
The 3rd International Seminar on Science and Technology 149
August 3rd 2017, Postgraduate Program Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia

Measuring Performance Efficiency of
Application applying Design Patterns and

Refactoring Method
Kholed Langsari1, Siti Rochimah1, Rizky Januar Akbar1

 AbstractDesign patterns are always useful concept using in

designing and developing a software application. Performance
play essential role in the quality attribute of an enterprise
application. It is useful to measure and examine how design
patterns influence and affect the performance of an application.
In this study, we investigate the impact of selected design pattern
through refactoring processes for performance efficiency. The
systematic study phases included; analyzing, refactoring and
performance measuring with implemented in case study SIA
system. The performance measuring measure with different test
cases and round for the results comparison of each differences
test cases and round for design pattern indicate an influence on
the performance of an application.

KeywordsDesign Patterns, Performance Efficiency,

Application Performance, Refactoring, Academic Information
System.

I. INTRODUCTION1
Software engineering is an engineering discipline for

professional and systematic software development rather
than individual programming that is concerned with all
aspects of software production [1]. It includes aspects such
as specification, development, validation, and evolution.
The development is concerned of the designing and
implementing the software.

Performance is one of the important and essential a
quality attribute of software quality [2]. Performance is a
non-functional requirement that important factor to
consider in enterprise system in order to achieve a high
quality of application. A design pattern is commonly
thought of as a set of reusable solution to a commonly
occurring design problem in object-oriented software as
defined by the Gang of Four (GOF) [3]. When applied
Patterns, it always comes with some extra layer of
indirection and produce characteristic of increased
abstraction in the program. This may deliver a positive or a
negative impact on performance. Design pattern provides
discipline in creating or refactor to a better software
structure but they cannot offer any guarantees of the
performance of the software quality [4].

1Kholed Langsari, Siti Rochimah, Rizky Januar Akbar are with

Department of Informatics Engineering, Faculty of Information
Technology, Institut Teknologi Sepuluh Nopember (ITS), Kampus ITS
Sukolilo, Surabaya 60111, Indonesia. E-mail: langsaree@gmail.com;
siti@if.its.ac.id; rizky@if.its.ac.id..

There are two main problems addressed by this study: (1)
the explosion of impacts in refactoring process using design
patterns and (2) the measurement impact of performance
efficiency when implemented refactoring technique using
design patterns. The purpose of this study is to investigate
the impact and influence of design patterns on application
quality, especially performance efficiency.

II. LITERATURE REVIEW
A. Software Design

Design principles provide guidance to designers in
creating effective and high-quality software solutions. The
design is defined as both processes of defining the
architecture, component, interface, and other characteristics
of a system or component and the result of that process [1].
In the standard list of software life cycle process as
ISO/IEC/IEEE Std. 12207-2008 [5], define software design
consist of two activities, that are software architecture
design and software detailed design.

The Object-Oriented (OO) approach to software design
attempts to manage the complexity inherent in real world
problems by decomposing the problem into objects and
encapsulating it within objects [6], [7]. OO development is
a way of program implementation and organized in
cooperative collections of objects. Each of object represents
a class instance. All classes are hierarchy members of
classes connected each other via inheritance relationships.

The most commonly use of model notation for OO
approach is Unified Modeling Language (UML). UML is
the standard modeling language for object-oriented
systems. The UML is a language for modelling and
documenting the software-intensive system [8]. Design
patterns are often described with UML in various pattern
books [9]–[11]. Our case study SIA application
implemented object-oriented with Java Enterprise Edition
(Java EE) as it main approach and tool in development. SIA
has been designing, modeling, and documenting in the
standard of UML. In this work, we use UML as our
notation and description standard in several phases of
methodology and implementation.
B. Design Patterns

Design patterns are defined by Gamma et. al. [11] as
simple and elegant solutions to a recurring specific problem
arising when designing object-oriented software design. A
design pattern provides a guide for refining the subsystems

150 The 3rd International Seminar on Science and Technology
August 3rd 2017, Postgraduate Program Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia

or components of a software system and the relationships
between them. It describes commonly recurring structures
of communicating components that solve a general design
problem within a particular context [12].

