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AbstractThis paper derives the relationship between the 
static stiffness and modal stiffness of a structure. The static 
stiffness and modal stiffness are two important concepts in 
both structural statics and dynamics. Although both 
stiffnesses indicate the capacity of the structure to resist 
deformation, they are obtained using different methods. 
The former is calculated by solving the equations of 
equilibrium and the latter can be obtained by solving an 
eigenvalue problem. A mathematical relationship between 
the two stiffnesses was derived based on the definitions of 
two stiffnesses. This relationship was applicable to a linear 
system and the derivation of relationships does not reveal 
any other limitations. Verification of the relationship was 
given by using several examples. The relationship between 
the two stiffnesses demonstrated that the modal stiffness of 
the fundamental mode was always larger than the static 
stiffness of a structure if the critical point and the maxi-
mum mode value are at the same node, i.e. for simply 
supported beam and seven storeys building are 1.5% and 
15% respectively. The relationship could be applied into 
real structures, where the greater the number of modes 
being considered, the smaller the difference between the 
modal stiffness and the static stiffness of a structure. 
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I. INTRODUCTION 

he stiffness of a structure is generally understood to 
be the ability of a structure to resist deformation. 

Structural stiffness describes the capacity of a structure 
to resist deformations induced by applied loads. If a 
discrete model of a structure is considered, its structural 
stiffness of a structure can be completely described by its 
stiffness matrix. However, it may be difficult to be able 
to sense how stiff a structure is from its stiffness matrix. 
In engineering practice a single value of the stiffness of a 
structure is preferred as it gives a direct indication of 
how stiff the structure is” [6]. As the static stiffness and 
modal stiffness are defined independently and different-
ly, the values calculated from the two definitions may 
differ for the same structure. However, as the two values 
are calculated on the basis of the same structure, i.e. 
using the same stiffness matrix, there should be a 
relationship between them.  

The objectives of this research are to establish the 
relationship between the static stiffness and modal stiff-
ness of a structure and to verify this relationship into a 
real structure. 
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II. THEORIES 

The static stiffness of a structure relates to a unit load 
applied on the structure and can be uniquely defined. 
“Point stiffness is the inverse of the displacement in the 
load direction on a node where a unit load is applied. 
Thus the point stiffness relates to the position and 
direction where the unit load is applied; in other words, 
the point stiffness values at different positions and 
directions are different. The static stiffness of a structure 
in the loading direction is the smallest value among all 
point stiffnesses, i.e. 
Ks = min {k1, k2, ..., kj, ..., kn} (1) 
where Ks is the static stiffness in the load direction, kj is 
the point stiffness at the j th node and n is the number of 
nodes of the model of the structure. Alternatively the 
static stiffness can be expressed as the inverse of the 
maximum displacement induced by a unit force at the 
load location and direction, i.e. 
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Where uj is the displacement in the load direction on the 
j th node where a unit force is applied. The location of 
the node where the maximum displacement occurs is 
called the critical point. For many structures the critical 
point can be easily identified, for example for a hori-
zontal cantilever the critical point for a vertical load will 
be at the end of the cantilever, or for a simply supported 
rectangular plate it will be at the centre of the plate, and 
for a plane frame supported at its base the critical point 
for a horizontal load will be at the top of the frame” [5]. 

Consider a structure that is modeled by n nodes and m 
elements. Each node consists of d degrees of freedom. 
Therefore, the static equilibrium equation, containing n x 
d unknowns, is expressed as 
[K] {U} = {P} (3) 
Where {U} and {P} are the displacement and load 
vectors respectively. [K] is the stiffness matrix that 
includes the effect of boundary conditions and is 
independent of the load for linear problems. [K] thus also 
describes how stiff the structure is to resist external 
loads. 

Based on the definition of the static stiffness, only a 
unit load is applied on the critical node and in the 
concerned direction, i.e. 
{P} = {0, 0, …1,…,0,0}T (4) 
here ε* is the equivalent transformation strain.  

