material Model 

Linear elasticity is the material model behaviour of the 

deformable solid objects which can be internally stressed 

due to prescribed loading conditions. Linear elasticity 

relies upon the continuum hypothesis and it is applicable 

in the macroscopic as well as microscopic length scales. 

Linear elasticity is a simplification of the general 

nonlinear theory of elasticity and is a branch of 

continuum mechanics. The fundamental assumptions of 

linear elasticity are the small deformations or strains, 

which usually less then 5%, and linear relationships 

between the components of stress and strain, as 

mentioned by [5]. In addition linear elasticity is only 

valid for stress states that do not produce yielding.  

For elastic materials the Hooke's law represents the 

material behavior and relates the unknown stresses and 

strains. The general equation for Hooke's law is 

                (1) 

where σij = σji is the total stress (Cauchy stress) tensor, εkl 

= εlk is the total elastic strain, and Cijkl = Cklij = Cjikl = 

Cijlk  is the fourth-order elasticity tensor. 

For an isotropic material the elasticity tensor has no 

preferred direction. It means an applied force will give 

the same displacements, which is relative to the direction 

of the force, no matter the direction in which the force is 

applied. Isotropic linear elasticity well approximates the 

behaviour of concrete material under tensile type of 

loading, including uniaxial and multiaxial tension. 

Before the peak stress state the stress-strain relation is 

almost linear up to the peak load in such a loading 

environment. This approximation also holds for the 

behavior under small compressive loading. However, this 

type of model becomes unacceptable as the applied 

compressive loads increase, as well as the concrete 

crushing occur.   

In the isotropic linear elasticity, the elasticity tensor 

may be written as 
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The Lamé constants can be expressed in terms of 

Young’s modulus, E, and Poisson’s ratio, ν, as presented 

by [5]. In terms of E and ν, the general equation of 

isotropic linear elasticity becomes: 

    
  

           
       

 

     
    (2) 

where the factor 2 comes from the double optical path 

difference and nfiber is the refractive index of a single 

mode SMF-28 fiber. 

B. Concrete Damage Plasticity Material Model 

The concrete damaged plasticity model is primarily 

intended to provide a general capability for the analysis 

of concrete material and/or structures under cyclic and/or 

dynamic loading. The model is also suitable for the 

analysis of other quasi-brittle materials, such as rock, 

mortar, cement paste and ceramics; but it is the behavior 

of concrete that is used in the remainder of this section to 

motivate different aspects of the constitutive theory. 

Under low confining pressures, concrete material 

behaves in a brittle manner; the main failure mechanisms 

are cracking in tension and crushing in compression. The 

brittle behavior of concrete disappears when the 

confining pressure is significantly large to prevent crack 

propagation. In these circumstances failure is driven by 

the consolidation and collapse of the concrete micro-

porous microstructure, leading to a macroscopic response 
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that resembles that of a ductile material with work 

hardening, as mentioned by [4].  

Modelling and simulating the concrete material 

behaviour under large hydrostatic pressures is out of the 

scope of the plastic-damage model considered here. The 

constitutive theory in this part aims to capture the effects 

of irreversible damage associated with the failure 

mechanisms that occur in concrete materials under fairly 

low confining pressures. 

1) Concrete under Uniaxial Condition 

It is assumed that the uniaxial stress-strain curves can 

be transformed into stress versus plastic strain curves of 

the form as follows: 

        ̃
  
  ̃ ̇

  
  (3) 

        ̃
  
  ̃ ̇

  
  (4) 

where the subscripts t and c refer to tension and 

compression, respectively. 

 ̃ ̇
  

 and  ̃ ̇
  

 are the equivalent plastic strain rates. 
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and  

  ̃
  

 ∫  ̃ ̇
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are the equivalent plastic strains.  

