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AbstractDisaggregation of hourly rainfall data is very important to fulfil the input of continual rainfall-runoff model, 

when the availability of automatic rainfall records are limited. Continual rainfall-runoff modeling requires rainfall data in 

form of series of hourly. Such specification can be obtained by temporal disaggregation in single site. The paper attempts to 

generate single-site rainfall model based upon time series (AR1) model by adjusting and establishing dummy procedure. 

Estimated with Bayesian Markov Chain Monte Carlo (MCMC) the objective variable is hourly rainfall depth. Performance 

of model has been evaluated by comparison of history data and model prediction.  The result shows that the model has a 

good performance for dry interval periods. The performance of the model good represented by smaller number of MAE by 

0.21 respectively.  
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AbstractDilakukan percobaan untuk mengidentifikasi hubungan antara kecocokan sruktur model hujan time series 

terhadap disagregasi pola kejadian hujan dan tinggi hujan serta akan mempresentasikan prosedur untuk pemilihan struktur 

model guna penelitian model disagregasi hujan. Tiga model time series hujan jam-jaman telah di ujikan pada stasiun hujan 

Sental di daerah aliran sungai Sampean di Bondowoso. Struktur model merupakan kombinasi model autoregresi, moving 

average, musiman, dummy dan prosedur adjusting. Estimasi model menggunakan Bayesian. Poin penting untuk menentukan 

struktur model yang tepat akan dipilih berdasarkan nilai error terkecil dari model, periode waktu kedatangan hujannya, kondisi 

tidak terjadi hujan dan kondisi puncak tinggi hujan. Hasil studi mengindikasikan bahwa model AR 1 musiman dengan Dummy 

merupakan model yang tepat untuk memodelkan disagregasi hujan. Dimana model mampu memberikan  nilai error terendah, 

pola kejadian hujannya sesuai dengan kondisi observasi, dapat mewakili kondisi saat tidak terjadi hujan dan memberikan nilai 

puncak hujan tertinggi dari model lainnya. 
 

Kata Kuncihujan temporal, setiap jam, time series Bayesian  
 

I. INTRODUCTION
8 

he simulation of continuous rainfall is an important 

area of hydrological research, particularly within the 

context of flood estimation. For flood estimation, long-

term period rainfalls with high resolution (hourly 

rainfall) are needed. However, it is difficult to provide 

such data in Indonesia due to limitation in observation on 

the field. To overcome this problem, generating hourly 

rainfall using time series model is one of alternatives to 

get forecasted rainfall data.   

Some research developments to generate higher 

temporal rainfall have been done in many countries. At 
first, it was done to disaggregate data on rainfalls and 

floods from yearly to monthly by [1] by time series 

approach, Period Autoregression (PAR) [2]. However, 

the model made could not keep covariant condition on 

lower level of variable forming series in its period. 

Development of further disaggregation to smaller time 

scales (daily to the scale below) by using different ways 
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are developed [3-6]. The latest research used a simple 

mathematical model but had not provided accurate 

results. Wong disaggregates Bartllet- Lewis model by 

trying variations of model parameters there were 
optimized with evolutionary algorithm [7]. Burian 

carried out different approaches by using artificial neural 

networks (ANN) to disaggregate hourly rainfall data into 

finer time intervals [8-9]. Koutsoyiannis et. al, developed 

a rain disaggregation using adjusting procedures on the 

Poisson cluster model cumulative hourly rainfall height 

with the Beta distribution and the incidence of rain with 

a geometric conditional distribution on the total daily 

rainfall [10-11]. This model was tested for hourly data in 

South-Western UK, U.S. and in the Tiber River, Italy by 

Fytilas. The results indicate that this methodology has a 
good performance. This model is to facilitate the 

operation formed in Heytos program package.  

Inspired by Koutsoyianis success in modelling the 

temporal spatial rainfall, Hidayah, et. al, tried to apply 

disaggregation model of temporal rainfall of Heytos at 

locations in Sentral rainfall stations in the catchment 

areas of Sampean, East Java [12]. Results from model 

implementation indicated that this performance was not 

good. This was demonstrated by the marginal moments, 

and spatial and temporal correlation between the 

proportion and length of dry intervals and the other for 

the months of February to November yet produced a 
good reproduction of the actual hydrograph. While the 

months of December and January provide a bad enough 
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result with error of 0.51 and 0.79. Model Heytos is 

appropriate to disaggregate rainfall in sub-tropic region 

which has gamma-formed distribution.  

