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Relationship between Static Stiffness and Modal
Stiffness of Structures

Endah Wahyuriiand Tianjian Ji

Abstract/7 This paper derivestherelationship between the
static stiffness and modal stiffness of a structure. The static
stiffness and modal stiffness are two important concepts in
both structural statics and dynamics. Although both
stiffnesses indicate the capacity of the structure to resist
deformation, they are obtained using different methods.
The former is calculated by solving the equations of
equilibrium and the latter can be obtained by solving an
eigenvalue problem. A mathematical relationship between
the two stiffnesses was derived based on the definitions of
two stiffnesses. This relationship was applicable to a linear
system and the derivation of relationships does not reveal
any other limitations. Verification of the relationship was
given by using several examples. The relationship between
the two stiffnesses demonstrated that the modal stiffness of
the fundamental mode was always larger than the static
stiffness of a structure if the critical point and the maxi-
mum mode value are at the same node, i.e. for simply
supported beam and seven storeys building are 1.5% and
15% respectively. The relationship could be applied into
real structures, where the greater the number of modes
being considered, the smaller the difference between the
modal stiffnessand the static stiffness of a structure.

Keywords/7 static stiffness, modal stiffness, relationship of
stiffnesses, frequency, static, dynamic

|. INTRODUCTION

Il. THEORIES

The static stiffness of a structure relates to i4 load
applied on the structure and can be uniquely défine
“Point stiffness is the inverse of the displacemeanthe
load direction on a node where a unit load is agpli
Thus the point stiffness relates to the positiord an
direction where the unit load is applied; in otkerds,
the point stiffness values at different positionsd a
directions are different. The static stiffness aftaucture
in the loading direction is the smallest value ageaifi
point stiffnesses, i.e
Ks=min {ky, ko, ..., k, ..., k} (1)
where K is the static stiffness in the load directidjis
the point stiffness at theth node andh is the number of
nodes of the model of the structure. Alternativeie
static stiffness can be expressed as the inversheof
maximum displacement induced by a unit force at the
load location and direction, i.e.

1
K—:m Y VA U P un} (2)

S
Wherey; is the displacement in the load direction on the
j th node where a unit force is applied. The locatd
the node where the maximum displacement occurs is
called the critical point. For many structures thiical
point can be easily identified, for example for arih

he stiffness of a structure is genera”y understimod zontal cantilever the critical point for a vertidahd will
be the ability of a structure to resist deformationbe at the end of the cantilever, or for a simplypsrted

Structural stiffness describes the capacity ofractire
to resist deformations induced by applied loadsa If
discrete model of a structure is considered, scfral
stiffness of a structure can be completely desdrieits
stiffness matrix. However, it may be difficult te lable
to sense how stiff a structure is from its stiffn@satrix.
In engineering practice a single value of the rstiffs of a
structure is preferred as it gives a direct inddigatof
how stiff the structure is” [6]. As the static &tiéss and
modal stiffness are defined independently and wiffe
ly, the values calculated from the two definitiomsy
differ for the same structure. However, as the vaiues
are calculated on the basis of the same structige,

rectangular plate it will be at the centre of thate and
for a plane frame supported at its base the criioat
for a horizontal load will be at the top of therfra” [5].
Consider a structure that is modeledrbyodes anan
elements. Each node consistsdoflegrees of freedom.
Therefore, the static equilibrium equation, coritagm x
d unknowns, is expressed as
(K] {U} = {P} 3
Where {U} and {P} are the displacement and load
vectors respectively. [K] is the stiffness matrikat
includes the effect of boundary conditions and is
independent of the load for linear problems. [Kjglalso
describes how stiff the structure is to resist ek

using the same stiffness matrix, there should be l@ads.

relationship between them.

Based on the definition of the static stiffnesslyoa

The objectives of this research are to establigh thunit load is applied on the critical node and ire th

relationship between the static stiffness and metit
ness of a structure and to verify this relationship a
real structure.
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concerned direction, i.e.