Under uniaxial loading conditions the effective plastic 

strain rates are given as: 

In uniaxial tension: 

 ̃ ̇
  

    
  ̇

 (7) 

In uniaxial compression: 

 ̃ ̇
  

     
  ̇

 (8) 

As shown in Figure 4, when the concrete material 

specimen is unloaded from any point on the strain 

softening branch of the stress-strain curves, the 

unloading response is observed to be weakened and the 

elastic stiffness of the material appears to be damaged or 

degraded. The degradation of the elastic stiffness is 

significantly different between tension and compression 

testing, the effect is more pronounced as the plastic strain 

increases. The degraded response of concrete is 

characterized by two independent uniaxial damage 

variables, td  and cd , which are assumed to be functions 

of the plastic strains variables: 

     (  ̃
  
)          (9) 

     (  ̃
  
)          (10) 

If 0E  is the initial (undamaged) elastic stiffness of the 

material, the stress-strain relations under uniaxial tension 

and compression loading are, respectively: 

                 ̃
  
  (11) 

                 ̃
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The effective uniaxial cohesion stresses are given as: 

  ̅  
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  (13) 
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  (14) 

The effective uniaxial cohesion stresses are 

determining the size of the yield or failure surface. 

2) Yield Condition 

The plastic-damage concrete model uses a yield 

condition based on the yield function proposed by [6] 

and incorporates the modifications proposed by [7] to 

describe for different evolution of strength under tension 

and compression. In terms of effective stresses the yield 

function takes the form: 

   ̅  ̃   
 

   
( ̅     ̅     ̃     ̂̅        ̂̅    )    ̅   ̃

  
    (15) 

in which  ̅ is the effective hydrostatic pressure, defined 

as: 

 ̅   
 

 
 ̅   (16) 

and  ̅ is the Mises equivalent effective stress, defined as: 

 ̅  √
 

 
  ̅  ̅  (17) 

where: 

 ̅   ̅   ̅  (18) 

are deviatoric part of the effective stress tensor  ̅,  ̂̅    is 

the algebraically maximum eigenvalue of  ̅,   is the unit 

tensor, α and γ are dimensionless material constants.  

The function    ̃    is given as: 

   ̃    
 ̅ ( ̃ 

  
)

 ̅ ( ̃ 
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Where  ̅ (  ̃
  
) and  ̅ (  ̃

  
) is the tensile and 

compressive cohesion stress, respectively. 

In biaxial compression, with  ̂̅   , Eq. (15) can be 

reduced into the well-known Drucker-Prager yield 

condition.  

The coefficient α can be determined from the initial 

equibiaxial and uniaxial compressive yields stress,      

and    , respectively as: 

  
       

        
 (20) 

Typically experimental values of the ratio 
   

   
⁄  for 

concrete are in the range from 1.10 to 1.20, yielding 

values of α between 0.08 and 0.12, as mentioned by [1]. 

The coefficient γ enters the yield function only for the 

stress states of triaxial compression, when  ̂̅     . 

This coefficient can be determined by comparing the 

yield conditions along the tensile and compressive 

meridians. By definition, the Tensile Meridian (TM) is 

the locus of stress states satisfying the condition 

 ̂̅      ̂̅   ̂̅   ̂̅  (21) 

and the Compressive Meridian (CM) is the locus of stress 

states such that  

 ̂̅      ̂̅   ̂̅   ̂̅  (22) 

where   ̂̅,  ̂̅ , and  ̂̅  are the eigenvalues of the effective 

stress tensor.  

It can be easily shown that 

  ̂̅       
 

 
 ̅   ̅ (23)  

And 

  ̂̅       
 

 
 ̅   ̅ (24) 

along the tensile and compressive meridians, 

respectively. With  ̂̅      the corresponding yield 

conditions are presented as follows: 

For Tensile Meridian (TM) 
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(
 

 
   )  ̅         ̅        ̅  (25) 

For Compressive Meridian (CM) 

(
 

 
   )  ̅         ̅        ̅  (26) 

Let assumed    
 ̅    

 ̅    
 for any given value of the 

hydrostatic pressure  ̅ with  ̂̅       

Then: 

   
   

    
 (27) 

The coefficient γ is, therefore, evaluated as: 

  
      

     
 (28) 

Research by [8] presents the ratio of the second stress 

invariant of the tensile meridian to the compressive 

meridian, KC, are in the range from 0.5 to 1.0, which is 

most available experimental failure data are fitted just as 

well with straight as with curved meridian. A value of, 

KC = 0.67 which is typical for concrete, gives γ = 3as 

mentioned by [4].  