Solving Equation (3) leads to the solution of the dis-
placement and the maximum displacement at the critical 
point Ucl based on Equation (4). Therefore the static 
stiffness of the structure, according to Equation (2), is 

cl
s u

K
1=  (5) 

Relationship between Static Stiffness and Modal 
Stiffness of Structures 

 Endah Wahyuni1 and Tianjian Ji2 1 

T



 

 

IPTEK, The Journal for Technology and Science, Vol. 21, No. 2, May 2010 2 

There are a number of ways to determine the modal 
stiffness of a structure, which relates to the vibration 

modes of the structure. Three typical methods are briefly 
described below. 

A. Numerical Method 

The eigenvalue problem of a structure [2] is 
([K] - ω2 [M]) { Φ} = 0  (6) 

The eigenvalue and the eigenvectors of the structure 
can be obtained by solving the equation. The following 
relationships are true 
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where Φi, Mi and Km,i are the eigenvector, modal mass 
and modal stiffness of the i th mode respectively. Thus, 
the modal stiffness of the i th mode can be calculated by 
solving Equation (6) and then using Equation (8).  

B. Experimental Method 

The modal stiffness of the i th mode has the following 
relationship 
Km,i = ωi

2 Mi (9) 
Where ωi is the natural frequency of the i th mode. 
Among these natural frequencies the fundamental 
frequency  ωi can be easily and accurately measured. The 
modal mass can be calculated by using Equation (7) 
where the vibratory mode can either be calculated or 
assumed, such as using the deformation shape of the 
structure subjected to its self-weight. 

C. Energy Method 

The n x d independent vectors in [Φ] constitute a base 
of a n x d dimensional space. Any vector in the space can 
be expressed as a linear combination of the base vectors 
[Φ]. Thus a displacement vector [U] can be expressed as 
a superposition of the responses of the base vectors, i.e. 
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where zi is the generalized coordinates and r equals n x d. 
The total strain energy of a structural system written in 

a discrete form is 
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Equation (11) indicates that the total energy of a 
structure can be expressed as the sum of the energy of 
each mode. In the above derivation, Equation (8) and 
Equation (10) are used. The modal stiffness of the i th 
mode can therefore be obtained from Equation (11) by 
differentiating E twice in respect to the generalized 
coordinate zi, i.e. 
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Equation (12) is useful, in particular, when the strain 
energy of the structure system can be easily represented 
by using the generalized coordinates. 

Substituting Equation (10) into the static equilibrium 
equation (Equation (3)) and pre-multiplying by{ }TΦ  

gives  

[Φ]T [K] [ Φ] {Z} = [ Φ]T {P} 
or 
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i.e. 
Km,i zi {φi}

T {P} = Pi φcl,i i = 1, 2, ..., r (14) 
where  φcl,i is the value of the i th mode at the critical 
point in the loading direction. 

The structural response at the critical point and in the 
load direction is (from Equations (10) and (14)) 
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According to the definition given in equation (2), 
equation (15) becomes 
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Equation (16) provides the relationship between the 
static stiffness and the modal stiffness of a structure. The 
relationship is applicable to any linear system and there 
are no other limitations given in the derivation of 
Equation (16). 

The physical meaning of Equation (16) is that the 
deflection of a single spring with stiffness of Ks is equal 
to that of a series of springs with stiffness’s of  Km,i/φcl,i

2 

(i = 2, 3, …, r) when a unit load is applied on the two 
systems, as shown in Fig. 1. 

As φcl,i
2 > 0 and Km,i > 0 (i = 2, 3, …, n), Equation (16) 

becomes 
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If  φcl,i =1, i.e. the point where the fundamental mode 
has the maximum value (the maximum mode value) is 
the critical point, it leads to 
 Km,1 > Ks  (18) 

Equation (18) indicates that the modal stiffness of the 
fundamental mode of a linear system is always larger 
than the static stiffness if the critical point and the 
maximum mode value are at the same node.  

