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AbstractConstructive Back Propagation Neural Network (CBPNN) is a kind of back propagation neural network 

trained with constructive algorithm. Training of CBPNN is mainly conducted by developing the network’s architecture 

which commonly done by adding a number of new neuron units on learning process. Training of the network usually 

implements fixed method to develop its structure gradually by adding new units constantly. Although this method is simple 

and able to create an adaptive network for data pattern complexity, but it is wasteful and inefficient for computing. New 

unit addition affects directly to the computational load of training, speed of convergence, and structure of the final neural 

network. While increases training load significantly, excessive addition of units also tends to generate a large size of final 

network. Moreover, addition pattern with small unit number tends to drop off the adaptability of the network and extends 

time of training. Therefore, there is important to design an adaptive structure development pattern for CBPNN in order to 

minimize computing load of training. This study proposes Fuzzy Logic (FL) algorithm to manage and develop structure of 

CBPNN. FL method was implemented on two models of CBPNN, i.e. designed with one and two hidden layers, used to 

recognize aroma patterns on an electronic nose system. The results showed that this method is effective to be applied due to 

its capability to minimize time of training, to reduce load of computational learning, and generate small size of network. 
 

KeywordsCBPNN, structure development pattern, fuzzy logic, effective 

 

AbstrakConstructive Back Propagation Neural Network (CBPNN) adalah jaring saraf perambatan balik galat yang dilatih 

dengan algoritma konstruktif. Pelatihan CBPNN pada dasarnya dilakukan melalui metode pengembangan arsitektur jaring 

yang biasanya dilakukan dengan menambahkan sejumlah neuron baru pada lapis tersembunyi pada proses pelatihannya. 

Pelatihan jaring saraf ini dapat dilakukan dengan metode fixed, yaitu metode pengembangan struktur jaring dengan pola 

penambahan sejumlah neuron konstan secara bertahap. Meskipun cara ini mudah dilakukan dan telah mampu membangun 

struktur jaring yang adaptif terhadap kempleksitas data pelatihan, namun dari sisi komputasi dipandang kurang efisien. 

Penambahan neuron baru secara langsung berdampak terhadap beban komputasi pelatihan, kecepatan konvergensi, dan 

struktur jaring saraf yang terbentuk. Selain memberatkan beban komputasi, penambahan neuron yang terlalu banyak 

cenderung menghasilkan struktur jaring akhir yang besar. Di lain pihak, pola penambahan dengan sedikit neuron dapat 

menurunkan kemampuan adaptasi jaring saraf dan cenderung menambah waktu pelatihan. Oleh karena itu, pola 

pengembangan struktur jaring CBPNN yang adaptif perlu didesain untuk menurunkan beban komputasi pelatihan. Penelitian 

ini mengusulkan algoritma Fuzzy Logic (FL) untuk mengadaptifkan pengembangan struktur jaring CBPNN. Metode FL ini 

diterapkan pada pelatihan CBPNN dengan dua struktur, yaitu CBPNN dengan satu lapisan tersembunyi dan CBPNN dengan 

dua lapisan tersembunyi. Hasil penelitian menunjukan bahwa metode ini cukup efektif untuk diterapkan karena mampu 

meminimumkan waktu pelatihan, mengurangi beban komputasi dan menghasilkan struktur jaring saraf akhir yang lebih kecil. 

 

Kata KunciCBPNN, pola pengembangan struktur, logika fuzzy, efektif 

 

I. INTRODUCTION
4 

lectronic nose system is artificial olfaction 

technology, works as a representative of human 

olfactory system, usually used to analyze gaseous 

mixtures, discriminate different mixtures, or quantify the 

concentration of gas component. This instrument 

consists of four main parts, namely an odor sampling 

system, odor sensitive receptor, electronic circuitry, and 

data analysis software. Part of odor receptor usually 

implements a number of gas sensors arranged in an array 

form. While a pattern recognition software is commonly 
used to analyze the data [1]. Beside sensors, performance 

of the electronic nose system is determined by pattern 

recognition system. One of the pattern recognition 

algorithm broadly used in electronic nose systems is 

Artificial Neural Network (ANN). Researches on 

electronic nose system by using ANN as pattern 
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recognition algorithms for product quality have been 

conducted, such as applied to identify the quality of tea 

and spoiled beef [2-3]. 

ANN algorithm has been developed and mostly applied 
in many disciplines especially those related to the 

artificial intelligence systems. ANN is very helpful in the 

field of control and pattern recognition systems. 

