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AbstractDeveloping a rainfall-runoff model sufficient to 
flood prediction hourly rainfall data. Lack of automatic 
rain gauge for high resolution rainfall in catchment area 
can be an obstacle for the modeling. Otherwise, the manual 
rain gauges may spread on all of catchments areas, pro-
viding daily rainfall. Daily rainfall disaggregation to hourly 
rainfall is an innovation to get higher temporal resolution 
of the rainfall. This paper attempts to evaluate the imple-
mentation of rainfall disaggregation model in Sampean 
Catchments Area using Heytos. The proposed parameter 
optimation use Moment Performance model that tested by 
calibrating it with available hourly data. The results of mo-
del indicated that only data within five months had good 
performance. The estimation result showed that relative 
error total of January, February, August, November, and 
December was less than one. In case of March, April, May, 
June, July, September, and October the model could not 
result respectively to generate model.
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I. INTRODUCTION

he high resolution rainfall is a necessary input for 
flood simulation in hydrology modeling. There are 

two important reasons to support the use of it i.e. to anti-
cipate the flood occurrence and to minimize the model 
uncertainty. First, the difficulty to make the rainfall run-
off model is caused by the lack of data hourly rainfall. In 
fact, it is showed that the high resolution rainfall data is 
limited. As described in Sampean catchment area 
(1057km2), it only has three automatic rain gauges 
(hourly rainfall), but they are 17 manual rain gauges 
(daily rainfall) spreading over in the catchment area 
(Fig.1). Therefore, availability of hourly rainfall data do 
not represent the hourly rainfall distributed in the catch-
ments area. Second, supporting the first reason for the 
need data on high resolution rainfall, based on Carpenter 
and Georgakakos’ (2006) studies, the rainfall modeling 
employing high resolution rainfall data will produce 
smaller error of model. Considering those two reasons, a 
generate model for hourly rainfall is needed for facing 
the problem in Sampean catchments area.

Some research developments to generate hourly 
rainfall have been done in many countries; they are 
popularly called temporal rainfall disaggregation. On of 
and Arrnbjerg-Nielsen (2009) have constructed this kind 
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of model. This model was based on random parameter of 
Bartlett-Lewis rectangular pulse rainfall combined with 
multi-scale disaggregation applied to an urban area in 
Denmark. The result of performance model increased 2 -
15% to extreme rainfall condition. Fytilas (2002) has 
applied the disaggregation rainfall model in Basin of 
Tiber River in Italy. Disaggregation was performed using 
hourly data of three rain gauges with Heytos model. This 
model had a good reproduction of the actual hyetographs 
and the performance which were much better for the 
months characterized by a wet regime. Koutsoyiannis 
and Onof (2001) have developed rainfall disaggregation 
using adjusting procedures on a Poisson cluster model 
and examined for hourly data in UK and US. The results 
indicated good performance methodology.

Fig. 1. Location of selection station in Sampean catchments area used 
as case studies

Disaggregation rainfall model is applied successfully in 
several countries; nevertheless, in Indonesia this model is 
ever implemented. Considering the less of the hourly 
rainfall data to flood design in Indonesia, this model is 
necessary to be implemented in Indonesia.

II. THEORY

A. Disagregation Rainfall Model

Disaggregation is an important step in the process to 
obtain lower-level time scale data from higher time 
scales, i.e. from annually to monthly, monthly to daily or 
daily to hourly.

The disaggregation is performed on the most promising 
sets of parameters and is done as a check on the dis-
aggregation procedure. Disaggregation is resulted from a 
simulation. The statistical generated model may fluctuate 
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depending on the parameters used, as well as the random 
seed utilized in the simulation. 

Therefore, some variations from the historical and 
modeled statistics are to be expected. Using the simula-
tion also allows us to obtain statistics from the time se-
ries that are not explicitly modeled. Higher order statis-
tics, such as the skewness, can be calculated from the si-
mulated disaggregated time series, and this can be com-
pared with the historical data to observe the goodness of 
it. 

There are some stochastic disaggregation rainfall 
models i.e. BLRPM and Neyman–Scott rectangular pulse 
(NSRPM), that have shown a result for rainfall characte-
ristic model of 1-24 hour range (Smithers. et al., 2002). 
Bartlett-Lewis Rectangular Pulse Models (BLRPM) is 
able to reproduce important feature of rainfall field from 
the hourly to the daily scale or above, so it was chosen in 
this research.

