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Abstract— Sustainable development in self-compacting concrete (SCC) has been studied extensively for the recent years 

for the purpose to address its growing demand in construction projects. Sustainable SCC can be defined as concrete mix 

with partially replaced cement content that varies from low to high level using different mineral admixtures. Silica fume 

and fly ash which is considered as the most common sustainable mineral admixtures for binary and ternary cementitious 

blends show good effect to the compressive strength and chloride penetration resistivity of hardened SCC. In this paper, 

this effect was further investigated by using two widely used biological inspired computing models namely the artificial 

neural network (ANN) and genetic algorithm (GA). The test results of compressive strength and chloride ion penetration 

resistance from thirty-six concrete samples with varying replacement level of binary and ternary cementitious blends were 

utilized as inputs for model development. ANN was used to obtain models that describe analytically the relationship of 

material components to the compressive strength and chloride penetration resistivity. The derived models were further 

explored through optimization using GA. Results shows that ANN was able to establish the relationship of strength-

durability parameters to the material components while GA is able to derived optimal mix proportion for best strength-

durability performance. The present study also validates the sensitivity of the replacement level of silica fume and fly ash as 

a ternary cementitious blend to the strength-durability performance of SCC. This indicates that high volume content of 

ternary blended cement can improve chloride penetration resistivity and exhibited high compressive strength. 

Keywords— Artificial Neural Network, Genetic Algorithm, Self-compacting Concrete, Sustainable Concrete 

 

I. INTRODUCTION 

 

Sustainable development in self-compacting concrete 

(SCC) has been introduced and studied extensively over 

the last few years. This is to address the unattractive 

perception of negative environmental impact associated 

in the growing demand of SCC technology in 

construction projects; an increase in usage of Portland 

cement results to high carbon footprint value. Therefore, 

reduction of cement was introduced to develop greener 

SCC [1]. One way to reduce the use of Portland cement 

in SCC is the use of mineral admixtures such as silica 

fume, fly ash, ground granulated blast furnace slag, and 

other cementitious materials as partial replacement. This 

reduction is also economical especially if the mineral 

admixtures are industrial by-products or wastes [2].  

Findings of different literatures reveals the good effect 

of different mineral admixtures to the properties of fresh 

and hardened SCC. Mohamed and Al-Hawat [3] reported 

the improvement of SCC’s resistance to chloride ion 

penetration using low volume replacement (≤ 40%) of 
binary blend fly ash and basalt fibers. Silica fume and fly 

ash under high volume replacement (≥ 40%) also 
improved this durability parameter and indicated that 

ternary blend of these minerals is more effective 

compared to binary blend to the early strength of 

concrete [4]. High level cement replacement using 

single, binary, and ternary blends of fly ash, silica fume, 

and ground granulated blast furnace slag also exhibited 

good performance in saturated water absorption test [5]. 

Mineral admixtures like fly ash and limestone powder 

are reported good in reducing the dosage of 

superplasticizer necessary to obtain desired slump. 

Theses minerals improve the rheological properties and 

reduce the risk of cracking due to heat of hydration [6-

10]. Gesoğlu et al. [11] also investigated the 

performance of SCC containing binary, ternary, and 

quaternary cementitious blends of fly ash, blast furnace 

slag, and silica fume in terms of rheology, strength, and 

durability requirements. Moreover, multi-objective 

optimization using desirability function technique was 

performed to achieve optimal concrete mix proportions.   

Cement replacement using different mineral 

admixtures has proven to be viable solutions to develop 

sustainable SCC under desired workability, durability, 

and strength. Concha et al. [12, 13] explored further the 

established influences of two types of mineral 

admixtures to the workability parameters of SCC. This is 

done through the aid of Artificial Neural Network 

(ANN) and Genetic Algorithm (GA) as prediction model 

and optimization technique respectively. ANN 

established the constitutive relationship of mineral 

admixtures along with SCC components to slump flow, 

L-box ratio, and screen stability ratio. Furthermore, GA 

derived optimal concrete mix proportion with high 

rheological performance. 

Computing models like ANN and GA belong to large 

class of artificial intelligence inspired by biological and 

natural processes intended to solve specific problem. 