Onof et al, have constructed this kind of model [13]. 

The model was based on random parameter of Bartlett-

Lewis rectangular pulse rainfall combined with multi-

scale disaggregation applied to an urban area in 
Denmark. The result of model performance increased 2-

15% to extreme rainfall condition. Koutsoyiannis et. al, 

have developed rainfall disaggregation using adjusting 

procedures on a Poisson cluster model and examined for 

hourly data in UK and US [10]. The results indicated 

good performance methodology.   

Bayesian approach has succeeded to reduce uncertainty 

of the spatial rainfall prediction. The development of this 

research was done by Todini et al, in the spatial rainfall 

prediction using Bayesian method which is combined 

with the rainfall radar, satellite, and local measurement 
[14]. Sahu et al, Bayesian approach has used Bayesian 

approach to estimate the spatial rainfall model combined 

with the rainfall radar, and local measurement [15]. Lima 

has succeeded to employ Bayesian method for predicting 

the daily rainfall occurrence [16]. Furthermore, from 

those previous researches, it can be seen that the 

development of Bayesian model is merely used to 

estimate spatial aspect of rainfall. On the temporal 

aspect, however, it has not been done at al.  

Considering implementation the result of temporal 

model and succeed of Bayesian approach, this paper 

attempts to develop Bayesian temporal for rainfall data.  
The theory supporting this research consists of the 

following: 

A. Rainfall Disaggregation 

Rainfall disaggregation is a method to transform the 

synthetic hourly rainfall (lower scale) derived from the 

rainfall data at higher scale (daily, or weekly). The 

formation of this synthetic data is derived from the rise 

of a stochastic model. Disaggregation has an important 

role in the hydrological model application because it can 

produce higher resolution rainfall data. Carpenter et al, 

have examined high resolution rainfall data that resulted 

smaller model error [17]. Disaggregation model is 

developed to produce more than one statistical 

aggregation. Disaggregation can be used both temporally 

and spatially. 
Disaggregation is generated from random simulation. 

Disaggregate is formed by setting parameters, which are 

further to control the process of disaggregation model. 

The results of random simulation are fluctuating 

dependent on the parameters used; therefore, variations 

of some historical data and simulation of statistic models 

are expected to generate disaggregation in time series. 

Evaluation of the results can be done by calculating a 

model such as skewness of the simulation results of time 

series disaggregation, and the results can be compared 

with the historical data. 

B. Stationary Time Series Models 

Time series model is a stochastic model. A stochastic 

process (Y (t), t ∈ A) is a set of random variables, where 

A is the set of indices [18]. Index is interpreted as a time 

and Y (t) is called the process at time t. Stationary time 

series model is the simplest AR model. AR model is 

formed through a regression that links the current values 

with previous at each change with the time lag or time 

interval varies [19]. General form the model of AR orde 

p is [2]: 
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where assumes that hydrology process is represented by 

Y, (ФpB)=(1-Ф1B-Ф2B
2- .... -ФpB

p), Ỹt=Yt - , µ are mean 

of Yt,    is a white noise process of time to t with mean 

zero and constant variance σ2
a; and 1, 2,....,p are 

autoregresive coefisient of orde p. AR1 model takes the 
simple form as follows: 

  ttt YY   11
           (2) 