If  ̂̅     , the yield conditions along the tensile and 

compressive meridians, respectively, reduce to: 

(
 

 
   )  ̅         ̅        ̅  (29) 

(
 

 
   )  ̅         ̅        ̅  (30) 

Let    
 ̅    

 ̅    
 for any given value of the hydrostatic 

pressure  ̅ with  ̂̅     ; then: 

   
   

    
 (31) 

Typical yield surfaces are shown in Figure 5 and 

Figure 6 for the deviatoric plane and for the plane-stress 

conditions, respectively. 

3) Flow Rule 

The plastic-damage model can be assumed as non-

associated potential flow and it takes form as: 

 ̇    ̇
    ̅ 

  ̅
 (32) 

The flow potential G chosen for this model is the 

Drucker-Prager hyperbolic function as present as 

follows: 

  √      
   ̅   ̅      (33) 

Where: 

ψ is the dilatation angle measures in the p-q plane at high 

confining pressure 

σt0 is the uniaxial tensile stress at failure  

ε is a strain parameter 

This flow potential, which is continuous and smooth, 

certifies that the flow direction is defined uniquely. The 

function asymptotically approaches the linear Drucker-

Prager flow potential at high confining pressure stress 

and crosses the hydrostatic pressure axis at 90
o
 

IV. CONCRETE MATERIAL MODELING AND SIMULATION 

METHOD 

A. Modelling Parameters 

The following table present the modelling parameters 

based on the previous studies by [2] and [3]. The 

concrete strength and modulus of elasticity for previous 

research by [2] are 30.68 MPa and 32500 MPa, 

respectively. And for the previous study by [3], the 

concrete strength and modulus of elasticity are 37.60 

MPa and 25000 MPa. The other material properties, such 

as concrete strength, concrete modulus of elasticity, 

dimension of specimen, and also biaxial loading ratio, 

which are related to the proposed modelling and 

simulation, are present in Table 1 and Table 2. The 

experimental results of previous studies are also being 

used to verify the proposed concrete material modelling 

response due to biaxial loading. 

B. Concrete Material Modelling  

This study present the finite element modelling for 

concrete material subjected to biaxial loading. The 

proposed model is presented in this study using finite 

element software based called ABAQUS. The input 

parameters for the proposed model are adopted and 

following the previous studies by [2] and [3]. In order to 

obtain the great accuracy, the input parameter should be 

exactly the same with the observed previous 

experimental studies. 

Figure 7 present the geometric of the proposed model. 

Let assumed that the tension loading is in the positive 

direction. While the boundary conditions are assigned as 

three-dimension roller supports along at the 

corresponding x and y directions. Except for corner 

nodal, the boundary condition is assigned as hinged 

support. So, the translations on the x, y, and z are 

restrained in this nodal.   

And for the concrete material nonlinear analysis, the 

proposed model is assigned using concrete damage 

plasticity model that built in the ABAQUS properties 

menu. Again, the input parameter are adopted and 

following the previous studies. The input parameters that 

applied in this study are presented in Table 3.  

Another parameter that should be assigned is the element 

properties for the concrete model. Since this study using 

three dimensional analysis, the brick element is should be 

assigned in the proposed model. In order to maintain the 

accuracy of the proposed model, the quadratic element is 

preferred instead of the linear. Hence, in this paper, the 

concrete model is assigned using quadratic brick element 

with 20 nodes. 

V. RESULTS AND DISCUSSION 

A. Concrete Model Subjected to Biaxial Compression 

Loading 

The following table present simulation results of the 

proposed concrete material models subjected to biaxial 

compression loading compared with experimental results 

by [2]. Parameters that should be checked are stress and 

strain in the 1, 2, and 3 directions, which are related to 

the x, y, and z direction in the local axis. The simulation 

results show the good agreement between proposed 

model and the experimental results. The average 

discrepancies are about 5%. Except for the strain results 

in the 2 direction, the maximum discrepancy can be 
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reach about 29%. That error is happened due to the 

inconsistent Poisson’s ratio value iteration condition at 

the nonlinear condition of the proposed concrete material 

model. The graphical result of the comparison between 

proposed models subjected to biaxial compressions with 

the experimental results by [2] is presented in the Figure 

8. The strain results in the 1 and 2 directions generally 

show the good agreement both in the linear as well as 

non-linear condition. For the 3 direction the small 

discrepancies occur since the linear condition. The good 

agreements occur in the peak condition of ε3. And in the 

post-peak condition the small discrepancies are happen 

again.    