ANN is a type of machine learning algorithm based on 

human brain mechanism and is commonly used as 

prediction model.   Figure 1 (a) shows the typical ANN 

architecture. This model network is basically developed 

using existing training data set containing pairs of input-

output elements needed to train the system of 

interconnected neurons [14]. GA on the other hand is an 

iterative algorithm based on genetics and natural 

selection ruled by Darwinian theory of evolution 

“survival of the fittest”. This is commonly deployed as 

optimization and search technique [15, 16].  The flow 

chart of GA is shown in Figure 1 (b). Solution of 

optimization problem in GA is represented by a 
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  chromosome while population is a group of 

chromosomes or possible solutions. Each chromosome is 

composed of genes that represent decision variables. 

This gene can be represented either numerical, binary, or 

hard coded symbols depending on the problem 

considered. In addition, initial generation of randomly 

selected chromosome must undergo genetic operators 

such as fitness evaluation, crossover, mutation, and 

selection in order to produce new and better generation. 

This process is repeated until generation of a 

chromosome or population with satisfactory fitness 

values meet. Thus, this final generation of chromosomes 

are considered to be the optimal solution or set of 

solutions.  

The present paper generally aims to utilize ANN and 

GA to develop a hybrid model for prediction and 

optimization purposes. ANN was used to establish 

separate models that would describe the relationship of 

strength and durability parameters to the components of 

SCC containing ternary cementitious blend of silica 

fume and fly ash. These models were optimized using 

GA to derive the optimal mixture proportion of SCC 

with high strength-durability performance. Detailed 

discussion of model development and hybrid algorithm 

in this study are presented in the first part while results 

and discussion as well as conclusions are presented in 

the last part. 

 

II. METHOD 

 

A. Materials 

The study utilized the data and results published by 

Wongkeo et al. [4] as primary datasets. Consequently, 

thirty-six datasets of self-compacting concrete (SCC) 

samples with corresponding test results of 28-day 

compressive strength and chloride ion penetration 

resistance were retrieved and summarized (See Figures 2 

and 3). These datasets were used as inputs for hybrid 

model development. The concrete sample contains 

blended cement of silica fume and fly ash at high volume 

replacement level of 50, 60, and 70%. Each material 

component of SCC was prepared in accordance with the 

guidelines and testing procedures set by American 

Society for Testing of Materials (ASTM). Mix 

proportions of SCC are shown in Table 1. Moreover, the 

proportioning of material component of SCC was based 

on the following assumptions: fixed water content at 180 

kg/m
3
; water to binder (w/b) ratio of 0.3, 0.35, and 0.4 

were used; fixed coarse aggregate to total aggregate ratio 

at 0.35; fine aggregate to total aggregate in range of 

0.65; and adjusted superplasticizer dosage for constant 

slump flow of 600 ± 50 mm. 

For concrete sample preparation and testing, a 100 

mm-cube concrete specimen was used for compressive 

strength test in accordance with British Standards [17]. 

ASTM: C102 was adopted for chloride ion penetration 

resistance test for a 100-mm diameter by 200-mm high 

cylindrical concrete specimen.  

 

B. Model Development 

This section is divided into two subsections to discuss 

the development of hybrid model. Subsection (1) 

discussed the assumptions and methodology in 

constructing the architecture of predicting models using 

artificial neural network. Meanwhile, the full discussion 

of the implementation of genetic algorithm is presented 

in subsection (2). Furthermore, both computing models 

were deployed in licensed version of MatLab® R2015a 

program.  

 

(1) Artificial Neural Network (ANN) 

Feedforward multilayered supervised neural network 

with error back-propagation algorithm was selected for 

this study from the large class of ANN models. It was 

use because of its simplicity and for being widely used 

ANN model. The architecture of ANN consists of 

artificial neurons analogous to natural neurons of the 

human brain that are clumped into series of input, hidden 

and output layers. According to Chopra et al. [18] there 

are three essentials to consider before structuring the 

architecture of ANN model, namely: 1) Topology – 

organization and interconnection of a neural network 

into layers; 2) Learning –  information storage in the 

network; and 3) Recall – retrieval of information from 

the network. These essentials are reflected with the 

following internal parameters: 1) performance function, 

2) learning function, 3) weights and biases, 4) hidden 

layers and neurons, 5) and transfer function. 
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Table 1. Summary of mix proportions of SCC and experimental results by Wongkeo et al. [4] 

Variable 
Details of Variable 

Minimum Maximum Range Mean 

Input      

Portland Cement, PC (kg/m
3
) 135 600 465 280.3 

Fly Ash, FA (kg/m
3
) 180 420 240 286.9 

Silica Fume, SF (kg/m
3
) 23 60 37 39.2 

Fine Aggregates, F (kg/m
3
) 908 1,166 258 1,025.9 

Coarse Aggregates, CA (kg/m
3
) 595 640 45 618.7 

Superplasticizers, SP (kg/m
3
) 0.59 9.45 8.87 3.4 

Output      

28-Day Compressive Strength, f’c (MPa) 28.2 100.5 72.3 62.0 

Total Charge Passed, Q (Coulomb) 266 4,659 4,393 1,636.6 

 