Implementation of ANN increased significantly in recent 

decades, mainly supported by the development of pattern 

recognition research for various object studies. One 

model of ANN usually used as pattern recognition is 

Multi Layer Perceptron (MLP). MLP network can be 

trained with error back propagation method. Hence, this 

network is often popular with Back Propagation Neural 

Network (BPNN) [4]. Study showed that compared to 
other networks, BPNN has better performance [5]. 

BPNN has great ability to identify and recognize data 

patterns. Performance of the network is very dependent 

on the network architecture. The solution quality found 

by general BPNN depends strongly on the network size 

used. Size of network also determines learning process 

and its ability to recognize a given data pattern. Small 

structure of BPNN has limited capability to classify and 

E 
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identify complex patterns. Otherwise, BPNN with larger 

structure has better performance to recognize difficult 

patterns accurately [6-8]. On the other hand, large-sized 

of BPNN is more difficult to be trained than the small 
one. Choosing large size of BPNNs in one case often 

does not improve their performance and tends to 

aggravate the computational burden of training. 

Moreover, large size neural network commonly contains 

of noise, which cause the network lose its ability to 

recognize patterns [7-8]. Therefore, properly network has 

to be designed carefully. 

Application of small BPNN provides many advantages. 

Small BPNN can be easily trained with a light 

computational load. Besides, this network is also 

programmable. Implementation of this network requires 

only a minimum space of memory. Today, technology 
enables to design a portable electronic nose by applying 

microprocessor such as microcontroller or FPGA. In this 

system, application of small neural network is desirable. 

Therefore, designing minimum size of ANN is required. 

Researchers still investigate and review some algorithms 

in order to design minimum neural networks, such as 

finding minimum network by using pruning methods for 

business intelligent applications [9]. 

There are three methods commonly used to design 

neural network correspond to the patterns which want to 

be classified [6]. First is trial and error method. This 
method is conducted by training various sizes of neural 

network for a training data set, and then selects an 

appropriate neural network. Beside difficult to be 

implemented, this method needs experiences. The second 

method is pruning algorithm. Firstly, we train large size 

network. During training, the network size is reduced by 

eliminating some neurons, which have less contribution 

to the network outputs. Elimination of unnecessary 

neuron is done continuously in order to obtain an 

appropriate neural network. The last is constructive 

method. Training of the neural network is started with 

simple architecture. Adding new unit progressively is 
required to develop the initial network. Training is 

finished when the network was able to classify the data 

pattern. Other methods are developed by combining 

some of these methods. 

Constructive method has advantages compared to other 

methods [4, 6]. Constructive method applied on neural 

network is used to modify its previous structure in order 

to get a proper neural network. Constructive algorithm 

tries to find suitable network from very simple 

architecture, so this algorithm is easy to be computed. 

Besides, this method also tends to generate smaller 
network. In addition, it is also consistent to the 

provisions of CASA (Continuous Automation Structure 

Adaptation) which commonly used as standard of 

adaptive neural network. 

BPNN trained with constructive method is known as 

Constructive Back Propagation Neural Network 

(CBPNN). Training of CBPNN can be characterized by 

developing structure of the network gradually in order to 

create adaptive algorithm for various complexity of 

training data patterns. Before trained, the neural network 

is initiated by a simple structure. This initial network is 

trained to recognize a given training data. If the first 
network fails to recognize the patterns, developing 

structure has to be conducted by adding new neurons in 

the hidden layer. Adding unit is approved continuously 

until the neural network produce accurate results on 

patterns outside its training set.  

Pattern of structures development is the focus on 
training of CBPNN. Pattern by adding new unit 

constantly, which in this paper referred to fixed method, 

is structure development pattern that widely 

implemented to train of general CBPNN. In this method, 

number of new units added at each step of training 

should be managed fixedly. Although the training pattern 

can be implemented easily and creates adaptive CBPNN 

for the data patterns complexity, but it is wasteful and 

inefficient computing. Adding size of network will affect 

to the computational load of learning, speed of 

convergence, and structure of the final network. Change 

of structure due to new unit added tends to enlarge load 
of computational running. Adding new unit means 

increasing neuron number and network connection 

simultaneously. Lot of neurons needs hard effort to be 

computed. Besides, too many connections must be 

modified concurrently. In addition, excessive addition 

pattern while increasing computational load also tends to 

produce large-sized of final network. Furthermore, 

addition pattern by too small new unit number will 

reduce the network adaptability and extend time to learn. 

Therefore, there is important to design adaptive structure 

development pattern for CBPNN in order to minimize 
load of training process. 

The aim of this study is to implement Fuzzy Logic 

algorithm (FL) in training of CBPNN. This algorithm 

will be used to modify structure development pattern of 

CBPNN. Modifying structure development is desired to 

minimize effort and to streamline training process of the 

network. We expect that this method is powerful to be 

implemented on training of CBPNN. 