The Hierarchical-Model-View-Controller (HMVC) is a
software architectural pattern. HMVC is a direct extension
of the MVC pattern that manages to solve many of the
scalability issues [12]. HMVC is a collection of traditional
MVC triads operating as one application. Each node is
completely self-execution and can process dependently.

Façade is a structural purpose type and object scope
design patterns of Gang of Four (GoF). Façade provides the
higher-level unified interface (set of the interface) that
makes the subsystem easier to use interfaces in a subsystem
[11]. Facade simplifies complex code, making it easier to
use poorly designed, over-complex subsystems. It is meant
to be wrappers around complex functionality, their primary
goal is hiding the complexity of an underlying system.
Figure 1 described class diagram overview of Façade
design pattern.

Figure 1. Class diagram of the Façade pattern

The advantages of using Façade are reduced coupling
relationships between subsystems, improving maintenance,
flexibility and it might increase the performance of the
application.
C. Software Quality

Quality is a fundamental property of software systems
and generally refers to the degree to which a software
system lives up to the expectation of satisfying its
requirements [13]. The IEEE Std 1061, the IEEE Standard
for a Software Quality Metrics Methodology provides a
definition of software quality as software quality is the
degree to which software possesses a desired combination
of attributes [14]. The ISO/IEC 25010 categorize software
quality attributes into eight characteristics. There is
functional suitability, reliability, performance efficiency,
operability, security, compatibility, maintainability, and
transferability.

In this study is focusing on performance efficiency
characteristic and sub-characteristic. Performance is
concerned with how well the software response when an
event occurs [15][16]. The software system events arrive in
various patterns which can be characterized as periodic or
stochastic. To evaluate whether a system is well
performing, the time between the event and the response
can firstly be measured, then compared with a previously
determined time constraint.

D. Refactoring
In software evolution context, refactoring is a re-

engineering technique or the process of changing a software
system that aims at reorganizing a program to improve its
quality without changing its external behavior [17].

Refactoring (noun): a change that made in the internal
structure of software to make it easier to understand and
cheaper to modify without changing its external behavior.
And Refactor (verb): to restructure software by applying a
refactoring processes without changing its external
behavior [18]. A refactoring aim to improve a certain
quality of system while respect others. Refactoring means
improving the design of software without altering its
noticeable behavior, developer does not add any new
requirement features during the process of refactoring, i.e.
they do not do any fixes bug of changes anything about
software that would be detected by the software user.
Instead, only the internal structure of the technology design
of the software is changed [18][19].

Mostly we recognize refactoring and classical refactoring
technique for low-level code refactoring that focusing on
code level transformation in order to reconstruct of
anomalies structures. Knowing how to do refactoring does
not mean knowing when to do refactoring. Usually, in
identifying when to apply refactoring, we use Design
Smells [20] and Code Smells [18] in deciding when system
needs to refactoring, and when to stop refactoring.

III. METHODOLOGY
A. Proposed Method

The proposed approach is structured in three fundamental
phases, (1) analyzing, (2) refactoring, and (3)
performance measuring.

Analyzing phase, (1) we use object-oriented reverse
engineering technique [18] focusing on as the process of
analyzing a subject system to identify the system's
components and their interrelationships and create
representations of the system in another form or at a higher
level of abstraction. We use several sources of information
while reverse engineering, such as read the existing
documentation, read the sources code, run the software, use
tools to generate the high-level view of the sources code.
These sources of information help a lot in analyzing, re-
documenting and identifying potential problems of the case
study. The result of this activity details of the system such
as Architecture View and Class Diagram. (2) Identifying
Problem. The result from steps above can be used to
determine and identify feasible problems occur in the
application. (3) Design Patterns Selection. The analyzing
result from previous activities given signs of Code Smell
and Design Smell issue related to the legacy software
application. The result of this activity is the suitably
selected design pattern that going to adapt and implement
into the SIA in refactoring process.