B. Bartlett-Lewis Rectangular Pulse Models (BLRPM)

The Bartlett-Lewis Rectangular Pulse Model (BLRPM)
is a continuous time rainfall model for a fixed point in 
space. The BLRPM is a model for point rainfall time 
series modeling rainfall at a point, as opposed to spatial 
General Circulation models which model rainfall over an 
entire area. The model incorporates Poisson cluster pro-
cesses. This model has been used with considerable suc-
cess for a wide variety of climates, including the U.K. [1, 
2]. The model had proven useful for reproducing the sta-
tistics of both daily and sub-daily time scales (Rodri-
guez-Iturbe et al., 1987, 1988. Demetris et al. (2001) 
succeeded using this model that was formed in Heytos 
computer program.

The description of model phenomena for BLRPM is 
storm origins ti following a Poisson process (rate λ), cell 
origins tij arriving in Poisson process (rate β) started each 
ti, cell arrivals terminate after a time xi with distribution 
exponential (parameter γ) [11 , 12]. Each cell has 
duration wij exponentially distributed (parameter η). To 
search a uniform intensity Pij with a specified distribu-
tion as typically assumed exponential (parameter 1/µx) or 
other alternative 2-parameter gamma with mean µx and 
expected mean square error (EMS) of cell intensity µx

2. 
Mean of number cells per storm is:µ = 1 + (1)

Where the equation of k is:

= 2 µµ + µµ− 1 [ − 1]
= µµ− 1 [ − 1]

Parameters used in the temporal model are as follows 
(Wheater, et al, 2005): (1) Bartlett Lewis model uses 2-
parameter cell intensity distribution. (2). Neyman–Scott 
model employs 2-parameter cell intensity distribution 
and Poisson number of rainfall cell. (3). Random para-
meter Bartlett Lewis model utilizes 1-parameter cell in-
tensity distribution. (4). Random parameter Bartlett 
Lewis model exploits 2-parameter cell intensity dis-
tribution. (5) Bartlett Lewis model uses 2-cell types, each 
with 2-parameter intensity distribution. From the compa-
rison of those model alternatives, according to Wheater 
(2005), the third model is the most applicable. Wong 
(2000) had examined the use of the four and six 

parameters. Using six parameters gives better results 
than four parameters.

Equation used for statistical model within six 
parameters by Demetris (2001) can be calculated as 
follows (equation 2-5):
mean : = µµ µ = + (2)

variance :

=ν  − − ν

( )( )  [ −
/ ] + ( )( ) [ ( + ) − ( +)

autocovariance :  ( −) = ( )( ){ ( − 1) +
) + ( + 1) + ) − 2( +) } +
( )( ){2( +) − [ ( − 1) + ] −

[ ( + 1) + ]
Pr(zero-rain)=exp(-λT-f1+ f2+ f3)         (5)

= ( ) (1 + + − ( + )( + 2 ) +
[ ( )( )]

= ( )( ) (1 − − + + +
= ( )( ) ( ) (1 −     − +
+ )

C. Heytos 

Heytos is a computer programme that is used to 
perform the rainfall disaggregation. This piece of soft-
ware was produced by Koutsoyiannis and Onof (2001). 
Heytos used the proportionate adjusting procedure. The 
input is required in Heytos i.e. the six-parameters from 
the BLRPM and the actual historical rainfall time series. 

The current software version does not support 
estimation of the Bartlett-Lewismodel. The result of 
running model can be compared with the disaggregated 
simulation and historical statistics. The output of model 
gives the fully calculated statistics of the hourly time 
series as well as the simulated time series obtained. The 
result of disaggregation from Heytos could be evaluated 
statistically by graph. Graph properties in Heytos consist 
of autocorrelation, marginal statistic, probabilities of dry 
spells, hydrograph, and storm. Heytos is essentially a 
simulation, and therefore, it is expected that the final 
results will resemble the modeled statistics since the two 
processes are based on the same set of BLRPM 
parameters.

D. Parameter Estimation 

There are several methods of fitting the BLRPM model 
to the historical statistics i.e. Maximum Likelihood, 
Spectral, and Moments. The Maximum Likelihood me-
thod, although very commonly used in other models for 
parameter fitting, is unwieldy in this case, as the like-
lihood function is difficult to obtain [11]. The Spectral 
Method incorporating Fourier analysis can also be used. 
However, the Method of Moments is a better option, as it 
is significantly simpler and more practical to use. Also, 
the method of moments has been found to produce para-
meters that are significantly better than using spectral 
methods [11]. The method of moments is set out simply 
as follows. More complex mathematical formulations of 

(3)

(4)
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this method are set out in Rodriguez-Iturbe et al. (1988)
and Cryer (1986).