II. METHOD 

A. Basic Training of CBPNN 

Learning process of CBPNN is closely related to the 

learning process of mostly BPNN. As discussed in the 

previous section, BPNN is trained with error back 

propagation method. Generally, training process of 

BPNN can be described as follows. First, we should 
prepare a pair of input and target pattern into a set of 

training data and training parameters required (learning 

rate, momentum, maximum error). BPNN is early 

initialized with random weights. Input pattern of data set 

is fed to the input nodes of the BPNN. Learning process 

is started by forwarding this input signal through to all 

neurons in the hidden layer. All neurons in this layer will 

count all input signals based on the appropriate 

connection weight. Hidden neurons respond the signal by 

issuing output signals based on their activation function. 

These signals are forwarded to the output neurons 

through to their connection weight. Output neurons 
respond these signals by issuing signals as output signals 

of the network. After that, these signals are compared to 

the target. Network error is defined as deference of the 

target and the network output. The error has to be 

propagated back to the previous layer and then 

forwarded to the input layer. Interconnection weights of 

the network are modified based on the value of the back 

propagation of error related to the learning parameter. 
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Learning process is finished when the network converges 

at the specified error threshold. 

Training network with back propagation involves three 

steps, they are: step to feed-forward all input patterns, 
step to calculate and back propagate the associated error, 

and step to modify connection weight of the network [9]. 

Structure of one hidden layer of BPNN is illustrated on 

Figure 1. This network consists of n input units of input 

layer, n hidden neurons of hidden layer, n output neurons 

of output layer, hidden bias, and output bias. w1 is 

connection weights between input layer and hidden 

layer, b1 is connection weights of hidden bias and hidden 

layer, w2 is connection weight of hidden layer and 

output layer, and b2 represents connection weight 

between output bias and output layer. 

Before training is started, we ought to prepare a 
training data set. This data consists of n data pairs of 

input data pattern xi (i = 1, 2, 3, … n input) and target tj 

(j = 1, 2, …n output). These Data Patterns prepared (DP) 

can be formulated as follows: 

)} t,(x , ), t,(x ), t,{(x  DP nDatanData2211   (1) 

w1, b1, w2, b2 are firstly initiated by randomize function. 

Detail of these steps can be explained as follow: 

1. Step to feed-forward the input patterns 

This step is also popular with forward step. This step 

calculates all output signals of the network. Each pair of 

the training data is used to train the network. The first 
pair of the data that consist of n input data are used as 

first input pattern of the neural network. In the input 

layer, the data is forwarded to all hidden neurons with 

their related connection weight w1. Each hidden unit (Vj, 

j = 1, .. n hidden) counts all input signals from the 

previous layer and connection weight of the bias (b1). 

Mathematically, it can be formulated as follows: 





nInput

i

jiijj wxbVin
1

,11  (2) 

All neurons in the hidden layer will issue output 

signals that appropriate to their activation function (f). 

Signals of all hidden unit neurons can be written with the 

following formula: 

)( jj VinfV   (3) 

Then, output signals of the hidden layer are forwarded 

to all units of the output layer after multiplied with 

suitable connection weights. Each output unit of the 

network sums weighted signal of the previous layer and 

its bias. Output neurons generate output signals (Yk, k = 

1, 2, ... n output) based on their activation function, 
which can be formulated as follows: 
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 2. Step to calculate and back propagate the associated 

error 

This step is frequently called with backward step. This 

step counts error of the network and propagates the error 
to all connections of the network. Each output neuron is 

going to receive target pattern tk accordance with the 

training input patterns. Difference between the network 

outputs and the target is defined as error (ek) of the 

network. This error is calculated by the following 

equation: 

kkk Yte   (5) 

Means Square Error (MSE) of the network can be 

formulated from the errors with the equation as follow: 
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After that, this MSE has to be minimized by gradient 

descent procedure. This method is conducted by back 

propagating the error started from the output to the input 

layer. It is used to modify the overall network 

connections. Weight corrections of the network can be 

calculated from the derivative of the MSE for the 

connection weights which are going to be modified. 

Weight correction of w2 (Δw2) can be determined with 
the following equation: 
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where µ is learning rate parameter. While the weight 
correction of b2 (Δb2) is determined by the following 

formula: 
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Weight correction of w1 (Δw1) is calculated with the 

following equation: 
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Then, equation 10 is used to calculate weight correction 

of b1 (Δb1). 
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3. Step to modify connection weight of the network 

If the network is trained with momentum constant (⍺), 

weight connection of the network (w1, w2, b1, and b2) 

can be modified with the following equation: 
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Training process is continued until the network is able 

to recognize the training data pattern, which can be 

indicated by its ability to convergence at a specified error 

threshold. Training of BPNN with some hidden layers 
can be adopted from the previous training algorithm. 