In refactoring phase, this activity consists of refactoring
and applying design patterns and we follow IMPACT
refactoring process model. The process of refactoring is an
activity change made to the internal structure of software to
make it easier to understand and cheaper to modify without

The 3rd International Seminar on Science and Technology 151
August 3rd 2017, Postgraduate Program Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia

changing its observable behavior. This activity to apply a
design pattern to the legacy system through refactoring
technique. The selected design pattern chooses to study and
refactor to the system. In this activity, we follow the
IMPACT refactoring process model [21].

In performance measuring phase, the dynamic
performance efficiency measuring. Dynamic Performance
Efficiency Measuring activity uses to measure the
performance of both legacies and refactored SIA. The
statistics measurement results of legacy and refactored SIA
application are carefully compared and differences
analyzed.
B. Case Study Application Description

In this study, we are conducted the experiment in
particular environment. Our case study is Grading Module
of Sistem Informasi Akademik (SIA) [22][23]. The SIA
application is an Academic Information System. Academic
Information System is an information system with
business process for education propose. It consists of
various processes and functions handle the education and
high education requirement in a systematic way. The SIA
application has been manipulating by Faculty of
Informatics Engineering, Institut Teknologi Sepuluh
Nopember (ITS). The system is design based on
modularity, Model-View-Controller (MVC), and
Hierarchical-Model- View-Controller (HMVC)
architecture. It is implemented Java Enterprise Edition
technology using Spring MVC and Hibernate ORM
framework. SIA system deploys on Eclipse Virgo and
OSGi Framework and PostgreSQL is the main database.

Figure 2. Design of Grading Module Architecture.

The Grading module architecture is to split the project
into several logical layers. First, client side, UI layer, in our
case study system use HTML/JSP page with JSTL and
Spring forms. Second, server side, it is consists of
Controller layer (Spring MVC), Service layer (Spring),
Repositories (Spring and Hibernate). Third, Data layer:
PostgreSQL. Fourth, Model and Java bean classes, which
represent application data objects. The design of Grading
Module as depicted in figure 2.

Grading Module allows administrator and instructors to
submit or change assignment and examination mark,
finalcgrades, generate the report, generate student
transcript, produce Index and ranking scores, managing
questionnaire of courses.

The test scenario uses for performance efficiency
measurement is reflect the main functionality user
activity of the case study system. In principle, the test
activities represent the following data operation:
querying, creation, removal, and update, with data
querying being the most prevalent activity. The test

scenario includes activities typical for this kind of
application:
• Listing student details,
• Generating and viewing a report,
• Adding users, and
• Removing users from the application.

E. Performance Efficiency Measure Parameters
There are a number of performance efficiency

parameters measured during each test. We have collected
parameters that primarily based on ISO standard
guideline [16] and support by available tools. The
parameters measure includes:

Mean response time, this measurement function used to
measure the mean time taken by the system to respond to a
user action, where Ai is time between a user’s request and a
system’s response, n is a total number of response events
measured. The equation is given in Eq. (1).

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 = � (𝐴𝐴𝑖𝑖) 𝑛𝑛⁄
𝑖𝑖=1𝑡𝑡𝑡𝑡𝑡𝑡

 (1)

Response time conformance, this measurement
function used to measure how well does the system
response time meet the specified target, where A is mean
response time result of Eq. (1), and B is specified target
response time. The equation used to measure is given in
Eq. (2).

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = 𝐴𝐴/𝐵𝐵 (2)
Throughput conformance, this measurement function

use to measure how well does the throughput meet
specified targets, where A is a number of tasks
completed during the observation time, B is observation
time period, C is target throughput specified, and n is a
number of observations. The equation used to measure is
given in Eq. (3)

𝑇𝑇ℎ𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑝𝑝𝑝𝑝𝑝𝑝 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = � � (𝐵𝐵𝑖𝑖 𝐴𝐴𝑖𝑖⁄) 𝑛𝑛⁄
𝑖𝑖−1 𝑡𝑡𝑡𝑡 𝑛𝑛

� 𝐶𝐶� (13)

Transaction processing error rate, this measurement
function used to measure how many concurrent
transactions can be processed at any given time against
the specified target, where Ai is a number of active
transactions at instant given i, B is total operation
duration, and C is required transaction processing
capacity per unit of time specified. The equation used to
measure is given in Eq. (4).