Fig. 2. Rainfall series in 2005-2008

The set of parameters to be fitted was given by the set 
Θ, where = {λ, μx, κ, φ, α, ν} for the six parameter mo-
del. Let k be the number of parameters to be fitted, either 
six. Next, p statistics was chosen from the historical data 
to fit the parameters, and these were denoted by the set 
T, where T = {t1, t2, t3… tp}. These could include the 
mean, variance, etc. of various time scales. The functions 
from which the various statistics could be calculated 
from the parameter values in the BLRPM (Equations 2-
5) denoted by the set S, where S = {s1(Θ), s2(Θ), s3(Θ), 
…… sp(Θ)}.
If k = p, then the method of moments requires: 
S = T ∀ p (9)

This set of p equations was then solved for Θ, obtain-
ing the parameter set. However, the functions that were 
within the set S were often highly non-linear; therefore, it 
was difficult to obtain the Θ explicitly. In order to make 
it easier in optimization of an error-residual form, nume-
rical methods were used. The objective function of opti-
mization was to find a set of parameters Θ where the ex-
pression in (6) is equal to zero, such that si(Θ)=ti for all 
i={1, 2, 3, …..p}.Min ∑ ( ( ) − ) (10)
Where wi was the weight attributed to that particular sta-
tistic. These weights are usually set to unity in the 
following optimization schemes. To optimize error value 
is used The SOLVER function within Microsoft Excel 
2007.

III. METHOD

Method used in the research was identifying the 
parameter model the rainfall modeling using the synopsis 
of Bartlett-Lewis. The proposing of this modeling would 
be coupled with Heytos approaches to model the tempo-
ral disaggregation rainfall data. 

Steps to the research are:
1. searching for the relation between daily rainfall and 

total hours in a day,
2. searching the characteristic hourly rainfall to 1 hour, 

24 hours and 48 hours,
3. setting the model parameter,
4. entering loading and compiling of the rainfall 

characteristic data,
5. loading and generating initialized,
6. optimizing parameter model,
7. running Heytos model, and

8. evaluating model performance output.
This research was conducted in the Sentral rainfall sta-

tion of Sampean Watershed in Bondowoso Regency.

Fig. 3. Comparison of rainfall data between daily and total hourly in 
2004-2008

This station has ARR station and manual rainfall sta-
tion. Hourly rainfall data used were those of the periods 
2005-2008 (total number of data was 2952).

IV. RESEARCH RESULT

The characteristics of climate condition in Sentral rain 
gauge at Sampean Catchments area in 1991-2008 
showed that wet months for this region were considered 
to start on October and summer months May as shown 
on Fig. 2. The mean annual rainfall depth for Sentral 
rainfall station was about 1503 mm and the mean 
monthly comparison of rainfall data between daily and 
total hourly (accumulated between in 2005-2008) shows 
a good agreement, so the daily data ready to make 
rainfall model.

Value comparison of mean, variance, auto correlation, 
and proportion dry between the model and historic 
statistics from January until December can be shown in 
Table 1 and Table 2. Evaluating for Table 1 could be ex-
plained as follow. In general, comparison between mean 
and variance values show that means value is lower than 
that of variance value. This means that distribution of 
hourly rainfall data is skewness. The values of mean 
have a good performance which is less difference of si-
mulation and history value. However, the comparison of 
simulation and history value from variance values is not 
as good as mean value. The differences of simulation and 
history value from variance, there are over and under es-
timate that causes of bias parameter. 

In Table 2, there are negative value and bigger value 
differences between historical and simulated value of au-
tocovariance of 24 hr and 48 hr at March, April, Mei, Ju-
ne, July, and October. If auto covariance values are nega-
tive, sum of weighted squared errors are resulted a big-
ger. Variances and autocovariance of 1 hr, 12 hr, and 24 
hr show the worst results, with significant variation in 
the variances and autocovariance. This could indicate 
that the characteristics of the 24 and 48-hr data were not 
preserved when aggregation occurred. Proportion dry of 
1, 24, and 48 hr shows that differences found in values
between historical and simulated were less if compared 
with the value of variance and auto correlation. The va-
lues of overestimate and underestimate are expressed in 
mean, variance, auto covariance, and proportion dry, so 
it makes difficulties to obtain optimum value in estima-
tion parameter.
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TABLE 1.
HISTORICAL AND MODELED STATISTICS (MEAN AND VARIANCE) FOR