 
Table 2. Artificial neural network model internal parameters 

Parameter Value 

Training algorithm Levenberg-Marquardt Algorithm  

Transfer function Hyperbolic Tangent Sigmoid  (Tansig) 

Performance function Mean Square Error (MSE), Pearson Correlation Coefficient (R) 

Number of hidden layers 1; 2 

Number of neurons per hidden layer (nip – 1)* to 20 

Performance Goal 0.000001 

Epochs 10,000 

*nip correspond to number of input parameters; Asteris et al. [19] 

 

(a) ANN internal parameters  

Good concept of the impact of internal parameters (See 

Table 2) will dictate the successful application of ANN 

in establishing the relationship of input and output 

elements. Furthermore, iterative experimental 

exploration through trial and error of theses internal 

parameters was conducted in order to arrive at the best 

possible parameters capable of prediction.  

The present study deployed hyperbolic tangent sigmoid 

function or tansig function and Levernberg-Marquardt 

algorithm as transfer and training functions respectively. 

According to Asteris et al. [19] no prior reasons as to 

why tansig function should always provide optimal 

decision boarders although the choice of the transfer 

function has always have strong influence on the 

complexity and performance of the neural network. 

Transfer functions commonly serve as activation 

functions for the connection between weights of a 

neuron and input element. Specifically, tansig function 

operates by returning outputs compressed between -1 

and 1 in which it has an ability to learn complex non-

linear relation between the input and output parameters.  

On the other hand, Levernberg-Marquardt learning 

function is the most suitable algorithm for concrete 

related data according to available literatures [18, 19]. It 

is attributed to be significantly high speed training 

method especially for moderately sized feedforward 

neural networks as well as non-linear problems. This 

function is also readily deployable in MatLab® program.  

According to Taner [20], more hidden layers can be 

used to handle complicated and erratic cases. However, 

Zhang et al. [21] suggested that most literatures opted to 

use one or two hidden layers for modelling. In this 

present work, the number of neurons in hidden layer will 

be part of the experimental exploration.  While the 

performance of ANN models was assessed using mean 

square error (MSE) and Pearson correlation coefficient 

(R), high performing ANN model has MSE and R values 

equal to zero and one respectively. In addition, 

satisfactory values for R and MSE are used as stopping 

criteria for the multiple training simulation in deriving 

the final weights and biases for high performing ANN 

models.  

Furthermore, ANN modeling is divided into three parts 

(i.e. training, validation, and testing). Training is the first 

part of the modeling in which formulation of the initially 

structured model is executed. Consequently, validation is 

used to derive final weights and biases while testing is to 

ensure the accuracy of the final derived model. In 

addition, the provided data sets are distributed to 

training, validation, and testing parts using 70, 15, and 

15% proportion. 

 

(2) Genetic Algorithm (GA) 

The second stage of hybrid model is deployment of GA 

originally proposed by Goldberg [22] that is generally 

composed of three operators known as the selection, 

mutation and crossover. In addition, formulation of 

objective functions for strength and durability 

optimization problems is the initial step of this stage. 

The objective functions were expressed as follows: 

 

Maximize: f'c = f(PC, FA, SF, F, CA, SP)  (1) 

 

Minimize: Q = f(PC, FA, SF, F, CA, SP)  (2) 

 

where f’c – 28-day compressive strength of SCC (MPa); 

Q – charge passed (Coulombs); PC – Portland cement 

(kg/m
3
); FA – fly ash (kg/m

3
); SF – silica fume (kg/m

3
); 

F – fine aggregates (kg/m
3
); CA – coarse aggregates 

Figure 1. Hybrid model (a) Artificial neural network architecture (b) Genetic algorithm flow chart 
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(kg/m
3
); SP – superplasticizer (kg/m

3
). f’c and Q are the 

predicting models developed through ANN modeling 

which serve as functions that establish the relationship 

between material components of SCC and strength-

durability parameters.