tptpttt YYYY   

~~~~
2211

    

C. Seasonal Autoregressive Model (AR1)  

This model assumes the occurrence of rainfall 

periodically, represented by Yν, τ, ... where ν defines 

year, and τ defines the season, for example τ = 1 .., ω, 

and ω is the number of seasons during the year. General 

form of the Period Autoregression (PAR 1) model is [2]: 

    ,1,,, vtvvv YY  
               (3) 

D. Autocorrelation and Autocorrelation Partial 

The coefficient of autocorrelation and partial 

autocorrelation are a major tool for analyzing time series 

data. The coefficient of autocorrelation is a function that 

shows the magnitude of correlation (linear relationship) 

between the observation time to t denoted by Zt with 

previous time (denoted by Zt-1, Zt-2, ... Zt-k). The value of 

autocorrelation function of a time series Z1, Z2, ... Zk,

 kttkk ZZCov  ,ˆˆ   is as follows [16]: 
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Partial autocorrelation is used to measure the level of 

closeness between Zt and Zt-k. If the effect of lag time 

1,2,3,4 ... k-1, is considered separate. Autocorrelation 

function is a function which shows the partial correlation 

between observations in time to t and the previous times. 

The formula of partial autocorrelation or kk is: 

 221 ,,,,ˆ
  ktttkttkk ZZZZZCorr               (6) 

The value of kk can be determined through the 
equation of Yule walker and the result is as follows: 
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where j = 1,2,…, k-1 

E. Bayesian Approach 

In the estimation theory, there are two popular 

approaches, i.e. the classic statistics approach 

(frequentist) and Bayesian statistics approach. Classic 

statistics is fully determined by the inferential process 

based on sample data from the population. In contrast, 

Bayesian statistics uses not only the sample data from 

population but also employs a prior distribution of each 

parameter. The Classic statistics approach assumed the   
parameter as a stationer parameter (constant or single 

value). On the other hand, Bayesian statistics approach 

assumed the   parameter as having distribution, called 

prior. By combining these information, sample data used 

for calculating the likelihood and prior distribution of 

parameter, the posterior distribution of each parameter 

could be determined. Then, the estimated   parameter 

could be derived from this posterior.  

Bayesian statistics has a simple way to solve the 

problem of multidimensional parameter estimation. 
Bayesian theory encompasses the way to predict 

parameters together with their distribution directly. That 

gain is not easy to be done by commonly traditional 

statistics. Due to the above reasons, this research would 

use Bayesian approach to estimate the model. 

Bayesian model is developed from the bayes theory 

phenomena. In the discussion about the distribution or 

model estimation, the bayes is used as tools or called 

bayesian method. In the distribution, bayesian parameter 

or model is needed as random distribution. Bayesian 

model can be represented as: 

p( |x)= p()l(x| )/p(x)     

 (8) 

where, 

x : set of data constructing Bayesian model 

  : unknown parameter for the prior distribution to 

explore the characteristic of posterior distribution 

of   

p( )   : prior distribution a 

l(x| )  : likelihood function of the probabilistic pattern of 

data 

p(x)    : a normalized constant 

p( |x) : posterior distribution representing weather   x 

data would be given.  

Inference of posterior distribution of each parameter in 

  would be gathered by integrating it over the space of 

parameter needed 

F. MCMC 

Method of Markov Chain Monte Carlo (MCMC) 

facilitate modeling complex enough, so it is considered 

as a cc in the use of Bayesian analysis [20]. There are 
several techniques available for numerical integration, 

and the most existing methods are very connected with 

the idea that there are at integral. Monte Carlo 

integration is a technique that can be done to obtain an 

expected value (expectation). In a simple form, it can be 

written: 

      


n

i i

b
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xf
n

dxxpxf
1

1                           (9) 

where the values x1, x2, ….. , xn can be obtained freely on 

the density p (x) in the interval (a, b) in its simplest form 

can use a uniform distribution (a, b). 

In Bayesian analysis, the use of MCMC can simplify 

the analysis, so the decision taken by the analysis will be 

done quickly and accurately. There are two conveniences 