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = ∑𝐴𝐴𝑖𝑖 𝐵𝐵⁄ 𝐶𝐶⁄ (4)
Transaction processing error rate conformance, this

measurement function used to measure how many
concurrent transactions can be processed at a given time
against the specified target, where: A is the transaction
processing error rate result of Eq. 4, and B is specified
target transaction processed. The equation that use to
measure is given in Eq. (5).
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = 𝐴𝐴 𝐵𝐵⁄ (5)

F. Test Environment Specification
The implementation conducted in a controlled

environment. The controlled environment gives an accurate
result and minimizes noise during run the test for reliable

152 The 3rd International Seminar on Science and Technology
August 3rd 2017, Postgraduate Program Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia

correct result. The test environment consists of two
machines located in a local network, the server and the
client side machine. The server and the client side machine
located in a local network. The application and database
server were located on Ubuntu Server 14.04.3 LTS that run
computer server Intel(R) Xeon(R) CPU 2.40GHz 64bits,
7855MB RAM, 500GB HDD with and 1Gbit/s network
card. The application server is Java 1.7, with Virgo Server
3.6.4 and PostgreSQL 9.4. The client side was on
Macintosh, Intel Mac OS X 10.11. We use Apache’s
JMeter tool to simulate a number of user activities access to
the web application and produce load tasks. We use
VisualVM tool for capture data CPU and Memory resource
use.

IV. EXPERIMENTATION AND RESULT
A. Analyzing, Reverse Engineering

The Grading module of SIA application organized Java
classes and interfaces by categorized it in packages unique
namespace, to represent parts and components of the
system. The module consists of three main packages, there
are Package Controller, Package Service, and Package
Repository followed the basic fundamental design of Spring
Web MVC as depicted in figure 3.

Figure 3. Package Diagram of Grading Module

The interconnection between packages of the module
illustrated in package diagram in Fig. 4. The Package
Controller (package com.siakad.modul_penilaian.
controller), responsible for the act as an interface between
Model and View components to process all the business
logic and incoming requests, manipulate data using the
Model component and interact with the Views to render the
final output. The Package Service (package
com.siakad.modul_penilaian.service), responsible for the
middle layer between presentation and data store. It
abstracts business logic and data access. It defines and
implements the service interface and the data contracts.
The Package Repository (package
com.siakad.modul_penilaian.repository), responsible for
separating the logic that retrieves the data and maps it to the
entity model from the business logic that acts on the model.
Mediates between the domain and data mapping layers
using a collection-like interface for accessing domain
objects. Package repository implemented Repository
pattern in interacting with the database through Hibernate
Framework as the helper of Data Access Object (DAO).

Figure 4. Controller Nilai class diagram interconnection with other classes
B. Identifying Problem

The Grading module is divided into layers follow the
layering principle. Layering principle consists of
Presentation Layer, Service Layer (the actual business
logic) and Data Access Layer. The system source code
structure and design is powered and implemented by
several technologies and framework as Java EE platform,
Spring Framework and Hibernate. And the system is
deployed on Virgo server which Apache Tomcat version.

In Grading module, a Controller is typically responsible
for preparing a model Map with data and selecting a view
name but it can also write directly to the response stream
and complete the request. View name resolution is highly
configurable through file extension or accepts header
content type negotiation, through bean names, a properties
ViewResolver file. The model (the M in MVC) is a map
interface, which allows for the complete abstraction of the
view technology. It can integrate directly with template
based rendering technologies as JSP. The model map is
simply transformed into an appropriate format in form of
JSP request attributes and rendering to user web browser as
result of complete request and response.

Figure 5. Class diagram of communication and dependencies between

classes

In figure 5 classes and subclasses, especially older ones
are masses of complex legacy code. When a class in
package controller must interact, they often make calls

The 3rd International Seminar on Science and Technology 153
August 3rd 2017, Postgraduate Program Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia

directly into classes package services. It is creating one-to-
many dependencies, and these myriad tendrils of
connectivity are difficult to maintain. The subclasses
become very delicate since making seemingly insignificant
changes in a single subclass can affect the entire program. It
creates complexity communication and dependencies
between two or more classes or interfaces.