{P}={0,0, ...1,...,0,0

heree” is the equivalent transformation strain.
Solving Equation (3) leads to the solution of the-d

placement and the maximum displacement at theaiti

point Uy based on Equation (4). Therefore the static

stiffness of the structure, according to Equat@n is

K =1 (5)

S

u

(4)

cl
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There are a number of ways to determine the modal  Substituting Equation (10) into the static equililon
stiffness of a structure, which relates to the atiion equation (Equation (3)) and pre-multiplying{ty"
modes of the structure. Three typical methods aedly gives

described below. oIT K [ ] 2} = [ &7 (P
A. Numerical Method E)r] Kl[®]{z} =[ @] {P}

The eigenvalue problem of a structure [2] is Ko z) (ay'{P} (2.
(K] - o [M]) {®P}=0 (6) Koy 2| Hal iRl . (13)
The eigenvalue and the eigenvectors of the streictu e =
can be obtained by solving the equation. The faow K T
relationships are true _ 2] el (Pl 4.
ol Ml =) " 1 Kmiz {@} {P}=Piq@;  i=1,2 .1 (14)
. K i=j 8) where @; is the value of thé th mode at the critical
{o}f [K}{e}, ={ 0 i £] point in the loading direction.

The structural response at the critical point andhie

where®;, M; and K;; are the eigenvector, modal Mass| . direction is (from Equations (10) and (14))

and modal stiffness of theth mode respectively. Thus, ) . e

the modal stiffness of theth mode can be calculated by |, | =z¢l_ z =z¢l_ ﬁzz cl.i (15)

solving Equation (6) and then using Equation (8). CETT g K, EK

B. Experimental Method Accgrding to the definition given in equation (2),
equation (15) becomes

m,i m,i

The modal stiffness of theth mode has the following ;
relationship I TR PO PN T o Y. (16)
Km,i: (,qz Mi (9) Ks i.=1 Km,i Km,l .Km,2 Km,3 - Kmr
Where o is the natural frequency of thieth mode. Equation (16) provides the relationship between the

Among these natural frequencies the fundamentatatic stiffness and the modal stiffness of a stmec The

frequency w can be easily and accurately measured. Theelationship is applicable to any linear system trete
modal mass can be calculated by using Equation (A no other limitations given in the derivation of
where the vibratory mode can either be calculated d=quation (16). _ _ _
assumed, such as using the deformation shape of thd he physical meaning of Equation (16) is that the
structure subjected to its self-weight. deflection of a single spring with stiffness¢f is equal

to that of a series of springs with stiffness’s K)L,i/(pc.f
C. Energy Method (i =2, 3, ...,r) when a unit load is applied on the two

Then x d independent vectors ] constitute a base systems, as shown in Fig. 1.

of a n x d dimensional space. Any vector in thecepzan As (Pcu,izz Oand K,;>0 (=2, 3, ..., n), Equation (16)
be expressed as a linear combination of the basterége pecomes
[®]. Thus a Qisplacement vector [U] can be exp_rests;ed 1 @, (17)
a superposition of the responses of the base wdter K K.

[U]=Zl:zi{¢(}:[cp]{z} (10) s mi

If @u; =1, i.e. the point where the fundamental mode
. _ _ has the maximum value (the maximum mode value) is
wherez is the generalized coordinates arefjualsnxd.  ine critical point, it leads to

The total strain energy of a structural systemtemitn Km1> Ks (18)

a dlscreie form is Equation (18) indicates that the modal stiffnesshef
E=4{u}'[k]{u} fundamental mode of a linear system is always farge
=z} [K){H2} (11) than the static stiffness if the critical point atioe
=z} [k, {2} maximum mode value are at the same node.

=43 Ky 2 1. METHOD

Equation (11) indicates that the total energy of & Apalythical Verification

structure can be expressed as the sum of the enérgy . . . .
each mode. In the above derivation, Equation (& an The basic relationships _(Equat|ons (16) and (18)) c
be demonstrated by a simple supported beam, where

Equation (10) are used. The modal stiffness ofittte : . X . .
mode can therefore be obtained from Equation (31) banalytlcal expression can be derived. Considemnglgi

differentiating E twice in respect to the generalized supported beam .SUbJ.eCted to a concentratedRoakdits
coordinatez, i.e. centre as shown in Fig. 2.