gained from the use of MCMC methods in Bayesian 

analysis [21]. First, MCMC method can simplify the 
integral form of the complex with large dimensions to be 

an integral form with one dimension. Second, using the 

MCMC method, the data density estimates can be 

described by generating a sequential Markov chain of n. 

G. Gibbs Sampling 

One of the MCMC approaches is by using Gibbs 

sampling [22]. Gibbs Side is a technique for generating 

random variables from the marginal distribution 

indirectly without having to calculate its density. By 

using Gibbs sampling, difficult calculations can be 

avoided [22]. 

The use of Gibbs Sampling on an analysis of data is 

aimed to obtain data for each parameter, θk individually 

from the full conditional form of distribution of all 

parameters to the data P(k| k-,x), where k-=1, 2,..... 

k+1,...,K). Therefore, obtaining samples of each 
parameter is done by forming all the model parameters 

into a parameter vector in the form of a special partition, 

that is: =(k, k-). 

H. Model Evaluation 

Model evaluation is intended to determine best model. 

The determination of the best model can be evaluated 

according to the resulted error value between the 
simulation model against the observational data. One 

such measure is the Mean Absolute Error (MAE). 

Criteria of MAE are formulated as follows: 

MAE =   simobs ZZ
n

1                                         (10) 

where, 

Zsim= Value of forecasting 

Zobs = Value of observation 

n = number of effective observations 

The smaller MAE means better forecasting results 

II. METHOD 

Method used in the research was divided in three steps. 

Steps to the research are: 

1. The selection model using the Minitab statistical 

tools.  Minitab is a statistical program that helps job, 

especially in performing calculations using a 

complex mathematical formula and a lot of data. 
Steps to select the model is: 

a. determining the initial rainfall data, covering 

stationary plots of rainfall data, and ploting of 
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Autoregression Function (ACF) and Partial 

Autoregression Function (PACF),  

b. performing differencing if the rainfall data were 

not stationary in variance, and 

c. identifying the form of time series models 

2. Forming and testing of AR model parameter  

3. Forming structure of Bayesian AR model by 
implementing the MCMC with WinBugs program 

released 1.4. In forming the time series model 

structure, a full of conditional distributions of each 

parameter posterior was needed and iteratively with 

model of Gibbs sampler, MCMC would estimate the 

parameters. The steps in determining the structure of 

the model are:  

a. Determining the likelihood function of data 

b. Determining the prior distribution and conjugate 

prior 

4. Principles used in modelling: 
a. Using Equation (2) two to directly generate some 

data on daily rainfall
s

~ with the period 

(s=1,…,k), without reference to provide high-

level variable (monthly rainfall) Z in this period. 

b. calculating  


k

s sZ
1

~~ and distance Z = || Z -

Z
~

|| with the estimated parameters to gain smaller 

distance value of ΔZ until the approved limit and 

choosing final arrangement of 
s

~  and 
sZ

~  that has 

minimum distance. 

III.  RESULTS AND DISCUSSION 

This rainfall disaggregation of time series model was 

implemented in the Sentral Station, East Java. AR1 time 

series model is used to build the rainfall disagregation 

since AR1 model tend to match with any form of 

distribution of rainfall. 

Condition in Indonesia is the tropical regions where 

rainfall is high and uneven, so it is difficult to obtain an 
appropriate distribution. Descriptive analysis of time 

series of hourly rainfall in the Sentral Station at 

Bondowoso is presented on Table 1. The table indicates 

that there is a high average rainfall, the variance and low 

temporal correlation structure of consecutive ranged 

below 0.05, 0.6, and 0.26. In contrast, dry interval 

proportion value is high in the range above 0.99. 

Average of the highest rainfall level occurs in February 

and the lowest average of rainfall height occurs in July. 

This phenomenon can be concluded that the wet months 

occur from October through April with a high average 
rainfall ranging from 0.08 mm to 0.43 mm. Conversely, 

low dry months occur in the month of May to September 

with an average height below 0.05 mm of rain. 

Description of wet months and dry months will be 

clearer when seen from the data pattern of hourly rainfall 

height per year in a series on Figure 1. On the figure, the 