In figure 5 for example, the class ControllerA in package
controller, make communication with four interfaces of
package service, ServiceA and ServiceB, ServiceC and
ServiceN. Class ControllerB and ControllerC and
ControllerN also create communication to ServiceA and
ServiceB, ServiceC and ServiceN too. It means all Services
class have to handle three or more communications at the
same time, it is created dependency nightmare for the
developer in future maintenance. By this potential emerging
problem, we consider to redesign and refactor the module
system structure for further feature extent and performance
of the system.
C. Refactoring and Applying Design Patterns

According to problem identification section, we chose to
introduce the advantages of apply Façade pattern in
decreasing dependency and improve the performance of the
application. We identify refactoring candidates, plan
refactoring activities, implement on planned refactoring
tasks, and test to ensure behavior preservation.

We identified the refactoring candidates by introducing to
advance Façade design pattern. We created FaçadeService
package that contains façade class function that used for
functioning easy to use interface communication between
classes in package service and package controller.

Figure 6. Class diagram of the Façade pattern implement in grading

module

In figure 6 present our candidate Façade pattern
implemented in grading module. FaçadeService is placed in
between the controller and the service. It created
opportunities to establish intermediate layers of abstraction
with wrap a poorly-designed collection of classes with
single well-designed classes that further foster reduced
levels of coupling and reduce dependencies of outside code
on the inner workings of a library, since most code uses the
facade, thus allowing more flexibility in developing the
system. This allows the service to remain decoupled from
the controller.

This solution is to attain a reduced degree of coupling
between services and controller, thereby increasing the

freedom and flexibility with which services can be
individually evolved. This can result in an elegant
architectural design with clean layers of abstraction, but it
can also impact impose extra processing overhead that
naturally comes with increasing the physical distribution of
controller call.
D. Dynamic Performance Efficiency Measurement

There are four test scenarios in the test includes activities
typical for the application. There are Test Scenario 1 (TS1):
listing student details, Test Scenario 2 (TS2): generating
and viewing a report, and Test Scenario (TS3): adding users
the application and Test Scenario 1 (TS4): removing users
from the application.

All the test scenarios were simulated with the number of
concurrent threads (users) increasing from 10 to 350. This
final number of threads was determined empirically and it
was the maximum number of threads that the application
and server could handle (breaking point). After running a
full sequence of requests for given number of threads, it
was repeated until the total number of requests reached
around 3,150 requests. This number was also determined
empirically and it was when the response time from the
server was stable, meaning that the server had already
allocated enough resources to serve a given number of
threads.

A test round for one tested case started from simulating
10 concurrent threads. Then the number was set to 10
threads and after that, it was always increased by 10 until
the maximum number of 350 threads was reached. Each
round was repeated 3 times to ensure that the results are
meaningful and reliable.

We defined the Thread Group, Thread Group defines a
pool of users that will execute a particular test case against
the server. JMeter makes the number of users and the ramp-
rate configurable. We use HTTP Request Defaults, HTTP
Request Defaults configuration element to the Thread
Group. This configuration element sets up the domain IP
address of the server, the port and the protocol (HTTP/
HTTPS). We use HTTP Cookie Manager for stores and
sends cookies. HTTP Request and the response contains a
cookie, the Cookie Manager automatically stores that
cookie and will use it for all future requests. For the
purposes of this research, the default configurations are
enough. We define HTTP Header Manager, it lets us add or
override HTTP request headers. The HTTP Cache Manager
is used to add caching functionality to HTTP requests
within its scope to simulate browser cache feature. Each
Virtual User thread has its own Cache. By default, Cache
Manager will store up to 5000 items in cache per Virtual
User thread. We use HTTP Request element, send an
HTTP/HTTPS request to the SIA web server. This
configuration element lets us sets up test scenarios as
defined, the domain or IP address patch of the web
application.