9 E The critical point of a simply supported beam ighegt
i T (12)  centre of the beam where the vertical unit loaabiglied.

64_ ) ) ) ) The maximum displacement induced by the load is
Equation (12) is useful, in particular, when theaist | 3(48.El). Based on the definition given in Equati@)

energy of the structure system can be easily repted  the static stiffness for the simply supported béam
by using the generalized coordinates. K = 48 EI/3 (19)
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The natural frequency of theh mode of the simply This result agrees with the conclusion given in &opun

supported beam is (18) and the modal stiffness of the fundamental enisd
¢ :ﬁr El or o =0 El (20) blgg_er and very close to the static stiffness foe t
TV me ' L studied case.

Thei th mode shape of the simply supported beam is B. Numerical Verification

qq(x):sir('mj (21) This section aims to validate Equation (16) using n
L merical analysis and to examine the differencewédet
The value of theg, ; at the centre of the beam, x = L/2, the modal stiffness and the static stiffness ofracture

' guantitatively using a seven-storey concrete bugdi

IS heni = The Finite Element (FE) model of the building is
o :Q(L):{l wheni = 133.... (22) created using the LUSAS FE Software [3]. The madel
o " |owheni = 246.... a concrete building is shown in Fig. 3. The flaifls are

The modal mass of the beam is created using the 3D flat thin shell element (QS¥ith a

mesh of 15 x 15 for each of the 12 panels. Themopngu
and beams are created using eight 3D thick beam

L
M, = [mO0g (x)de="T-

0 ) . elements (BMS3). The bracing members are created
The modal stiffness of the beam can be calculasetu using 3D bar elements (BRS2). The bottom ends ef th

(23)

Equations (9)_5‘5 follows e columns are fixed to the foundation.
=M, = El mL _ il (24) Fig. 3 gives an appropriate representation of theaah
_ mL* 2 2L° structure based on the available frequency measunsm
wherei=1,3,5, ... [9]. The natural frequencies of the building areasmeed

Substituting the static stiffness in Equation (H®)d every stages of the construction [1].
modal stiffness of theth mode in Equation (24) into the  Table 1 shows the comparison between the natural

relationship Equation (16) leads to frequency measurements and numerical results of the
P S P S o5 three first modes, which are called NS1 (the fstth
sgEl ToE O dnE ) S (25 south direction), EW1 (the first East West direnjiand
:iﬁ[im T } R1 (the first rotation).
7E* 3 5

S

North

e +

Fig. 1. Physical representation of the relationgfithe two stiffnesses ’

P=1P
v

Errres 7@7 | X
e b2 —he— 12 )
Fig.2. A simply supported beam under a concentriaisdi Fig. 3. The seven storeys Cardington concrete ibgjlchodel
Removing the common terms in both sides of equation As shown in the table, the natural frequencies ftben
(25) gives the following identical equation numerical results are close to the measured nafugal
~ 1 1 1 _ 26 guencies. This means t_hat the model is appropiate-
7 —96(1+34+54+74+ j 962 (26) present the actual building.
i=1,3,5,..

The 7" stage of the building model is used to inves-
tigate the relationship between the static stiffnasd the
Rodal stiffness of the building. The modes in thatN

Equation (26) is known as an appllcauon of therkeau
series, which demonstrates that the relationshi
(Equation (.16)) between the static and modal sisnof South (NS) direction are investigated, thus a ploiadl is
a structure is held. L : .applied in the NS direction too. The static defodme

_The accuracy of approximation to_the maximurm Stat'(;:shape and the first mode shape are shown in Fig. 4.
d|s_placement (the_ltem on the left s_|de of Eq“a@)) The floor mass of the building is a constant thiuug
using the_ modal d|§placem_ent (the items on .thet Bm. the seven storeys and the masses of the columns are
of Equation (25)) is examined by considering thstf lumped in with the neighboring floors. Thus the mlod

few items.