Figure 2. 28-day compressive strength of different SCC mix proportions with cementitious blends at w/b ratio of 0.3, 0.35, and 0.4 

Figure 3. Chloride resistance (total charge passed) of different SCC mix proportions with cementitious blends 
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In this research, three GA models were developed to 

find the optimal mix proportion of SCC under high 

strength and durability performance. CSNN1 and 

QPNN1 are the objective functions based on f’c and Q 

ANN models respectively. These were used in separate 

single-objective GA optimization. CSNN1 was used to 

determine SCC mix proportion with high performing 28-

day compressive strength while QPNN1 was used for 

solving optimal mix proportion that exhibited high 

chloride ion penetration resistance (low charge passed in 

coulomb).  The third model was a multi-objective GA 

optimization in which CNN1 was used as the objective 

function for determining the pareto-front of optimal SCC 

mix proportions. This CNN1 model is a single code 

generated ANN model of 28-day compressive strength 

and charge passed for chloride ion penetration resistance. 

In the deployment of GA, proper assignment of 

available method for each three fundamental GA 

operators (i.e. selection, mutation, and crossover) is vital. 

This will influence the convergence rate and capability 

of GA models in search for global solutions of the 

optimization problems. Full discussion of each operator 

were presented as follows:  

 

(a) Selection 

Selection is a GA operator essentially based on theory of 

Darwinian natural selection. This is the first operator in 

the whole GA procedure wherein initial chromosomes or 

possible solutions were selected. Proper method and 

stress of selection operator provide the driving force of 

GA search. This is critical in directing the algorithm 

toward promising and wider regions of the search space.  

According to Lim et al. [23], commonly at the start of 

the genetic algorithm search, low selection stress was 

specified in favor of a wide exploration of the search 

space while, at the latter part, high selection stress was 

recommended in order to achieve the most promising 

regions in the search space. 
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In the present research, the stochastic uniform and 

tournament methods were utilized as selection operators. 

Stochastic uniform or stochastic universal sampling 

(SUS) selection developed by Baker [24] was used in the 

single objective optimization problems. This is because 

SUS is one of the most popular selection methods 

particularly because of its capability in achieving 

minimum spread of generated population and zero bias 

selection of individuals. Rank and top fitness scaling 

methods were combined to SUS to enhance the selection 

operator of the whole GA process. On the other hand, 

binary tournament was used in multi-objective 

optimization problem. Generally, tournament selection 

randomly chooses two-chromosome set and pick out 

high performing one from the set and proceed to 

reproduction. These chromosomes are inserted into new 

population and the process is repeated until the 

population becomes full. 

(b) Mutation 

Mutation operator is a special feature of genetic 

algorithm because of its mechanism that preserves 

specific characteristic of the initial chromosomes needed 

in locating promising solutions. This feature 

compensates the negative effect of crossover operator of 

losing specific characteristic during the generation of 

new population. The mutation process is performed by 

using mutation rate that is defined as percentages of 

introducing new genes over total number of genes in the 

population needed for trial. Very slow mutation rate will 

yield to local solution due to unexplored useful 

characteristics of other possible chromosomes. However, 

high rate will cause random perturbation of the new 

population loosing resemblance to its parent population 

and later the algorithm loses its track from learning the 

record of the search. To avoid this, adaptive feasible 

mutation was used for single and multi-objective 

optimization problems [25].

 

 
Figure 4. Comparison among experimental results, CSNN1 and CNN1 prediction of 28-day compressive strength 

 

 
Figure 5. Comparison among experimental results, QPNN1 and CNN1 prediction of charge passed for chloride ion penetration 

resistance 
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(c) Crossover 

Crossover operator generally operates under the 

mechanism of sexual generation of a new chromosome 

from two parent chromosomes. The mechanism takes 

part of the total characteristics of one parent 

chromosome and other parts from the other parent 

chromosome and combining both to generate to new 

chromosome. The process operated and controlled by 

crossover rate that defined the number of new 

chromosomes in each generation to the population size 

that will undergo the operation. A higher crossover rate 

allows the algorithm to explore the large region of the 

solution space and reduces the probability of landing for 

a local optimum but if this rate is too high, this results to 

computationally intense in exploring unpromising 

regions of the solution space [23]. Scattered, one-point, 

two-point, and intermediate crossover were utilized for 

both single objective and multi-objective optimization 

problems. These crossover models are all deployable in 

MatLab® program.  