In JMeter performance test application, we set 1,000
threads as target load, 30 minutes Ramp Up Time, 100
Ramp-Up Steps, 10 minutes holding the target rate. This
means that the test begins immediately when JMeter starts.
In every 0.3 minutes, 10 users will be added until we reach

154 The 3rd International Seminar on Science and Technology
August 3rd 2017, Postgraduate Program Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia

1000 users. It is can be calculated as 30 minutes divided by
10 steps equals 0.3 minutes per step. 1000 users divided by
100 steps equals 10 users per step. Totaling 10 users every
3 minutes. The first step is 0-10, the second 11-20, and 21-
30 etc., because it started 10 threads to run at the beginning.
After reaching 1,000 threads all of them will continue
running and hit the server together for 10 minutes and all
thread will stop.
E. Mean Response Time

The mean response times for the Grading module of SIA
application for legacy and refactored are shown in Table 1.
The mean response time chart shows how the differences
between the implementations. It is clearly visible that
Facade had the longest response time throughout the whole
measurement. The legacy SIA had an average response
time which was about 1.1096 conformance less than for the
refactored SIA variant. The differences were visible even
after reaching the breaking point of the server.

In table 1 show the different each round and mean result
in numeric of the two systems. There are three rounds of
the test. The result present in each round of the test by
calculating its mean value. For each test case can be
summarized in a mean value by calculating all round. The
response time measured in millisecond (ms) unit.

TABLE 1.
MEAN RESPONSE TIME

Round No./
metric

Legacy Refactored

TS1 TS2 TS3 TS4 TS1 TS2 TS3 TS4

Round1 31685 61700 42681 17932 31885 80710 51252 18642

Round2 29264 64114 41065 14970 28926 67141 45863 19232

Round3 26281 60621 42810 16309 25919 68643 49132 18327

Mean 26281 60621 42810 16309 25919 68643 49132 18327

F. Response time conformance
The result of response time conformance measure is

provided variants. In Table 2 show the result of comparing
between legacy and refactored system. The result shows
that the refactored system takes much time in response the
requests. Response time conformance usually smaller is
better and less than 1 is good. The compared test results and
test scenarios show that refactored system has a negative
impact in response time conformance defectively, except in
test scenario 1 (TS1).

TABLE 2.
RESPONSE TIME CONFORMANCE

System/Metric
Test Scenarios

Total
TS1 TS2 TS3 TS4

Legacy 26281 60621 42810 16309 26281

Refactored 25919 68643 49132 18327 25919

Conformance 0.9862 1.1323 1.1477 1.1237 0.9862

G. Throughput conformance
Throughput here is calculated as requests/sec unit of time.

The time is calculated from the start of the first sample to
the end of the last sample. This includes any intervals
between samples, as it is supposed to represent the load on
the server.

The throughput results also showed clear differences
between the investigated design patterns. This is shown in
Table 3, result values smaller is better and the default best
value is 0. The throughput values remained at an almost
constant level until the servers breaking point, and the
differences between the implementations also remained
proportional. Similar to the results for average response
times, the throughput values increased after the simulation
passed the breaking point.

TABLE 3.
THROUGHPUT CONFORMANCE

System/Metric
Test Scenarios

Total
TS1 TS2 TS3 TS4

Legacy 2.5/sec 2.4/sec 2.5/sec 2.6/sec 10.0/sec

Refactored 2.5/sec 2.3/sec 2.3/sec 2.5/sec 9.6/sec

Conformance 1.000 1.043 1.087 1.040 1.042

H. Transaction processing capacity conformance
The percentage of error reflex the successful requests is

depicted in Table 4 and Table 5 for conformance. Based on
the results obtained for the percentage of successful and
error responses, the measurement point for 350 users was
identified as the point where the server could not handle the
increased load and the requests resulted in errors. Since the
failed requests were not processed entirely, their handling
times were shorter compared to the handling times of
fully-processed requests. The average response times
lowered when the number of simulated users passed the
breaking point that the application fully serve.