III.  METHOD  

A. Analythical Verification 

The basic relationships (Equations (16) and (18)) can 
be demonstrated by a simple supported beam, where 
analytical expression can be derived. Consider a simply 
supported beam subjected to a concentrated load P at its 
centre as shown in Fig. 2. 

The critical point of a simply supported beam is at the 
centre of the beam where the vertical unit load is applied. 
The maximum displacement induced by the load is 
L3/(48.EI). Based on the definition given in Equation (3) 
the static stiffness for the simply supported beam is 
Ks = 48 EI/L3 (19) 
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The natural frequency of the i th mode of the simply 
supported beam is 
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The i th mode shape of the simply supported beam is 
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The value of the icl ,φ  at the centre of the beam, x = L/2, 

is 

( )


==
0

1
2,
L

iicl φφ
,....6,4,2

,....5,3,1

=
=

iwhen

iwhen

 

(22) 

The modal mass of the beam is 
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The modal stiffness of the beam can be calculated using 
Equations (9) as follows 
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where i = 1, 3, 5, …  
Substituting the static stiffness in Equation (19) and 

modal stiffness of the i th mode in Equation (24) into the 
relationship Equation (16) leads to   
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Fig. 1. Physical representation of the relationship of the two stiffnesses 

 

 
Fig.2. A simply supported beam under a concentrated load 

 
Removing the common terms in both sides of equation 

(25) gives the following identical equation  
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Equation (26) is known as an application of the Fourier 
series, which demonstrates that the relationship 
(Equation (16)) between the static and modal stiffness of 
a structure is held.  

The accuracy of approximation to the maximum static 
displacement (the item on the left side of Equation (25)) 
using the modal displacement (the items on the right side 
of Equation (25)) is examined by considering the first 
few items.  

The ratio of the modal stiffness of the fundamental 
mode (Equation (24)) to the static stiffness (Equation 
(19)) is  
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This result agrees with the conclusion given in Equation 
(18) and the modal stiffness of the fundamental mode is 
bigger and very close to the static stiffness for the 
studied case. 

B. Numerical Verification 
This section aims to validate Equation (16) using nu-

merical analysis and to examine the differences between 
the modal stiffness and the static stiffness of a structure 
quantitatively using a seven-storey concrete building.  

The Finite Element (FE) model of the building is 
created using the LUSAS FE Software [3]. The model of 
a concrete building is shown in Fig. 3. The flat floors are 
created using the 3D flat thin shell element (QSI4) with a 
mesh of 15 x 15 for each of the 12 panels. The columns 
and beams are created using eight 3D thick beam 
elements (BMS3). The bracing members are created 
using 3D bar elements (BRS2). The bottom ends of the 
columns are fixed to the foundation.  

Fig. 3 gives an appropriate representation of the actual 
structure based on the available frequency measurements 
[9]. The natural frequencies of the building are measured 
every stages of the construction [1].  

Table 1 shows the comparison between the natural 
frequency measurements and numerical results of the 
three first modes, which are called NS1 (the first North 
South direction), EW1 (the first East West direction) and 
R1 (the first rotation).  

 
Fig. 3. The seven storeys Cardington concrete building model 

 
As shown in the table, the natural frequencies from the 

numerical results are close to the measured natural fre-
quencies. This means that the model is appropriate to re-
present the actual building. 

The 7th stage of the building model is used to inves-
tigate the relationship between the static stiffness and the 
modal stiffness of the building. The modes in the North 
South (NS) direction are investigated, thus a point load is 
applied in the NS direction too. The static deformed 
shape and the first mode shape are shown in Fig. 4. 