 Training of CBPNN is conducted with error back 

propagation algorithm as same as learning process of 

BPNN. Constructive algorithm is added to modify 

structure of the network. Principally, training algorithm 

of general CBPNN can be described into 4 steps, as 

follows: 

a. Initialization step, the phase of initial network 

configuration. Initial network is constructed without 

hidden units. The weight of this configuration is 

updated by error back propagation to minimize the 
MSE 

b. Structure development step by adding new hidden 

units, i.e. by connecting input units to the new hidden 
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unit and connecting the new hidden unit to the output 

units of the network. All connection weights are 

firstly initialized with random function. 

c. Training of new network. After adding new units, the 
new network is trained by error back propagation to 

modify connection weight of the network in order to 

minimize the new MSE. Correcting weight can be 

done by modifying all network connections or only 

limited to the new connection added.  

d. Convergence test, that is by checking the network 

output. When the network yields an acceptable 

solution, then stop the training, otherwise return to 

step 2.  

Adding few hidden units can simultaneously accelerate 

the formation of the neural network. Besides that, this 

way tends to minimize the output error faster than 
training of some units independently [4]. 

Constructive method effects on the number of hidden 

unit neuron. The number is modified by pattern of 

structure development. Constructive method modifies 

size of the network structure automatically. Hence, 

learning equation of CBPNN can be rewritten as follows: 


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where NU is number of new unit and j is used to 

represent adaptive variable. NU is set constantly on fixed 
method and is going to be modified by FL method. Then, 

the new network weight can be determined as follow: 
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B. Implementation of Fuzzy Logic on Training Of 
CBPNN 

CBPNN is firstly initiated with simplest structure, 

commonly without hidden unit. In this study, we design 

one neuron in the hidden layer for the first arrangement. 

This initial configuration is trained to recognize data 

pattern provided at limited iteration. If the network fails 

to recognize the data set, some neurons are added to the 
hidden layer. Then the new network architecture is 

trained with the previous pattern. Training process is 

continued until we get suitable network for the training 

data set. Training method by modifying structure is 

typical algorithm of CBPNN.  

As already discussed, changing of network structure 

effects to the computing process. The number of new 

units added has to be tuned carefully to simplify 

computational process of training. Fast and slow 

structure changes will be not effective in learning 

process [6]. In order to minimize training process, 

structure development pattern has to be managed. 
Number of new units ought to be adjusted based on the 

error value at that step. If the network issue signal with 

big error then a number of hidden units must be added, 

but if the error is small means that the network has been 

closely to the expected structure. In this condition, the 

network only needs addition time to convergence and 

even does not require new neurons. On the other cases, 

rapid dropping off error indicates that the network is 

possible to recognize the training data set. Based on the 

previous consideration, number of new units should be 

modified automatically and called with adaptive 

structure development pattern. FL algorithm is used to 
the algorithm. Implementation of FL on training of 

CBPNN can be presented on Figure 2. 

FL algorithm is designed by two inputs. Both inputs 

are formulated on fuzzy rules to generate FL output that 

represents new unit number should be added. Fuzzy 

logic thinking involves three processes namely 

fuzzification, inference, and defuzzification step. Input 

signal must be converted into fuzzy variables. These 

fuzzy variables are determined based on the membership 

functions of these variables. Inference is stage to 

calculate fuzzy output based on the fuzzy rules defined. 
The last step is converting the fuzzy variable into desired 

output number. Design of FL implemented on CBPNN 

can be outlined as follows: 

1. Memberships function of input  

FL algorithm is constructed with two inputs, i.e. value 

of error (MSE) and change of MSE (dMSE). MSE is 

transformed into fuzzy variable based on the 

membership functions, which can be presented on Figure 

3. 

There are five membership functions of MSE, namely 

VS for very small MSE, S for small MSE, M for medium 

MSE, B for big MSE, and VB for very big MSE. While, 
value of dMSE is grouped into 3 membership functions, 

i.e. B for fast changes, M for medium changes, and S for 

slowly changes. Value of these functions can be exposed 

on Figure 4. 

2. Rules of FL 

Rules are the key of FL operation. These rules connect 

the input variable and the output of FL. Fuzzy rules used 

in this study are described on Table 1.  

3. Memberships function of output 

Output of FL is used to modify number of New Units 

(NU). To simplify the case, we implement singleton 
function as membership function of the fuzzy output. 

There are five membership functions used, namely VS 

for very small, S for small, M for medium, B for big, and 

VB for very big. Value of each function can be shown on 

Figure 5. 