JANUARY-DECEMBER

Month

time Mean Variance

hour
mm mm

Historical 
Value

Simulated 
Value

Historical 
Value

Simulated 
Value

Jan

1 0.33 0.34 4.50 2.42

24 8.02 8.07 276.07 281.89

48 15.90 16.15 771.11 739.06

Feb

1 0.43 0.43 5.35 3.03

24 10.24 10.36 317.63 312.54

48 20.48 20.72 846.21 698.84

Mar

1 0.42 0.42 5.70 5.67

24 10.06 10.09 255.70 258.21

48 20.12 20.17 582.23 523.04

April 1 0.21 0.21 2.03 2.71

24 5.06 4.98 111.49 67.37

48 9.70 9.97 200.25 134.85

May 1 0.02 0.02 0.16 0.19

24 0.54 0.54 5.62 5.43

48 1.08 1.08 14.99 10.90

June 1 0.05 0.03 0.62 0.81

24 1.25 0.72 28.06 20.32

48 1.06 1.44 63.79 40.67

July 1 0.01 0.01 0.06 0.07

24 0.20 0.20 2.48 2.01

48 0.41 0.41 4.92 4.04

Augst 1 0.01 0.01 0.05 0.04

24 0.25 0.25 2.81 3.55

48 0.50 0.50 8.27 7.38

Sept 1 0.01 0.01 0.06 0.05

24 0.30 0.30 2.33 3.08

48 0.60 0.60 7.15 7.32

Oct 1 0.18 0.18 2.75 3.57

24 4.28 4.28 142.61 94.19

48 8.56 8.56 258.97 188.74

Nov 1 0.08 0.08 0.80 0.44

24 2.00 1.99 28.50 24.94
48 3.96 3.97 58.72 57.05

Dec 1 0.35 0.35 4.08 2.33
24 8.35 8.35 190.92 212.47
48 16.71 16.70 448.01 496.38

The parameters in Table 3 from January until Decem-
ber were resulted from optimization from histories and 
modeled simulation which were obtained from the low-
est local optimum. The parameters were inputs of Heytos 
program that used to disaggregate the best sets of para-
meters for each month. Constraints of each parameter for 
lower level were 1E-07 and those of upper level were 99 
in Table 4. The parameter value of each month in Table
3 respectively. Result of estimating parameter shows the 
resulting sum of weighted squared errors each month 
from January until December in Table 5 respectively.
The better sum of weighted squared errors was in Janua-
ry, February, August, November, and December, whose 
value is less than one. These months have a good perfor-
mance of the model implementation because the rainfall 
data distributions tend to gamma structure (in form of
gamma).

TABLE 2.
HISTORICAL AND MODELED STATISTICS (AUTOCOVARIANCE AND

PROPORTION DRY) FOR JANUARY-DECEMBER

Month

time Lag 1 autocovariance Proportion dry

hour
mm mm

Historical 
Value 

Simulated 
Value 

Historical 
Value 

Simulated 
Value

Jan

1 1.51 1.68 0.93 0.88

24 90.29 87.64 0.54 0.52

48 51.73 324.52 0.39 0.46

Feb

1 1.86 2.13 0.89 0.85

24 37.33 36.88 0.27 0.29

48 86.55 87.15 0.13 0.13

Mar

1 2.06 2.18 0.90 0.81

24 15.08 3.31 0.34 0.38

48 -24.36 3.31 0.18 0.17

April 1 0.05 0.05 0.95 0.00

24 -6.85 0.05 0.53 0.00

48 24.43 0.05 0.40 0.00

May 1 0.02 0.02 0.99 0.00

24 0.59 0.02 0.90 0.00

48 -1.33 0.02 0.84 0.00

June 1 0.27 0.02 0.99 0.92

24 -0.11 0.02 0.86 0.87

48 0.14 0.02 0.78 0.82

July 1 0.02 0.01 1.00 0.00

24 -0.04 0.01 0.98 0.00

48 -0.17 0.01 0.95 0.00

Augst 1 0.03 0.02 1.00 1.00

24 0.62 0.14 0.94 0.96

48 0.13 0.14 0.9 0.93

Sept 1 0.02 0.01 1.00 0.00

24 0.56 0.58 0.95 0.00

48 1.58 1.31 0.93 0.00
Oct 1 1.45 0.19 0.97 0.00

24 -1.15 0.19 0.73 0.00

48 51.34 0.19 0.56 0.00

Nov 1 0.15 0.18 0.97 0.95

24 3.16 3.58 0.66 0.6

48 9.00 8.59 0.53 0.44

Dec 1 1.55 1.41 0.91 0.87

24 36.07 35.72 0.38 0.38

48 58.59 59.05 0.23 0.21

For other months, the value of sum of weighted squar-
ed errors between the calculated form of statistics (si(Θ)) 
and the actual historical data (ti) for the rainfall disaggre-
gation model in Sampean catchments area indicate slight-
ly less than the statistic of less interest, because the dis-
tribution tend to normal. In general, distribution of rain-
fall data on tropical area varies very much, so Heytos 
program cannot fully be applied for tropical area. In sub 
tropical area, based on previous research, (Koutsoyiannis 
and Onof (2001)) model Heytos program has been suc-
cesfully applied since the condition of rainfall distribu-
tion in the area tends to have Gamma or exponential dis-
tribution which is in accordance with the distribution 
used in Heytos program. 