The other experimental results that used to verify the 

proposed model is presented by [3]. The simulation 

results of the proposed concrete material models 

subjected to biaxial compression loading compared with 

experimental results by [3] is presented in Table 5. 

Again, the simulation results show the good agreement 

between proposed model and the experimental results. 

The average discrepancies are about 10%. The maximum 

discrepancy is about 40% which occur in the 1 direction. 

Additionally, the graphical result of the comparison 

between proposed models subjected to biaxial 

compressions with the experimental results by [3] is 

presented in the Figure 9. The strain results show the 

good agreement in the linear condition. At the peak 

condition the significant discrepancies are occur in the 

both directions. The discrepancies that occur in the non-

linear condition are happening usually due to the 

difficulty to achieve the convergence of the Newton-

Raphson iteration. To solve those problems the refined 

model is necessary to be developed. 

Figure 10 and 11 present the comparison ratio of 

biaxial and uniaxial compression between proposed 

models with the experimental results by [2] and [3], 

respectively. Comparisons between proposed models 

with the experimental by [2] generally show good 

agreement. Small discrepancies, which are less than 

10%, still occur at the several conditions. Hence, the 

simulation results of the proposed are acceptable.  

Comparisons between proposed models with the 

experimental by [3] that presented in Figure 11 also show 

very good agreement. In the most condition, the 

discrepancy between proposed model and experimental 

results are only about 2%. The maximum discrepancy 

that occurs is only about 5%, which happen in the 

condition of the ratio of biaxial and uniaxial compression 

are about 1.4. Based on this result, the proposed model 

can be used to simulate the response of the concrete 

material subjected to biaxial compression loading. 

B. Concrete Model Subjected to Biaxial Tension 

Loading 

The following table present simulation results of the 

proposed concrete material models subjected to biaxial 

tension loading compared with experimental results by 

[2]. The simulation results show the good agreement 

between proposed model and the experimental results, 

which is the average discrepancies are about 5%. The 

significant discrepancy is happen at the strain results in 

the 3 direction, which is can be reach about 22%. Again, 

the error is happened due to the inconsistent Poisson’s 

ratio value iteration condition at the nonlinear condition 

of the proposed concrete material model. The graphical 

result of the comparison between proposed models 

subjected to biaxial compressions with the experimental 

results by [2] is presented in the Figure 12. The small 

discrepancy, which is about 10%, is happen along the 

linear condition at the both direction. 

C. Concrete Model Subjected to Biaxial Compression 

and Tension Loading  

The following table present simulation results of the 

proposed concrete material models subjected to biaxial 

compression and tension loading compared with 

experimental results by [2]. Again, the simulation results 

show the good agreement between proposed model and 

the experimental results, which is the average 

discrepancies are about 5%. The maximum discrepancy 

is happen at the strain results in the 2 direction, which is 

can be reach only about 9%. The graphical result of the 

comparison between proposed models subjected to 

biaxial compressions with the experimental results by [2] 

is presented in the Figure 13. The strain results show the 

good agreement in the linear condition. At the post-peak 

condition the small discrepancies are occur in the both 

directions. Based on this result, the proposed model can 

be used to simulate the response of the concrete material 

subjected to biaxial compression-tension loading. 

VI. CONCLUSIONS  

The proposed concrete material model subjected to 

biaxial loading has presented in this paper. The proposed 

model has performed using finite element method 

software based. The proposed model has also verified 

with experimental testing results by previous studies. The 

comparisons results show that the average discrepancies 

between proposed model and the experimental testing 

results are about 5%. Based on this result, the proposed 

model can be used to simulate the responses of the 

concrete material subjected to biaxial loading in the real 

condition. 
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Figure 1: Biaxial strength of concrete as presented by [2]. 