The ratio of the modal stiffness of the fundamenta[?a[sf] of the th mode of the building can be calculated
mode (Equation (24)) to the static stiffness (Euumt ,
(19)) IS Mm,l :ZM1¢J2,I

4 3 4

Kns J B LT 7y 0147 (27)

K 21° 48EI 96

(28)

S
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TABLE 1.
COMPARISONBETWEEN THENATURAL FREQUENCIES
Frecuency (Hz)

Stages NSI EwWI RI
E N E N E N
1 2.90 2.733 3.14 2.828 3.42 3.25
2 1.77 1.902 1.86 1.885 2.14 2.33
3 1.36 1.245 1.36 1.343 161 1.75
4 1.04 1.062 1.04 1.159 1.28 1.44
5 0.87 0.889 0.87 0.933 1.06 1.18
6 0.71 0.735 0.73 0.769 0.87 0.99

7 0.60 0.619 0.61 0.648 0.76 0.83
E: experiment, N: numerical

TABLE 2.
RATIO OF THEMODAL DISPLACEMENTS TO THESTATIC DISPLACEMENT OF THECONCRETEBUILDING

Total Modal  Ratio, %

i Displ.
Frequencyf) Modal Massifi) Modal Stiffness (k) Mode Shape at the Modal Disp. at the P

Modes hz kg n/m Critical Point @) Ctlgtigg(l:rl? ijlrgd%lie Uy, = Zk: %, ﬁ
ToAE K Us
1 2 3 4 5 6 7 8
NS1 0.619 1.120E+06 1.697E+07 0.955 5.372E-08 3R 85.6
NS2 1.694 1.211E+06 1.372E+08 0.983 7.037E-09 ETB 96.9
NS3 2.956 1.443E+06 4.979E+08 -0.759 1.158E-09 22108 98.7
NS4 4.208 1.116E+06 7.801E+08 -0.624 4.996E-10 1608 99.5
NS5 5.261 1.010E+06 1.104E+09 -0.319 9.200E-11 1628 99.6
NS6 6.446 1.217E+06 1.996E+09 -0.130 8.467E-12 228 99.7
NS7 7.525 1.071E+06 2.394E+09 -0.027 3.096E-13 2408 99.7
Static displacement at the critical poiat, 6.273E-08 100.0

*The modal displacements at the critical point tueach mode are calculated by

K

m,i
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Fig.4. (a) Displaced shape; (b) The first mode sh®$ direction)

whereq;is the normalized value of theh floor in
thei th mode shape (provided by LUSAS results) and
M; is the total masses of theh floor and concerned
columns and bracing members. Once an eigenvalue
analysis has been conducted, the modal stiffness of
the associated mode can be calculated using equatio
9).

The ratio of the modal displacements up tokltle
mode to the static displacement of the concrete
building are given in Table 2.The term of ‘mode
shape at the critical pointgy; of the building in
column 5 of Table 2 are the normalized displacement
of the i th mode at the NS direction. The ratio
between the total modal displacement and the static
stiffness can be drawn in Fig. 5.

105

100
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80
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Fig. 5. Ratio between the modal displacement tsthtc
displacement

From Table 2 and Fig. 5, it can be seen that:

1. As the number of the mode considered increases
(the 1st mode to the 7th mode), the difference
between the total modal displacement and the
static displacement decreases as shown in the
graph.

2. The first mode dominates the total modal
displacement of the building, i.e., 85.6%, it means
using the first mode of the modal stiffness is
about 15% less than the static stiffness of the
building. Using the first two modes usually is
accurate to predict the structural responses of the
buildings, i.e. about 97%.

3. Equation (16), which shows the relationship
between the static stiffness and the modal
stiffness, is verified for the seven storeys cotere
building with the ratio is about 100% after the
first 7 modes considered.

IV. CONCLUSIONS

The relationships (Equations (16) and (18))
between static stiffness and modal stiffness of a
structure are derived on the basis of the defimtiof
the two stiffnesses. The relationship is applicable
any linear system.

The first mode of the modal stiffness of a struetur
is always larger than the static stiffness if thiéaal
point and the maximum mode value are at the same
node.

1. The verifications show that the first mode
dominates the summation of the Equation (16).

2. The greater the number of modes being
considered, the smaller the difference between the
total modal displacement and the static
displacement of a structure.
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