Results from running Heytos show that the disaggre-
gation for January and December followed very closely 
the results from using the modeled statistics (Fig.4). How-
ever, there seems to be small improvement in the estima-
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tion of the statistics. The simulated statistics tended to lie 
closer to the modeled statistics rather than the historical 
statistics.

TABLE 3.
BLRPM PARAMETERS FOR JANUARY-DECEMBER

Parameter λ κ = β/η φ = γ/η α ν μX

Unit d-1 (-) (-) (-) d mm d-1

Jan 0.01 0.10 0.00 51.70 3.36 99.00

Feb 0.59 0.03 0.02 99.00 7.19 99.00

Mar 0.80 8.82 0.26 99.00 0.62 57.40

Apr 0.76 99.00 1.88 84.06 0.10 99.00

May 0.13 99.00 18.08 91.7 0.61 99.00

Jun 0.06 99.00 0.02 10.08 0.00 99.00

Jul 0.05 99.00 20.64 91.93 0.67 99.00

Aug 0.03 0.89 0.04 99.00 0.29 99.00

Sep 0.64 63.95 16.41 1.83 0.00 99.00

Oct 0.4 99.00 3.49 99.00 0.36 99.00

Nov 0.26 0.03 0.01 99.00 2.57 99.00

Dec 0.60 0.11 0.05 99.00 4.57 99.00

In summary, disaggregation gives a close fit with the 
modeled and historical data, hence if a good set of para-
meters can be found from the 24-hr or 48-hr data, the 1-
hr statistics can be estimated by disaggregation to high 
accuracy. An hourly time series can therefore be de-
rived from daily data. Other statistics, such as skewness 
and lag-n autocorrelations also can be estimated accura-
tely, providing an excellent set of used BLRPM para-
meters. Result of comparison between original and dis-
aggregation data for December show that error value 
from Mean Absolute Error (MAE) is 0.516 respective-
ly. This error value is caused by inaccuracy on disagg-
regation of hourly period. Otherwise, results shown in 
the Fig. 5 in July that the simulated statistics show less 
accurate estimates of the historical data for both the dry 
and the wet period statistics. The autocovariance for lag 
periods of more than one are not also closely estimated. 
In particular, the skewness is also not close to estima-
tion, showing rather inaccurate results, even though this 
statistic was not explicitly modeled in the BLRPM.

Error value that is produced from MAE evaluation is 
0.022. This value of July much lower small than Decem-
ber, otherwise the parameter performance of July better 
than December. That is caused by dry season in July and 
rainy season in December.

V. CONCLUSION

Model Heytos is appropriate to disaggregate rainfall in 
sub-tropic region which has gamma-formed rainfall dis-
tribution.

The result of temporal disaggregation model Heytos 
for tropical region has a good performance for model pa-
rameter to generate the rainfall characteristic data which 
have gamma distribution (such as for January, February, 
August, November, and December).

Otherwise for the other months for the region, the tem-
poral aggregation model has poor performance, so it may 
a method to improve statistical model such as on estima-

te parameter optimation, data clustering or using other ti-
me series model. 

TABLE 4.
CONSTRAINTS BLRPM PARAMETERS

Parameter λ κ = β/η φ = γ/η α ν μX

Unit d-1 (-) (-) (-) d mm d-1
Lower 

constraint
1.00E-07 1.00E-07 1.00E-07 1.00E-06 1.00E-07 1.00E-07

Upper 
constraint

99 99 99 99 99 99

TABLE 5
SUM OF WEIGHTED SQUARED ERRORS EACH MONTH

Month
Sum of weighted 

squared errors
January 0.529

February 0.503

March 1.392

April 2.323

May 2.252

June 2.870

July 2.461

August 0.837

September 1.801

October 2.525

November 0.565

December 0.475
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Fig. 4. Results from Heytos for disaggregation with BLRPM 
parameters optimized for December

Fig. 5. Results from Heytos for disaggregation with BLRPM 
parameters optimized for July
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