The floor mass of the building is a constant throughout 
the seven storeys and the masses of the columns are 
lumped in with the neighboring floors. Thus the modal 
mass of the i th mode of the building can be calculated 
by [7]:
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TABLE 1. 
COMPARISON BETWEEN THE NATURAL FREQUENCIES 

Frecuency (Hz) 

Stages 
NSI EWI RI 

E N E N E N 

1 2.90 2.733 3.14 2.828 3.42 3.25 

2 1.77 1.902 1.86 1.885 2.14 2.33 

3 1.36 1.245 1.36 1.343 1.61 1.75 

4 1.04 1.062 1.04 1.159 1.28 1.44 

5 0.87 0.889 0.87 0.933 1.06 1.18 

6 0.71 0.735 0.73 0.769 0.87 0.99 

7 0.60 0.619 0.61 0.648 0.76 0.83 

E: experiment, N: numerical 
 

TABLE 2. 
 RATIO OF THE MODAL DISPLACEMENTS TO THE STATIC DISPLACEMENT OF THE CONCRETE BUILDING  

Modes 
Frequency (f) 

hz 
Modal Mass (mi) 

kg 
Modal Stiffness (kmi) 

n/m 
Mode Shape at the 
Critical Point (φcl,i) 

Modal Disp. at the 
Critical Point due 
to each Mode* 

Total Modal 
Displ. 

Ratio, % 

1 2 3 4 5 6 7 8 

NS1 0.619 1.120E+06 1.697E+07 0.955 5.372E-08 5.372E-08 85.6 

NS2 1.694 1.211E+06 1.372E+08 0.983 7.037E-09 6.076E-08 96.9 

NS3 2.956 1.443E+06 4.979E+08 -0.759 1.158E-09 6.192E-08 98.7 

NS4 4.208 1.116E+06 7.801E+08 -0.624 4.996E-10 6.241E-08 99.5 

NS5 5.261 1.010E+06 1.104E+09 -0.319 9.200E-11 6.251E-08 99.6 

NS6 6.446 1.217E+06 1.996E+09 -0.130 8.467E-12 6.252E-08 99.7 

NS7 7.525 1.071E+06 2.394E+09 -0.027 3.096E-13 6.252E-08 99.7 

Static displacement at the critical point, ui 6.273E-08 100.0 

 

*The modal displacements at the critical point due to each mode are calculated by : 
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(a)    (b) 

 
Fig.4. (a) Displaced shape; (b) The first mode shape (NS direction) 

 
where φj,iis the normalized value of the j th floor in 

the i th mode shape (provided by LUSAS results) and 
Mj is the total masses of the j th floor and concerned 
columns and bracing members. Once an eigenvalue 
analysis has been conducted, the modal stiffness of 
the associated mode can be calculated using equation 
(9).  

The ratio of the modal displacements up to the k th 
mode to the static displacement of the concrete 
building are given in Table 2.The term of ‘mode 
shape at the critical points, φcl,i of the building in 
column 5 of Table 2 are the normalized displacement 
of the i th mode at the NS direction. The ratio 
between the total modal displacement and the static 
stiffness can be drawn in Fig. 5. 

 
Fig. 5. Ratio between the modal displacement to the static 

displacement 

From Table 2 and Fig. 5, it can be seen that: 
1. As the number of the mode considered increases 

(the 1st mode to the 7th mode), the difference 
between the total modal displacement and the 
static displacement decreases as shown in the 
graph. 

2. The first mode dominates the total modal 
displacement of the building, i.e., 85.6%, it means 
using the first mode of the modal stiffness is 
about 15% less than the static stiffness of the 
building. Using the first two modes usually is 
accurate to predict the structural responses of the 
buildings, i.e. about 97%. 

3. Equation (16), which shows the relationship 
between the static stiffness and the modal 
stiffness, is verified for the seven storeys concrete 
building with the ratio is about 100% after the 
first 7 modes considered. 

IV.  CONCLUSIONS 

The relationships (Equations (16) and (18)) 
between static stiffness and modal stiffness of a 
structure are derived on the basis of the definitions of 
the two stiffnesses. The relationship is applicable to 
any linear system. 

The first mode of the modal stiffness of a structure 
is always larger than the static stiffness if the critical 
point and the maximum mode value are at the same 
node.  
1. The verifications show that the first mode 

dominates the summation of the Equation (16).  
2. The greater the number of modes being 

considered, the smaller the difference between the 
total modal displacement and the static 
displacement of a structure. 
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