4. Inference 

Main part of fuzzy logic operation is inference. In this 

study, we use min method, formulated as follow: 

 dMSEMSE  ,min  (18) 

Output of this logic (z) is calculated with centroid 

function, which can be formulated as follow: 



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where D is decision index. Then NU can be formulated 

as follows: 

)(zfNU   (20) 

C. Experimental Design 

FL method is implemented in training of CBPNN. 

There are two structures of the network investigated in 
this study, i.e. One Hidden Layer of CBPNN (OHL-

CBPNN) and Double Hidden Layer of CBPNN (DHL-

CBPNN). Both networks are commonly used on an 

electronic nose system. The result will be compared to 

the fixed method implemented on the same network for 

the similar training data set. 

Implementation of both methods can be detailed as 

follows. Fixed method on OHL-CBPNN is conducted by 

adding fixed unit number. There are five variations of 

unit number studied, i.e. 1 unit, 2 units, 3 units, 4 units, 

and 5 units. Batch iteration is set up at 300 epochs, 

related to the previous study conducted by Radi et.al. 
(2011). While, NU is arranged in the following section:



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0 : (unit) NU
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   S
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
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300 :iteration Batch

3 : (unit) NU
  B

 





300 :iteration Batch

4 : (unit) NU
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where VS is for very small (z ≤ 0.2), S is for small (0.2 < 

z ≤ 0.4), M is for medium (0.4 < z ≤ 0.6), B is for big 

(0.6 < z ≤0.8), and VB is for v ry big (0.8 < z). 

 

For DHL-CBPNN, we implemented the fixed method 
by varying number of new units added on the first and 

second hidden layer simultaneously. By equal internal 

iteration, number of new units is managed with range of 

1 to 5 units gradually. Whereas, implementation of FL 

method on DHL-CBPNN training is performed by 

modifying NU based on the following arrangement: 

 










300 : iteration Batch

0 :unit) layer, hidden (2 NU

0 :unit) layer, hidden (1 NU

VS nd

st

 










300 : iteration Batch

1 :unit) layer, hidden (2 NU

1 :unit) layer, hidden (1 NU

   S nd

st

 










300 : iteration Batch

1 :unit) layer, hidden (2 NU

2 :unit) layer, hidden (1 NU

  M nd

st

 










300 : iteration Batch

2 :unit) layer, hidden (2 NU

3 :unit) layer, hidden (1 NU

   B nd

st

 










300 : iteration Batch

3 :unit) layer, hidden (2 NU

4 :unit) layer, hidden (1 NU

 VB nd

st

 

where VS is for very small (z ≤ 0.2), S is for small (0.2 < 

z ≤ 0.4), M is for medium (0.4 < z ≤ 0.6), B is for big 

(0.6 < z ≤ 0.8), and VB is for very big (0.8 < z).  

 

D. Training Data Set 

Training data sets used in this study were aroma 

patterns of tobacco. There were five samples of tobacco, 

captured by combination of 7-gas sensors, namely 
MQ135, MQ136, MQ137, MQ138, MQ3, TGS2620, and 

TGS822. Average pattern of these samples are presented 

on Figure 6. We prepared five training data sets with 

different combination of these sensors. Data 1 

represented 5 patterns of tobacco captured by 

combination of 3 sensors. Data 2 was pattern of the 

sample odor with 4 sensors, data 3 with 5 sensors, data 4 

with 6 sensors, and the last data was captured by 

combination of seven sensors. 

III. RESULTS AND DISCUSSION 

Both CBPNNs were trained to recognize all data sets. 

Training was conducted for both neural networks for five 

repetitions for each data set. Both of them were trained 

with learning rate of 0.7, momentum of 0.2, and 

maximum error threshold of 0.001. This study conducted 

on laptop with specification of Intel Celeron M processor 

440 (1.86 GHz, 533 MHz FSB, 1 MB L2 cache) with 

memory of 1.5 MB DDR2. 

Effectiveness of both algorithms (fixed and FL) have 
been evaluated. There are three components used for this 

evaluation, i.e. size of final network, number of training 

iteration, and time of network learning. The network size 

in general MLP network involves the number of layers 

and the number of hidden-units per layer. Both of them 

reflect the complexity of the network. Number of units in 

each layer presents the numbers of connections in the 

network. Number of layers indicates the stage of 

computing process when it trained and used. Normally, 

the number of units in the input and output layers can be 

determined by the dimensionality of the problem or 

training data set, so the number cannot be set up when 
the network trained. Studying neural network which have 

determined configuration layer, observation of the 

network size is focused on the number of neurons in the 

hidden layer. In this study, the network size is 

represented by the number of neurons in the hidden 

layer. Time for training and number of iterations are used 

to represent the load of learning process. Result of this 

study is detailed as follows: 

A. Training of OHL-CBPNN 

OHL-CBPNN was prepared and trained for all data 

sets. Observation involves size of final network, training 

iteration, and training time. The result of this study is 

presented on Table 2. This result written on the table is 

average value of five experimental data. 