TABLE 4.
TRANSACTION PROCESSING ERROR RATE

Round No.
Legacy Refactored

TS1 TS2 TS3 TS 4 TS 1 TS2 TS3 TS 4

Round 1
9.86
%

41.0
5%

26.9
1%

8.4
5%

7.3
7%

24.4
0%

34.2
7%

6.5
5%

Round 2
10.1
8%

43.0
0%

27.0
2%

7.9
3%

8.2
9%

37.5
3%

16.5
4%

8.5
7%

Round 3 6.86
%

38.8
6%

26.8
6%

6.5
7%

7.2
3%

28.4
8%

22.5
3%

5.6
9%

Mean 8.97
%

40.9
7%

26.9
3%

7.6
5%

7.6
3%

30.1
4%

24.4
5%

6.9
4%

TABLE 5.
TRANSACTION PROCESSING ERROR RATE CONFORMANCE

 Test Scenarios
Total

 TS1 TS2 TS3 TS4

Legacy 8.97% 40.97% 26.93% 7.65% 21.13%

Refactored 7.63% 30.14% 24.45% 6.94% 17.29%

Conformance 0.85 0.736 0.91 0.91 0.82

V. CONCLUSION
The study aims to measure performance impact on

refactoring with design patterns applied on an enterprise
software system. The study begins with the importance of
performance efficiency of a system application, utilized
design patterns in refactoring the legacy system, an
enterprise academic information system in Indonesia, go

The 3rd International Seminar on Science and Technology 155
August 3rd 2017, Postgraduate Program Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia

through the design, analyze and refactoring process, ends at
the performance efficiency measuring, and analyze and
evaluate the result.

Within the study, the SIA was analyzed and studied
through several tools and reverse engineering technique.
The Grading module was select to study as the main case of
experimentation. The tests carried out 4 test scenarios with
respect to the system and implemented the design pattern.
All the data gathered shows differences between the
compared legacy and refactored application of it implement
the design pattern, in terms of performance efficiency. In all
the presented tests, the refactored implementation that used
Facade pattern had the highest response time and
throughput, which resulted in negative impact on
performance than the legacy system. The Façade was
clearly better in managing design of the system but worse
in reduced response time and throughput especially when
implemented in the system that already applied another
architecture design. The Façade in this case study, it able to
reduces transaction processing error rate appreciably.

The presented results are a good starting point for further
pattern refactoring implementation. The results can be
utilized by application architects and designers to anticipate
the behavior of an application depending on chosen design
solutions. The results show differences between the legacy
and the refactored system using Façade design pattern.
However, the conducted tests were limited to only one
design patterns and a specific technology, Java EE.
Therefore, extended tests should be conducted and cover
differences multiple patterns and technologies different
from the Java EE technology, for example .NET technology
and different several case studies. In addition, the tests
should include a wider range of compared design patterns
as architecture and other types patterns. The test scenarios
also should cover all typical behavior of case study
including all use cases of the application. The final
objective would be a creation of a set of recommendations
containing specific design patterns used on different layers
of the application and implemented in various technologies
and variants.

REFERENCES
[1] R. S. Pressman, Software engineering : a practitioner’s approach.

New York: McGraw-Hill Inc., 2010.
[2] M. Ali and M. O. Elish, “A Comparative Literature Survey of

Design Patterns Impact on Software Quality,” in 2013 International
Conference on Information Science and Applications (ICISA), 2013,
pp. 1–7.

[3] A. Shalloway and J. Trott, Design patterns explained : a new
perspective on object-oriented design. New York: Addison-Wesley,
2002.

[4] F. Khomh and Y.-G. Guéhéneuc, “An Empirical Study of Design
Patterns and Software Quality,” in 12th European Conference on
Software Maintenance and Reengineering, 2008, pp. 274–278.

[5] ISO, ISO/IEC 12207:2008 - Systems and software engineering --
Software life cycle processes. ISO, 2008.

[6] G. Booch, Object-oriented analysis and design with applications,
3rd ed. Redwood City, CA, USA: Addison Wesley Longman
Publishing Co., In, 2004.

[7] M. Priestley, Practical object-oriented design with UML. New
York: McGraw-Hill, 2003.

[8] M. Fowler, UML distilled : a brief guide to the standard object
modeling language. Boston: Addison-Wesley Professional, 2003.

[9] C. Larman, Applying UML and patterns : an introduction to object-
oriented analysis and design and iterative development. New Jersey:
Prentice Hall PTR, 2005.

[10] M. Fowler, Analysis patterns : reusable object models. Boston:
Addison-Wesley Professional, 1997.