 

 

 
Figure 3: Stress-strain relationships of concrete under biaxial 

compression as presented by [3] 
 

 

 

 
Figure 4: Response of concrete subjected to uniaxial loading: (a) tension loading and (b) compression loading, as presented by [4] 

 

 
 

Figure 5: Yield surfaces in the deviatoric plane as presented by [4] 

 

Figure 6: Yield surfaces in the plane stress as presented by [4] 
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TABLE 1. MODELLING PARAMETER BY [2] 

Dimension Type of 
loading 

Biaxial  

ratio 

Poisson’s 
ratio 

(mm) σ1 σ2 (MPa) 

200×200×50 

Compression  

-1 0 

0.2 -1 -1 

-1 -0.52 

Tension 

-1 0 

0.18 -1 1 

-1 0.55 

Compression 
- Tension  

-1 0 

0.19 
-1 0.052 

-1 0.103 

-1 0.204 

TABLE 2. MODELLING PARAMETER BY [3] 

Dimension Type of 

loading 
Biaxial  

ratio 

Poisson’s 

ratio 

(mm) σ1 σ2 (MPa) 

150×150×50 Compression  

-1 0 

0.22 
-1 -1 

-1 -0.5 

-1 -0.2 

 

 

 
TABLE 3. INPUT PARAMETERS FOR CONCRETE DAMAGE PLASTICITY 

USING ABAQUS SOFTWARE 

Dilatation 

angle 

Flow 

potential 
eccentricity 

Biaxial / 

Uniaxial 
stress ratio 

Deviatoric 

stress 
invariant ratio 

Viscosity 

parameter 

15 0.1 1.16 0.67 0 

 

 
 

 

 
 

 

TABLE 4. SIMULATION RESULTS OF PROPOSED MODELS SUBJECTED TO BIAXIAL COMPRESSIONS BASED ON EXPERIMENTAL STUDY BY [2] 

Model 
Peak Stress    Peak Strain    

Experiment Model Ratio Experiment Model Ratio 

KP1 -32.06 -30.61 0.955 -0.00206 -0.00225 1.093 

KP2 -37.00 -36.90 0.997 -0.00249 -0.00223 0.895 

KP3 -40.27 -41.48 1.030 -0.00310 -0.00246 0.793 

Average 0.994065 0.927134 

SDV 0.012620 0.050972 

Model 
Peak Stress    Peak Strain    

Experiment Model Ratio Experiment Model Ratio 

KP1 -32.06 -30.61 0.955 0.00084 0.00107 1.269 

KP2 -37.00 -36.90 0.997 -0.00249 -0.00223 0.895 

KP3 -40.27 -41.48 1.030 -0.00079 -0.00136 1.718 

Average 0.994065 1.293974 

SDV 0.012620 0.137341 

Model 
Peak Stress    Peak Strain    

Experiment Model Ratio Experiment Model Ratio 

KP1 -32.06 -30.61 0.955 0.00084 0.00107 1.269 

KP2 -37.00 -36.90 0.997 0.00333 0.00290 0.871 

KP3 -40.27 -41.48 1.030 0.00200 0.00212 1.058 

Average 0.994065 1.066025 

SDV 0.012620 0.06286 
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TABLE 5. SIMULATION RESULTS OF PROPOSED MODELS SUBJECTED TO BIAXIAL COMPRESSIONS BASED ON EXPERIMENTAL STUDY BY [3] 

Model 
Peak Stress    Peak Strain    

Experiment Model Ratio Experiment Model Ratio 

YN1 -37.60 -37.61 1.000 -0.00210 -0.00300 1.431 

YN2 -46.62 -46.63 1.000 -0.00181 -0.00408 2.256 

YN3 -49.18 -49.91 1.015 -0.00298 -0.00326 1.092 

YN4 -55.05 -55.11 1.001 -0.00337 -0.00372 1.103 

Average 1.004063 1.470491 

SDV 0.001792 0.136722 

   