From the Table 2, we clearly know that the smaller 
size of final network is generated by fixed 1 and FL 

methods. Based on size consideration, result showed that 

adding more unit numbers simultaneously tends to 

generate bigger size of the final network. Comparison of 

both algorithms is clearly understood on Figure 7. 

It follows from Figure 7 that size of final OHL-

CBPNN is determined by structure development pattern 

which has been implemented. The figure shows that 
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smaller structure is generated by applying smaller new 

unit number. The study shows that fixed 1 method can 

construct final network with smaller size. Compare to 

fixed 1 method, FL method also generate small network. 
From this result, both methods can be recommended to 

train the OHL-CBPNN. 

Beside size of network, effectiveness of the proposed 

method is evaluated from number of training iteration. 

Comparison of iteration number for both methods can be 

shown on Figure 8. Figure 8 presents that application of 

both methods does not significantly affect to the number 

of iteration. The biggest influence is only seen on the 

OHL-CBPNN with fixed 1 method. Result shows that 

this method tends to increase number of training 

iteration. This is understandable because this method 

cause the structure changed slowly. Based on these 
results, the FL and fixed method with smaller number of 

iteration may be selected. 

Time of network training is also used to evaluate 

performance of the proposed algorithm. Training time of 

the OHL-CBPNN with various data sets is presented on 

Figure 9. With this result, we know that number of new 

unit added in the fixed method determines speed of the 

network convergence. Fixed method with small number 

of units tends to accelerate its training process. FL 

method also shows good performance. This method is 

able to minimize load of computation and results 
network with high speed of convergence. Compare to the 

studied method, FL method can be recommended. 

Based on the previous parameters, we can conclude 

that FL methods applied on OHL-CBPNN training 

shows the best performance. This method can be used to 

optimize training of the network. This is due to results of 

training time, training iteration, and network size of the 

network. 

B. Training of DHL-CBPNN 

DHL-CBPNN is trained to recognize the same data 

sets. The similar manner is applied in this experiment in 

accordance with the previous experimental design. In 

this study, we also focus to evaluate 3 parameters, i.e. 

size of network, training time, and iteration. Study result 

shows on Table 3.  
Based on Table 3, we can analyze that both, proposed 

method and comparison method, show similar 

performance with the previous study. Smaller size of 

network is also generated by applying of FL and Fixed 1 

methods. Both FL and fixed 1 method may be chosen to 

generate small CBPNN. Evaluation of network size for 

both applied algorithm for all variations of data sets is 

presented on Figure 10. From this result, we consider 

that both algorithms show the similar characteristic. 

Observations of training iteration of DHL-CBPNN are 

presented in Figure 11. The graph shows that variations 

of the fixed method employed are not exhibited 
significantly affects to the network training iterations. 

The biggest influence can be understood on the 

implementation of the fixed 1 method. Applying of this 

method for DHL-CBPNN tends to increase number of 

training iteration. The result shows that the network 

convergent with higher number of training iterations than 

the other methods implemented. This is understandable 

because the structure development was too slow and 

each change of structure requires considerable training 

iteration. Based on the results, FL method and big new 

unit number on fixed method can be recommended. 

Training time of DHL-CBPNN for both algorithms 

can be clearly evaluated from Figure 12. The figure 
shows that training time of the network for all data 

patterns was determined by implementation of training 

methods. From the figure, we can conclude that FL 

method give the best performance due to minimum time 

of convergence. 

Based on the three parameters studied before, we 

consider that FL method can be used as new strategy on 

training of DHL-CBPNN. Due to the same result on 

training of OHL-CBPNN, we sure that this method can 

be implemented on training of general CBPNN. 

C. Analyze of Both Algorithms on Training of OHL-
CBPNN and DHL-CBPNN 

In this section, we focus on analyzing performance of 

FL method compared to fixed methods. In order to 

evaluate effectiveness of FL method, we only compare 

the method to the best and average performance of fixed 
method. Best performance in this section is defined as 

method, which is able to generate small size of final 

network with minimum iteration and time.  Percentages 

of network size, training iteration, and training time are 

discussed. Network size comparison of FL method and 

related fixed method is presented on Table 4. 

