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 AbstractModified Poschl Teller potential is a potential model used to describe behavior of inter moleculer forces. The 

spectrum energy and wave function of the particle affection in modified Poschl Teller potential are obtained by solving the 

Schrodinger equation, using hypergeometric equation and supersymmetric method. The energy spectrum and wave 

function are obtained from hypergeometric equation, which is constructed from Schrodinger equation through variable 

substitution. The energy spectrum and wave function are obtained using raising and lowering supersymmetric operator and 

applying shape invariance property. The solution of those equation of the energy spectrum and wave function obtained 

using these two methods are exact solution. Further, the wave function and density probability are visualized using 

computer simulation. 
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AbstrakPotensial Poschl Teller termodifikasi adalah model potensial yang digunakan untuk menerangkan fenomena gaya 

inter moleculer. Spektrum energi dan fungsi gelombang partikel yang dipengaruhi oleh potensial Poschl Teller termodifikasi 

dapat diperoleh dari penyelesaian persamaan Schrodinger, dengan menggunakan persamaan hypergeometry dan metode 

supersimetry. Spektrum energi dan fungsi gelombang diperoleh dari persamaan hypergeometry, yang mana persamaan tersebut 

didapat dari persamaan Schrodinger melalui subtitusi variabel. Spektrum energi dan fungsi gelombang juga bisa diperoleh 

dengan menggunakan raising dan lowering operator supersymmetry serta penerapan sifat-sifat shape invariance. Solusi dari 

persamaan spektrum energi dan fungsi gelombang yang diperoleh dengan menggunakan dua metode ini adalah penyelesaian 

eksak. Selanjutnya, fungsi gelombang dan rapat probabilitasnya divisualisasikan menggunakan simulasi komputer. 

 

Kata kuncispektrum energi, fungsi gelombang, Poschl Teller Termodifikasi, hipergeometri, supersimetri 

 

I. INTRODUCTION
3 

chrodinger equation is the heart of quantum 

mechanics [1-2]. Energy spectrum and wave 
function of a particle system are obtained by solving the 

schrodinger equation [2] of the particle system directly. 

Schrodinger equation of potential systems can be solved 

exactly in which it has an important role in quantum 

mechanics. Energy spectrum and wave function are used 

to describe the behavior of subatomic particles. Energy 

spektum and wave function can be obtained from both 

the Schrodinger equation solution directly and indirectly. 

Direct solution is solved by reducing the differential 

equation of special functions [2-3] such as Hermit, 

Legendre, Besel, Laguerre and hypergeometry. However 

indirect solution can be solved using a supersimetry 
operators, equation WKB and SWKB approach. 

However, among of these functions are only differensial 

hypergeometry equation and supersimmetry approach 

that have the general form.  

The hypergeometric  equation can be used to solve 

exactly the Schrodinger equation for class of shape 

invariance potential and non shape invariance potential 

such as Wood-Saxon [4] and Hulthen potentials. The 
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general form of second order differential equation of 

hypergeometric function is written as 
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The general solution of the second-order differential 

equation of hypergeometric  [3] expressed in  the Equation 

1 in example : 
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where,  
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The energy spectrum system can be obtained by using a 

condition that is : 

na   or nb       (5) 

It causes the hypergeometric series terminate so the finite 

solution of n-degree polynomial equation is obtained. 

By using both Equations 1 and 2 it can be obtained 

the energy spectrum and wave function of modified 

Poschl Teller potential. The second order differential 

equation of hypergeometric function will be used to solve 

Schrodinger equation of modified Poschl Teller potential 

which is has effective potential is [4], 
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The schrodinger equation for a modified Poschl Teller 

potential is expressed as,  

S 
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Equation 7 is reduced to the second order differential of 

hypergeometric function by variable substitution as 

follows [5]. 

zx 2cosh      (8) 
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Further, by using Equation 8) we obtain, 
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We further the equations 8 and 9 into Equation 7 we 

obtained 
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Equation 10 can be changed into the second order 

differential hypergeometric function by using 

approximation solution around regular singular points at 

z = 0 and z = 1 of Equation 10. The approximate solution 

at z = 0 is  
az~                    (11) 
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The approximate solution at z = 1 is  
 )1(~ z                  (12) 

It has been set that ρ = 2β 

By combining these two solutions, we obtain the wave 

function parameter of modified Poschl Teller potential, 
namely:           
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We further solution Equation 13 into Equation 10 we 

obtain the type hypergeometric Equation 16, By 

comparing Equation 16 and Equation 1 we  obtain the 

energy spectrum and wave function, in example: 
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Supersymmetry (SUSY) is the symmetry retained 

under the transformation that interchange bosons and 

fermions. However it is a general belief that there are 

two distinet classes of particles which are not 

interchangeable, in example bosons and fermions. 