 

(d) Constraints 

In order to attain global solution and realistic values for 

the optimization problems, the following constraints and 

bounds were formulated as follows: 

 

135 ≤ PC ≤ 600     (3) 

 

180 ≤ FA ≤ 420     (4) 

 

23 ≤ SF ≤ 60     (5) 

 

908 ≤ F ≤ 1,166     (6) 

 

595 ≤ CA ≤ 640     (7) 

 

0.59 ≤ SP ≤ 9.45     (8) 

 

0.3 ≤ 180/(PC+FA+SF) ≤ 0.4   (9) 

 

0.6 ≤ F/(F+CA) ≤ 0.65                (10) 

 

CA/(F+CA) = 0.35                (11) 

 

Equations three to eight were implemented for single 

objective GA optimization of both CSNN1 and QPNN1 

models. Equation nine to 11 were additional constraints 

for multi-objective GA optimization of CNN1 model in 

solving the strength-durability problem. 

 

III. RESULTS AND DISCUSSION 

 

A. Compressive strength ANN model  

After several experimental exploration of the different 

significant internal parameters, final ANN model for the 

28-day compressive strength was derived (i.e. CSNN1 

model). Final internal parameters included six hidden 

neurons with two hidden layers. Tansig transfer function 

was still proven to be high performing in the input and 

output signal processing thus making the model capable 

to handle dimensionally varied input and output 

parameters. For training algorithm, Levenberg-

Marquardt algorithm is observed to be efficient at high 

rate convergence for moderately sized feedforward 

neural networks with non-linear problems. The 

performance of the CSNN1 model as shown in Figure 6 

(a). Pearson correlation coefficient, R values for training, 

validation, and testing were all considerably high 

performing with values greater than 0.99. CSNN1 model 

has overall R value of 0.99774. These R values remarked 

that the derived model has good predicting capability. 

Figure 4 presented the comparison of the experimental 

values of 28-day compressive strength to the predicted 

values by CSNN1 model using 36 datasets. It was clear 

that the experimental values and predicted values were 

very close.  

 

B. Charge passed ANN model 

QPNN1 as the final derived ANN model for the chloride 

ion penetration resistance is also remarked to be high 

performing in establishing the relationship of the SCC’s 

material components to the total charge passed. Figure 5 

presented the high performance of QPNN1 based on the 

comparison between the predicted and experimental 

values of 36 datasets simulation. The performance also 

reflected with the R values of training, validation, and 

testing sets which are all greater than 0.99 as presented 

in Figure 6 (b). The final architecture of QPNN1 is 

composed of five hidden neurons with two hidden layers. 

Levenberg-Marquardt algorithm and tansig function 

were also the final training and transfer functions 

respectively. The QPNN1 has overall R value of 

0.99679.  

 

C. Combined ANN model  

The third model is the combination of the two output 

parameters in a single ANN model. This is for the 

purpose of deriving the objective functions of the multi-

objective GA optimization problem in a single ANN 

model.  The final derived combined ANN model (i.e. 

CNN1) also underwent performance assessment and 

training processes. The predicted values of this model for 

the 28-day compressive strength and charge passed are 

also compared to the experimental results as presented in 

figures 4 and 5. The final architecture was composed of 

seven hidden neurons and two hidden layers under 

satisfactory R values of 0.99619 as presented in figure 6 

(c). Tansig function and Levenberg-Marquardt algorithm 

were also the transfer and training functions of the final 

derived model.  

 

R values for three models under training, validation, 

testing and overall stage were summarized in table 3.

Table 3. Pearson correlation coefficient, R performance for three ANN models 

Neural Network Model Code 
Pearson correlation coefficient, R-Value 

Training Validation Testing All 

CSNN1 0.99951 0.99052 0.99645 0.99774 

QPNN1 0.99623 0.99963 0.99841 0.99679 
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CNN1 0.99845 0.99846 0.99673 0.99619 

D. Single objective GA optimization  

In this stage, applicability of GA as stochastic search 

technique was tested. Two separate single-objective 

optimization problems were solved by GA. GA was able 

to determine the optimal solutions for the two problems 

that involved the strength and durability requirements of 

sustainable SCC containing cementitious blends. 

Table 4 presents the two optimal mix proportions of 

sustainable SCC that correspond to individual objective 

performance. Mix no. 1 is the optimal proportion for 

high compressive strength SCC. The objective 

performance of this design mix f’c = 114 MPa in which 

it can be considered as a high strength concrete. It has 

FA and SF content of 39% and 5.6% of the total binder 

weight respectively. The second mix proportion 

performed with high chloride resistance at < 0 charge 

passed (Negligible). FA content at 40% while SF content 

at 3.7% of the total binder weight. Both mix proportions 

(i.e. nos. 1 and 2) have a w/b ratio = 0.17, and the same 

were determined after running the GA over 300 

generations as shown in figures 7 and 8.  