Colum A in the Table 4 is smaller network size for all 

fixed methods implemented in training of CBPNN. Fixed 

1 method showed the best performance due to its ability 

to generate smallest network for all data patterns. We can 

evaluate the performances of both algorithms by 
comparing the data. Result shows that FL method 

implemented on OHL-CBPNN was able to generate 

smaller network compare to fixed 1 method (94.98 %). 

Better performance of FL method is showed if we 

compare it with the average size of final network of 

various fixed methods. FL method is able to produce less 

than a half size of final network with fixed method. 

Similar performance of FL method is also presented on 

training of DHL-CBPNN. FL method is effective to 

minimize final network size with average of 91.47 % 

compared to the best fixed method and 48.71 % 
compared to average fixed method implemented. This 

result showed that the proposed method is effective to 

find minimum network architecture. 

Beside network size, performance evaluation of both 

methods can be evaluated from training iteration. 

Comparison of training iteration between FL method and 

related fixed method is presented on Table 5. It shown 

that fixed method (the best and average) has better 

performance than FL method for OHL-CBPNN and 

DHL-CBPNN. CBPNN trained by fixed method is able 

to convergence with less training iteration than FL 

method implemented. It can be understood from the 
design of FL discussed in the previous section. 

Effectiveness of both methods can also be evaluated 

by comparing time of training process. Training time 

assessment of both methods for OHL-CBPNN and DHL-

CBPNN are detailed on Table 6. The table shows that 

comparing to fixed method; FL method has better 

performance due to its capability to minimize time of 

convergence. Based on the study result, training of OHL-

CBPNN with FL method is able to convergence with 
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only 43.96 % of training time used by average fixed 

method and 14.78 % less than the best fixed method.  

The similar result is showed on training of DHL-

CBPNN. In this case, the proposed method also presents 
better performance. The study result shows that the 

network trained using FL method was able to recognize 

the data pattern more than two times faster than the 

average performance of fixed methods studied. The data 

shows that DHL-CBPNN with FL method is able to 

convergence with only 39.66 % of average time needed 

when the fixed method applied and 73.88 % of time 

needed by the best fixed method implemented. 

Based on the study result, we can conclude that FL 

method is suitable to train not only OHL-CBPNN but 

also DHL-CBPNN. Although this method tends to add a 

few number of training iteration, FL method is able to 
minimize the final network size and time of training.  

D. Computational Load of Training 

Computational load is mainly used to evaluate 

effectiveness of an algorithm or method. Computational 
load is closely related to the algorithm design. A 

program, which contains a lot of multiplier, is usually 

difficult to be executed. In this case, the algorithm has 

high computational load. We also can predict the 

computational load by evaluating difficulty level of the 

algorithm. Besides, computational load can also be 

valued from the computer load when the algorithm is 

running. Light algorithm is easy to be computed. In this 

section, we only focus on the effect showed on computer 

when the both methods implemented on the OHL-

CBPNN and DHL-CBPNN. 
In the previous section, we captured training iteration 

and training time data. Both are used to calculate 

iteration frequency (f) of training of the neural network. 

Frequency of iteration means number of iteration for 

each second, which can be formulated as follows: 

t

I
f    (21) 

where I is number of training iteration and t is total time 

needed to train the network. Number of f shows the load 

of computing process.  

Comparison of f for both methods implemented on 
both CBPNN is presented on Table 7. It shown that 

proposed method has better performance than proper 

fixed method. Value of iteration frequency of CBPNN 

trained by FL method is bigger than the similar neural 

network when fixed method is implemented. It means 

that FL method tends to reduce load of computational 

process significantly. Implementation of FL shows that 

load of processor is lighter than the other methods 

implemented on training of CBPNN.  

These results prove that the addition of the algorithm 

does not necessarily aggravate the computational load, 

but in this case, the addition of FL algorithm can 
decrease load the network training. Thus, we agree that 

combining FL algorithm on CBPNN does not increase 

training load, but otherwise, it tends to drop off training 

load. 

IV. CONCLUSION 

This paper presented training of CBPNN by 

implementing FL method and fixed method. The neural 
network was used to recognize aroma pattern on an 

electronic nose system. The result shows that FL method 

applied on OHL-CBPNN and DHL-CBPNN is able to 

generate small final neural network. Besides that, FL 

method on both CBPNNs can minimize training time. FL 

method is also possible to reduce load of computational 

training. Combining FL method and CBPNN is possible 

to increase performance of the network. Therefore, this 

method can be recommended to arrange structure 

development of general CBPNN. 
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Figure 1. Structure of one hidden layer of BPNN 
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Figure 2. FL method implemented on CBPNN 
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Figure 5. Membership function of FL output 
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(a) 
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(e) 