Supersymmetry however assumes that there are 

environments where bosons and fermions are 

indistinguishable. However, no evidences have been 

reported so far for the existence of the particles predicted 

by supersymmetric schemes [6] that means bosons could 

not interchange with fermions. Since bosons and 
fermions are clearly distinguishable in most of physical 

phenomena occurring around us. It is evident that even if 

SUSY is physically meaningful symmetry but it is 

definitely broken. According to Witten [6] SUSY 

quantum mechanics as a model of one dimensional field 

theory to understand how SUSY has been broken in 

nature. The key players in SUSY quantum mechanics 

Hamiltonian [7] is defined as SUSY quantum mechanics 

are supersymmetric charge operators in term of which 

the SUSY Hamiltonian may be expressed. 

Although SUSY quantum mechanics it was introduced 

as a model for understanding SUSY breaking [8] it has 
started to walk alone independent of the original aim as a 

useful tool in non relativistic quantum mechanics. The 

application of SUSY to nonrelativistic quantum 

mechanics has result in better understanding of exactly 

solvable potential [8]. In particular, the notion of SUSY 

shape invariance provides a very elegant and cynthic 

way of presenting the operational method. The SUSY 

Hamiltonian is presented as 
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Hss is Hamiltonian supersymmetry. 
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Where H+ and H- as the bosonic and fermionic 

supersymmtery partners in the Hamiltonian H±. In the 

standard equation notation, the SUSY Hamiltonian can 

be written as,  
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V+ and V- are the supersymmtery partners to each other, 

and   is the superpotential. A+ is a raising operator and 

A is a lowering operator. 
The energy spectrum and wave function of one 

dimentional Hamiltonian can be derived algebraically 

using the notation of shape invariance and its relation to 

the factorization method. The SUSY Hamiltonian can be 

written as, 
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It is always possible to perform a factorization of 

Hamiltonian as 
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In which   is factorization energy or ground state energy. 

From Equation 21, 24, 27 and 28 we have: 
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 is determined using Equation 29. By substituting 

Equation 21 into Equation 29 we set the superpotential 

of modified Poschl Teller 

Superpotential is applied to determine the 

supersymmetric operator. H+ and H- in 21 and 22 to 

determine the wave function. Equation 29 suggests that  
has the form as, 
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The first derivation of the superpotential is 
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The wave function we use:  
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The exacted state wave function is obtained by using the 

property of raising operator i,e.i.,  
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The energy spectrum is obtained by defining the notion 

of shape invariance potential in example:  
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To describe the behavior of particle then the wave 

function and probability density are visualized by 

computer simulation. The aim of the study energy 

spectrum and wave function using hypergeometry and 

supersymmetry method. The wave function and density 

probability are visualized using computer simulation. 

 We set up the values of a0 = ρ, a0 = λ, a1 = ρ+1,  a1 = λ-1, 
Equation 18 and 19 is included on Equation 28, it is 

obtained the energy  energy spectrum of modified Poschl 

Teller potential in Equation 37. 

The wave function of modified Poschl Teller potential 

used to describe the graph. The aim of this study is firsty 

to determine the energy and the modified Poschl Teller 

potential. Secondy is to visualize graph of the wave 

function and the probability density using computer 

simulation. This study gives some advantages to the 

writer concerning with the wave function of modified 

Poschl Teller simulation and probability density. 
Simulation can facilitate in analyzing the probability of a 

particle in a certain position. 

II. METHOD 

Instrument used in this study is Software Delphi 7.0. The 

equations used are as follows [9-10]. 

A. For Hypergeometric Equation Method. 

 The wave function is obtained using Equation 13 and 

(14a) 
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B. For SUSY Operator Method 

1. The wave function is obtained using Equations 25, 

26, 32, and 35. 
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a0 = ρ, a0 = λ, a1 = ρ+1,  a1 = λ-1, then 
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 Figure 1 shows that the flowchart of wave function and 

probability density. The wave function and probability 

density are visualized using computer simulation with λ 

= 2 and ρ = -2.   

III.     RESULTS AND DISCUSSION 

The energy spectrum and wave function of modified 
Poschl Teller potential have been obtained by setting 

hypergeometric equation and supersymmetric operator 

when they are the same. Hypergeometric equation and 

supersymmetric method are usual algebraic method. So it 

is easier in their solution. The wave function is obtained 

using hypergeometric equation is derived from the 

Equation 13-15 and 16 in example: 
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The ground state wave function is obtained using 

Equation 39 for     where 2F1=1. The state wave 

function of modified poschl Teller potential obtained 

using hypergeometric equation and SUSY operator is the 

same as depicted in Equation 41 and 42. 
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For SUSY operator method, the wave function 

obtained by Equation 34 and 35. By using Equation 34 

we get the grounds state of wave function. 
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Figure 2 shows the graph of ground state wave 

function of modified Poschl Teller potential as function 

of angular potition x, x in degree, as       in femto 

meter. Physically, this wave function has a meaning that 

at a ground state, it can be represented by a normalized 

wave function. The picture shows that the bigger 
angluler potition (x), the wave function produced will 

direct to unlimited. The graph form shows the cosines 

hyperbolic inverse function is multiplied by the sinus 

hyperbolic inverse function. For angular position more 

than  150 degree wave function of Modified Poschl 

Teller potential is constant. The equation used in the 

simulation is 0 = cn(cosh x)-λ (sinh x)ρ. 