wet months are marked with a grouping of rain 

occurrences.  

The research result of rainfall disaggregation using 

Heytos Program at Sentral Station previously [12] on 

December had good result by error of 0.51 if compared 

with other months [21]. Therefore, in this research 

December would be used as a reference to generate 

rainfall disaggregation model. 

The implementation of rainfall disaggregation in this 

research used time series approach. Determining the 

suitability of the model in time series began with the 

examination of data stationary. The results of plots of 

PACF functions were undertaken using Minitab 14.  

Figure 2 shows that there are decreasing after lag 1in 
i

positif and negatif. 24-hour interval values are positively 

correlated in excess confident interval for alpha = 0.05 

(T value falls in the domain of rejection). 

The stationary data were obtained with repetition of 

each lag 24. It can be concluded that the data contain 
seasonal daily.  

From the results of PACF examination, the appropriate 

method to disaggregate rainfall data is seasonal AR1. 

This modelling used the tools WinBUGS1.4. WinBUGS 

is a programming language based software that used to 

generate a random sample from posterior distribution of 

parameter a Bayesian model. The use of this 

WinBUGS1.4 in adjusting process as well as in 

modelling is structured in Doodle Figure 3. 

The figure is a program code for seasonal AR1 

program structure of seasonal AR1 is composed on 
Doodle of WinBug. Variable y [i] is normal distribution 

with a reverse word-dnorm (mu [i], tau) where the 

logical node mu [i] follows the next statement translated 

in accordance with logical in doodles of Figure 3. mu [i] 

is the expectation of seasonal AR1 model prepared by 

the equation: 

mu[i] <- dummy[i]*(a + b * y1[i] + c * y24[i]) 

tau connected with y [i] is a variance from Seasonal 

AR1. Prior distributions for each model parameter of 

models a, b, and c are based on the validation of models 

to get the smallest error. Dummy is fitted in the model to 
get the value o when there is no rain. Adjusting 

procedures are performed outside the seasonal AR1 

model which is directly connected with x [i] and mu [i] 

to get the value of the difference of ZB [i] and Za [i]. 

Error was also calculated directly in the logical model 

based on the value of MAE. 

The result of running the models which are all used in 

WinBUGS1.4 for normal component, supported by the 

data 2952 and Gibbs sampler iterations are performed 

totally 40000 times in a personal of computer (Intel 

Centrino Core 2 Duo Processor P8600, 2.4 GHz, RAM 6 

GB). The process request 32 seconds to finish the 
simulation. The result of disaggregation rainfall and on 

their model parameters are shown on Table 2. 

The estimated posterior density of model parameter 

(a,b, and c) was approached by kernel density in Figure 

4. The result was satisfying because the form of density 

was smooth. The distribution pattern of each rainfall 

parameters in row tends to have a symmetric pattern 

centred in 2.915, and 3.344 for a parameter, 0.3149, and 

0.4728 for b parameter, and 0.2112, and 0.3226 for c 

parameter 

Performance of model could be accessed by Bayesian 
MCMC simulation result, the estimated posterior density 

of each parameter, the result of Running Quantil, and 

Autocorrelation. The evaluation of Bayesian MCMC 
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simulation result for parameters a,b and c in Figure 5. 

(iteration of model history) shows that the generated data 

have fast mixing. It means that the estimate process can 

respond for parameter value. 

Running quantiles Figure 6. shows straight line 

between upper quantiles and lower quantiles. It means 
that the model has reached stationer and convergence 

Auto correlation in Figure 7 shows that the result of 

model simulation has fulfilled Markov chains 

characteristic where the generated data would only be 

influenced by one prior occurrence. Comparative results 

between observation data and simulation models using 

Bayesian seasonal AR1 indicate the error resulted from 

the calculation of MAE value of 0.21. With the same 

data if Heytos model, error generated was 0.51. This 

means that there is an increase in performance results of 

model using a Bayesian seasonal AR1 model. Clear 

description of sequent data between the simulation 
results of the observations can be seen in the Figure 8. 

IV. CONCLUSION 

The result of using Bayesian Seasonal AR1 model with 