The lower w/b ratio for both proportions affirmed with 

previous literatures, that decreasing w/b ratio 

corresponds to increasing of compressive strength and 

chloride ion penetration resistance.  Low compressive 

strength and chloride penetration resistance was 

accompanied by high porosity caused by increased w/b 

ratio [4, 26].  

It was also observed the good effect of FA and SF as 

ternary cementitious blend to the compressive strength 

and chloride ion penetration resistance of SCC. Because 

of the dynamic relationship between FA and SF. SF 

tends to compensate the low pozzolanic reaction of FA 

and serves as micro filler. Moreover, FA and SF improve 

  
(a) (b) 

 
(c) 

 
Figure 6. Pearson correlation coefficient, R values for (a) CSNN1 (b) QPNN1 and (c) CNN1  
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both the physical and chemical chloride binding effect 

that tend to decrease charge passed and improve chloride 

ion penetration resistance [4]

 .
Table 4. Summary of Results of Single and Multi-objective GA optimization 

Mix No. f’c Q PC FA SF F CA SP 

 

 
Figure 7. Results of genetic algorithm generation for f’c optimization problem (CSNN1) 

 

 
Figure 8. Results of genetic algorithm generation for Q optimization problem (QPNN1) 
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 (MPa) (Coulomb) (kg/m
3
) (kg/m

3
) (kg/m

3
) (kg/m

3
) (kg/m

3
) (kg/m

3
) 

Single-Objective Problem using CSNN1 Model 

1 114 - 587 420 60 1,021 595 9.45 

Single-Objective Problem using QPNN1 Model 

2 - < 0 600 420 38.7 1,166 610.4 4.74 

Multi-Objective Problem using CNN1 Model 

3 99.0 375 363 180 57 1,109 595 9.45 

4 102.5 881 328 238 36 1,110 595 9.45 

5 100.5 565 362 194 43 1,109 595 9.45 

6 97.4 269 362 180 60 1,110 595 4.91 

7 89.1 126 362 180 60 1,104 595 2.29 

E. Multi-objective GA optimization 

After over 1,000 generations of the multi-objective GA 

optimization, pareto-front of 70 high performing mix 

proportions were determined (See Figure 9).  In this final 

population, compressive strength of as high as 102.5 

MPa was derived while charge passed was reduced to as 

low as 126 Coulomb. The pareto-front has an average 

compressive strength and charge passed of 99.1 MPa and 

483 Coulomb respectively. The standard deviations of 

the compressive strength and charge passed for the 

derived mixes are three and 224 respectively.   

Five mix proportions were sorted based on their 

performance relative to high compressive strength and 

low charge passed. These high ranking mixes were 

summarized in Table 4. All five mixes exhibited high 

compressive strength over 60 MPa with average w/b 

ratio of 0.30. Chloride ion penetration resistance for the 

5 samples were characterized by very low (100-1000 

Coulombs) penetrability. The FA content varies from 30-

40% while SF varies from 8-10% of the total binder 

weight.  

It is indicative of the sensitivity of PC, FA, and SF 

content to the compressive strength and charge passed of 

the SCC. High SF content will not fully compensate the 

low pozzolanic reaction rate of FA thus it yields decrease 

in its compressive strength. This can be observed with 

Mix nos. 6 and 7, characterized by high SF content 

relative to the total binder weight. However high SF 

content improved the chloride ion penetration resistance 

(charge passed) and this was evidently present on the 

five mixes.   

 

IV. CONCLUSION 

 

In this paper, the established good effects of high 

calcium FA and SF by previous studies as a binary and 

ternary cementitious blends at high volume replacement 

on the strength and durability properties of SCC was 

further investigated using two widely used biological 

inspired computing models namely the Artificial Neural 

Network (ANN) and Genetic Algorithm (GA). From 

these results it can be concluded that ANN and GA were 

able to utilize in developing a hybrid model use for 

prediction and optimization purposes. The hybrid model 

was able to explore material components of sustainable 

SCC particularly the FA and SF in effect to 28-day 

compressive strength and chloride ion penetration 

resistance, and optimize the proportion of material 

components that resulted to objective mix design of SCC 

considering strength and durability performance. 

Furthermore, computational exploration of the 

influence was also carried out as to further understand 

the sensitivity of the two mineral admixtures to the 

strength-durability performance without the expense of 

experimental program. The model also provided the 

understanding of the viability of the two mineral 

admixtures (i.e. FA and SF) in developing sustainable 

SCC under strength-durability requirements.  
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