Figure 3 shows the graph of ground state wave 

function of modified Poschl Teller potential as function 

of angular potition x, x in degree, as       in femto 

meter. Physically, this wave function has a meaning that 

at a ground state, it can be represented by a normalized 

wave function. The picture shows that the bigger 
angluler potition (x), the wave function produced will 

direct to unlimited. The graph form shows the cosines 

hyperbolic inverse function is multiplied by the sinus 

hyperbolic inverse function. For angular position more 

than 150 degree wave function of Modified Poschl 
Teller potential is constant. The equation used in the 

simulation is 0 = cn(cosh x)-λ (sinh x)ρ. The wave 
function are visualized using computer simulation with λ 

= 2 and ρ = -2. 

Figure 4 and 5 shows the graph of probability density 

of ground state wave functionas a function of angular 

potition x,     
  in fm and x in degree. Probability 

density is the representation of the square of absolute of 

the wave function. Probability density itself has a 

physical meaning as the opportunity of the existence of a 

particle in a certain area. The maximum value is on the 

top of the graph point. The cosinus hyperbolic inverse 
and sinus hyperbolic function is the main functions in the 

probability density graph. For the angular position more 

than 150 degree probability density of Modified Poschl 
Teller potential is constant The equation used by 

simulation is in the Figure 4 and 5. 
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The modified Poschl Teller potential energy spectrum 

obtained by supersymmetric operator method is: 
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where, a0 = ρ, a0 = λ, a1 = ρ+1,  a1 = λ-1 
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For SUSY operator method, the energy spectrum 

obtained by Equation 44, 45 and 46. By using Equation 

36 and 37 we solved the energy spectrum of Modified 
Poschl Teller Potential. 

2
2

)2(
2

n
m

h
En                 (47) 

 Table 1 shows that the energy spectrum of Modified 

Poschl Teller Potential and probability density. The 

energy spectrum are visualized using computer 

simulation. If the modified Poschl Teller potential energy 

at a ground state is zero, it can be analyzed that 

supersymmetry is in an undisturbed state 

 Table 2 Shows that the energy spectrum of Modified 
Poschl Teller Potential and probability density. The 

energy spectrum are visualized using computer 

simulation with λ = 2, ρ=- 2 

IV.    CONCLUSION 

 The spectrum energy and wave function of modified 

Poschl Teller potential have been obtained using 

hypergeometric equation and supersymmetric operator 
method. The two methods provided the same result both 

in spectrum energy and at least ground state wave 

function. The supersymmetric operator method produce 

the spectrum energy and wave function easily without 

solving Schrodinger equation directly. 

 

 
Figure 1. Flowchart of Modified Poschl Teller Potential Programming. 

 

 

 

 
Figure 2. Ground state wave function modified Poschl Teller Potential as 

a function of angular position x in degree and (wave function) ψ0  in fm 

with λ = 2 and ρ = 2 

 

 

Figure 3. Ground State Wave Function Modified Poschl Teller Potential 

as a function of angular position x in degree and (wave function) ψ0  in 

fm with λ = 2 and ρ = 2 
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Figure 4. Probability density of ground state of wave function as a 

function of angular position x in degree and (probability density) | ψ0 |
2
 in 

fm with λ = 2 and ρ = 2 

 

 
Figure 5. Probability density of ground state of wave function as a 

function of angular position x in degree and (probability density | ψ0 |
2
 in 

fm with λ = 2 and ρ = 2 

 
 

TABLE 1.  

THE ENERGY SPECTRUM OF MODIFIED POSCHL TELLER POTENTIAL WITH E 
  

  
  , Λ = 2 AND Ρ = 2 

n λ ρ En 

0 2 -2 16 

1 2 -2 4 

2 2 -2 0 

 

 
TABLE 2.   

THE ENERGY SPECTRUM OF MODIFIED POSCHL TELLER POTENTIAL. WE USE 
  

  
    

n λ ρ En 

0 2 2 0 

1 2 2 -4 

2 2 2 -16 

3 2 2 -36 

0 -2 2 0 

1 -2 2 --4 

2 -2 2 -16 

3 -2 2 -36 
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