Model 
Peak Stress    Peak Strain    

Experiment Model Ratio Experiment Model Ratio 

YN1 -37.60 -37.61 1.000 0.00140 0.00097 0.693 

YN2 -46.62 -46.63 1.000 -0.00215 -0.00408 1.899 

YN3 -49.18 -49.91 1.015 0.00112 0.00095 0.845 

YN4 -55.05 -55.11 1.001 -0.00048 -0.00108 2.243 

Average 1.004063 1.420095 

SDV 0.001792 0.191804 

Model 
Peak Stress    Peak Strain    

Experiment Model Ratio Experiment Model Ratio 

YN1 -37.60 -37.61 1.000 0.00084 0.00107 1.269 

YN2 -46.62 -46.63 1.000 0.00333 0.00290 0.871 

YN3 -49.18 -49.91 1.015 0.00200 0.00212 1.058 

YN4 -55.05 -55.11 1.001 0.00226 0.00261 1.157 

Average 1.004063 1.392268 

SDV 0.001792 0.245915 
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TABLE 6. SIMULATION RESULTS OF PROPOSED MODELS SUBJECTED TO BIAXIAL TENSIONS BASED ON EXPERIMENTAL STUDY BY [2] 

Model 
Peak Stress    Peak Strain    

Experiment Model Ratio Experiment Model Ratio 

KP4 2.61 2.60 0.998 0.0000916 0.0000800 1.431 

KP5 2.61 2.56 0.981 0.0000732 0.0000787 2.256 

KP6 2.66 2.58 0.970 0.0000780 0.0000795 1.092 

Average 0.982799 0.989157 

SDV 0.004644 0.034697 

Model 
Peak Stress    Peak Strain    

Experiment Model Ratio Experiment Model Ratio 

KP4 2.61 2.60 0.998 -0.0000156 -0.0000104 0.667 

KP5 2.61 2.56 0.981 0.0000732 0.0000770 1.052 

KP6 2.66 2.58 0.970 0.0000296 0.0000330 1.115 

Average 0.982799 0.944481 

SDV 0.004644 0.080882 

Model 
Peak Stress    Peak Strain    

Experiment Model Ratio Experiment Model Ratio 

KP4 2.61 2.60 0.998 -0.0000156 -0.0000104 0.667 

KP5 2.61 2.56 0.981 -0.0000308 -0.0000260 0.844 

KP6 2.66 2.58 0.970 -0.0000260 -0.0000220 0.846 

Average 0.982799 0.785659 

SDV 0.004644 
0.034352 
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TABLE 7. SIMULATION RESULTS OF PROPOSED MODELS SUBJECTED TO BIAXIAL COMPRESSION-TENSION BASED ON EXPERIMENTAL BY [2] 

Model 
Peak Stress    Peak Strain    

Experiment Model Ratio Experiment Model Ratio 

KP7 -32.06 
-

30.6054 
0.955 -0.00206 

-
0.00225 

1.093 

KP8 -27.25 
-

27.5514 
1.011 -0.00125 

-

0.00131 
1.045 

KP9 -19.88 
-

20.0902 
1.011 -0.00086 

-

0.00077 
0.900 

KP10 -12.02 
-

12.9926 
1.081 -0.00044 

-
0.00040 

0.909 

Average 1.014265 0.986910 

SDV 0.012903 0.024316 

Model 
Peak Stress    Peak Strain    

Experiment Model Ratio Experiment Model Ratio 

KP7 -32.06 
-

30.6054 
0.955 0.00084 0.00085 1.010 

KP8 -27.25 
-

27.5514 
1.011 0.00056 0.00042 0.757 

KP9 -19.88 
-

20.0902 
1.011 0.00045 0.00039 0.876 

KP10 -12.02 
-

12.9926 
1.081 0.00022 0.00022 1.000 

Average 1.014265 0.910556 

SDV 0.012903 0.029839 

Model 
Peak Stress    Peak Strain    

Experiment Model Ratio Experiment Model Ratio 

KP7 -32.06 
-

30.6054 
0.955 0.00084 0.00159 1.891 

KP8 -27.25 
-

27.5514 
1.011 0.00040 0.00043 1.065 

KP9 -19.88 
-

20.0902 
1.011 0.00017 0.00013 0.758 

KP10 -12.02 
-

12.9926 
1.081 0.00008 0.00008 1.000 

Average 1.014265 1.178491 

SDV 0.012903 0.123185 

 