adjusting procedure and dummy for tropical region has a 

good performance to generate the rainfall disaggregation 

characteristic data which have varying rainfall distri-

bution. 
A good performance model is characterized by the very 

short time required for the iteration process models (32 

seconds) and the resulting error of MAE 0.2. 

The development of the AR1 model with dummy 

procedure capable of providing zero value when there is 

no rain, However the process to be done manually, so 

that cannot be used to predict rainfall disaggregation 

model for future development. In order for the process to 

be done automatically, it is necessary to add structure 

model with a binary process.  
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Figure 1. Rainfall depth series in 2004-2008 

 
Figure 2. Result of PACF Plot for daily rainfall data 

 
Figure 3. Doodle for model Seasonal AR1 

 
Figure 4. Kernel density parameter 

 

 

 
Figure 5. History iteration parameter model (a,b and c)

 
 

Figure 6. Running quantiles 

 

 

Figure 7. Autocorrelation parameter model

 
 

Figure 8. Result of model simulation 
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TABLE 1. 

VARIATION OF AVERAGE, VARIANCE, TEMPORAL CORRELATION STRUCTURE (AUTOCORRELATION) AND THE PROPORTION OF THE DRY INTERVALS 

OF HOURLY RAINFALL DATA AT THE SENTRAL STATION 

Month Mean Varians 
Temporal 

Autocorelation 

Proportion 

dry 

Sat mm mm
2
 mm

2
  

Jan 0.3312836 4.4953874 1.506181113 0.930443548 

Feb 0.4266741 5.3465417 1.856423909 0.894717262 

Mar 0.419086 5.7003885 2.057932848 0.903225806 

Apr 0.2106597 2.0342559 0.694987271 0.951388889 

May 0.0225806 0.1631673 0.017844476 0.990591398 

Jun 0.0521181 0.6221213 0.267775048 0.989930556 

Jul 0.0084677 0.057219 0.023407241 0.998319892 

Aug 0.0104503 0.0470067 0.026831895 0.99563172 

Sep 0.0125347 0.0629863 0.016247773 0.996180556 

Oct 0.1784202 2.7543021 1.44867285 0.96907563 

Nov 0.0834028 0.7959523 0.151906806 0.965625 

Dec 0.3480847 4.0843325 1.551474917 0.910954301 

Source: Result of hourly rainfall data processing 

 

TABLE 2. 

PARAMETER, MAE AND RAINFALL DISAGREGATION SIMULATION 

node  mean sd MC error 2.5% median 97.5% start sample 

a 3.131 0.1094 5.784E-4 2.915 3.131 3.344 1 40000 

b 0.3932 0.04042 2.232E-4 0.3149 0.3928 0.4728 1 40000 

c 0.2668 0.0283 1.457E-4 0.2112 0.2667 0.3225 1 40000 

mae 0.2169 6.827E-4 3.907E-6 0.2156 0.2169 0.2162 1 40000 

mu[15] 3.131 0.1094 5.784E-4 2.915 3.131 3.344 1 40000 

mu[18] 3.131 0.1094 5.784E-4 2.915 3.131 3.344 1 40000 

mu[36] 3.131 0.1094 5.784E-4 2.915 3.131 3.344 1 40000 

mu[111] 3.131 0.1094 5.784E-4 2.915 3.131 3.344 1 40000 

mu[133] 3.131 0.1094 5.784E-4 2.915 3.131 3.344 1 40000 

mu[134] 3.878 0.1215 6.47E-4 3.64 3.877 4.116 1 40000 

mu[158] 4.465 0.1609 7.909E-4 4.152 4.465 4.76 1 40000 

mu[159] 3.131 0.1094 5.784E-4 2.915 3.131 3.344 1 40000 

mu[185] 3.131 0.1094 5.784E-4 2.915 3.131 3.344 1 40000 

mu[207] 3.131 0.1094 5.784E-4 2.915 3.131 3.344 1 40000 

mu[278] 3.131 0.1094 5.784E-4 2.915 3.131 3.344 1 40000 

mu[279] 3.131 0.1094 5.784E-4 2.915 3.131 3.344 1 40000 

mu[280] 3.131 0.1094 5.784E-4 2.915 3.131 3.344 1 40000 

mu[291] 3.131 0.1094 5.784E-4 2.915 3.131 3.344 1 40000 

mu[293] 3.131 0.1094 5.784E-4 2.915 3.131 3.344 1 40000 

mu[305] 3.131 0.1094 5.784E-4 2.915 3.131 3.344 1 40000 

mu[306] 3.131 0.1094 5.784E-4 2.915 3.131 3.344 1 40000 

mu[312] 3.131 0.1094 5.784E-4 2.915 3.131 3.344 1 40000 

mu[325] 3.131 0.1094 5.784E-4 2.915 3.131 3.344 1 40000 

mu[346] 3.131 0.1094 5.784E-4 2.915 3.131 3.344 1 40000 

mu[363] 3.131 0.1094 5.784E-4 2.915 3.131 3.344 1 40000 

mu[366] 3.131 0.1094 5.784E-4 2.915 3.131 3.344 1 40000 

mu[377] 3.131 0.1094 5.784E-4 2.915 3.131 3.344 1 40000 

mu[284] 3.131 0.1094 5.784E-4 2.915 3.131 3.344 1 40000 

mu[399] 3.131 0.1094 5.784E-4 2.915 3.131 3.344 1 40000 

mu[402] 3.131 0.1094 5.784E-4 2.915 3.131 3.344 1 40000 

mu[422] 7.339 0.4261 0.002345 6.514 7.334 8.178 1 40000 

mu[423] 5.986 0.301 0.001501 5.397 5.987 6.572 1 40000 

mu[424] 3.131 0.1094 5.784E-4 2.915 3.131 3.344 1 40000 

mu[426] 8.254 0.5327 0.002691 7.209 8.252 9.298 1 40000 

mu[428] 3.131 0.1094 5.784E-4 2.915 3.131 3.344 1 40000 

mu[427] 23.84 1.154 0.006633 21.61 28.83 26.13 1 40000 

mu[448] 10.07 0.7223 0.003666 8.652 10.07 11.48 1 40000 

mu[451] 6.67 0.3601 0.001979 5.972 6.666 7.378 1 40000 

mu[452] 5.532 0.2566 0.001274 5.031 5.532 6.023 1 40000 

mu[453] 3.131 0.1094 5.784E-4 2.915 3.131 3.344 1 40000 

mu[470] 4.232 0.1422 7.642E-4 3.955 4.231 4.51 1 40000 

mu[476] 6.319 0.2111 0.001192 5.907 6.317 6.738 1 40000 

 