[11] E. Gamma, R. Helm, R. Johnson, J. Vlissides, and G. Booch, Design
patterns : elements of reusable object-oriented software. Boston:
Addison-Wesley, 1995.

[12] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal,
Pattern-oriented software architecture : a system of patterns. Wiley,
1996.

[13] W. Suryn, Software Quality Engineering : a Practitioner’s
Approach. Hoboken, New Jersey: John Wiley & Sons Inc., 2014.

[14] IEEE Computer Society, “IEEE Standard for a Software Quality
Metrics Methodology - IEEE Std 1061TM-1998 (R2009),” vol. 1998,
2009.

[15] J. Rudzki and T. Systä, “Performance implications of design pattern
usage in distributed applications,” in Proceedings of the ISSTA 2006
workshop on Role of software architecture for testing and analysis -
ROSATEA ’06, 2006, pp. 1–11.

[16] ISO, ISO/IEC 25023:2016 - Systems and software engineering --
Systems and software Quality Requirements and Evaluation
(SQuaRE) -- Measurement of system and software product quality.
ISO, 2016.

[17] P. Bourque, R. E. (Richard E. . Fairley, and IEEE Computer Society,
Guide to the software engineering body of knowledge. New Jersey:
IEEE Computer Society Press, 2014.

[18] M. Fowler and K. Beck, Refactoring : improving the design of
existing code. Westford, Massachusetts: Addison-Wesley, 1999.

[19] M. Lippert and S. Roock, Refactoring in Large Software Projects:
Performing Complex Restructurings Successfully. Wiley & Sons,
2006.

[20] S. G. Ganesh, T. Sharma, and G. Suryanarayana, “Towards a
Principle-based Classification of Structural Design Smells,” J.
Object Technol., vol. 12, no. 2, pp. 1–29, 2011.

[21] G. Suryanarayana, G. Samarthyam, and T. Sharma, Refactoring for
software design smells : managing technical debt. Morgan
Kaufmann, 2014.

[22] S. Rochimah, R. N. E. Anggraini, and H. Rahman, “Rancang
Bangun Sistem Informasi Akademik Generik Pada Modul Penilaian
Menggunakan Pola Perancangan Hierarchical Model-View-
Controlle,” Institut Teknologi Sepuluh Nopember, 2015.

[23] U. L. Yuhana, R. J. Akbar, and S. A. Wijaya, “Rancang Bangun
Kerangka Kerja Sistem Informasi Akademik Modular Berbasis Web
Dengan Pola Arsitektur Hierarchical Model-View-Controller,”
Institut Teknologi Sepuluh Nopember, 2016.

	I. Introduction0F
	II. Literature Review
	A. Software Design
	B. Design Patterns
	Figure 1. Class diagram of the Façade pattern

	C. Software Quality
	D. Refactoring

	III. METHODOLOGY
	Figure 2. Design of Grading Module Architecture.
	E. Performance Efficiency Measure Parameters
	𝑀𝑎𝑖𝑛 𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒 𝑇𝑖𝑚𝑒=,𝑖=1𝑡𝑜𝑛-,,,𝐴-𝑖..-𝑛.. (1)
	𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒 𝑇𝑖𝑚𝑒 𝐶𝑜𝑛𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒=𝐴/𝐵 (2)
	𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 𝐶𝑜𝑛𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒=,,,𝑖−1 𝑡𝑜 𝑛-,,,,𝐵-𝑖.-,𝐴-𝑖...-𝑛...-𝐶. (13)
	𝑇𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛 𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔=,,,,𝐴-𝑖.-𝐵..-𝐶. (4)
	𝑇𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛 𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝐶𝑜𝑛𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒=,𝐴-𝐵. (5)

	F. Test Environment Specification

	IV. Experimentation and Result
	Figure 3. Package Diagram of Grading Module
	Figure 4. Controller Nilai class diagram interconnection with other classes
	Figure 5. Class diagram of communication and dependencies between classes
	Figure 6. Class diagram of the Façade pattern implement in grading module
	Table 1.
	Mean response time
	Table 2.
	Response time conformance
	Table 3.
	Throughput conformance
	Table 4.
	Transaction processing error rate
	Table 5.
	Transaction processing error rate conformance

	V. Conclusion