Figure 6. Patterns of training data set (a) data 1, (b) data 2, (c) data 3, (d) data 4, (e) data 5 

 

 

 
 

Figure 7. Final network size of OHL-CBPNN with fixed and FL 

methods for all training data sets 

 

 
 

Figure 8. Training iteration of OHL-CBPNN with fixed and FL 

methods for all training data sets  

 

 
 

Figure 9. Training time of OHL-CBPNN with fixed and FL methods 

for all training data sets  

 
 

Figure 10. Final network size of DHL-CBPNN with fixed and FL 

methods for all training data sets 
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Figure 11. Training Iteration of DHL-CBPNN with fixed and FL 

methods for all training data sets 

 
 

Figure 12. Training time of OHL-CBPNN with fixed and FL methods 

for all training data sets 
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TABLE 2. 

COMPARISON OF TWO METHODS IN TRAINING OF OHL-CBPNN 

Method 
Training 

Data Set 

Network size 

(units)* 

Iteration 

(epoch) 

Training 

Time (s) 

Fixed 1 

Data 1 105 31095 37.181 

Data 2 72 21221 18.834 

Data 3 70 20565 17.938 

Data 4 82 24221 26.310 

Data 5 81 23823 26.119 

Fixed 2 

Data 1 159 23616 42.719 

Data 2 153 22643 41.588 

Data 3 117 17321 24.987 

Data 4 117 17347 26.335 

Data 5 131 19406 33.262 

Fixed 3 

Data 1 236 23351 61.706 

Data 2 213 21127 52.779 

Data 3 190 18750 43.878 

Data 4 177 17557 39.203 

Data 5 191 18885 47.422 

Fixed 4 

Data 1 295 21959 70.950 

Data 2 258 19190 58.865 

Data 3 246 18223 54.500 

Data 4 240 17885 54.515 

Data 5 228 16926 51.113 

Fixed 5 

Data 1 386 22968 100.162 

Data 2 311 18499 67.619 

Data 3 298 17675 65.053 

Data 4 283 16764 59.931 

Data 5 249 14836 48.240 

FL 

Data 1 96 23565 24.434 

Data 2 74 20304 18.944 

Data 3 77 21000 21.303 

Data 4 67 18099 16.660 

Data 5 72 19710 20.303 

*) number of hidden neurons of the final networks 

 

TABLE 3. 

COMPARISON OF TWO METHODS IN TRAINING OF DHL-CBPNN 

Method 
Training 

Data Set 

Network size 

(units)* 

Iteration 

(epoch) 

Training 

Time (s) 

Fixed 1 

Data 1 54 7655 11.344 

Data 2 48 6803 8.894 

Data 3 62 8863 16.388 

Data 4 58 8286 13.744 

Data 5 56 7883 12.888 

Fixed 2 

Data 1 81 5803 14.897 

Data 2 72 5224 12.709 

Data 3 92 6598 21.213 

Data 4 69 4933 10.681 

Data 5 67 4748 9.831 

Fixed 3 

Data 1 100 4903 19.991 

Data 2 98 4705 17.250 

Data 3 106 5124 24.453 

Data 4 99 4739 20.543 

Data 5 100 4851 19.969 

Fixed 4 

Data 1 111 3982 18.153 

Data 2 117 4231 21.259 

Data 3 141 5143 38.994 

Data 4 146 5289 38.866 

Data 5 152 5560 46.319 

Fixed 5 

Data 1 158 4594 40.603 

Data 2 142 4148 30.525 

Data 3 158 4595 39.887 

Data 4 144 4145 32.156 

Data 5 164 4720 46.816 

FL 

Data 1 51 6232 9.409 

Data 2 44 4961 6.110 

Data 3 56 7292 11.531 

Data 4 53 6629 10.435 

Data 5 49 5878 9.212 

*) number of hidden neurons of the final networks 
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TABLE 4. 

FINAL NETWORK SIZE COMPARISON OF FL AND RELATED FIXED METHOD 

Network 
Training 

Data set 

A 

(unit) 

B 

(unit) 

FL 

(unit) 

FL/A 

(%) 

FL/B 

(%) 

OHL-

CBPNN 

Data 1 105 236 96 91.05 40.45 

Data 2 72 201 74 103.06 36.85 

Data 3 70 184 77 110.00 41.81 

Data 4 82 180 67 81.71 37.22 

Data 5 81 176 72 89.11 40.92 

Average 82 196 77 94.98 39.45 

DHL-

CBPNN 

Data 1 54 101 51 95.15 50.60 

Data 2 48 96 44 92.08 46.27 

Data 3 62 112 56 90.26 49.75 

Data 4 58 103 53 91.38 51.32 

Data 5 56 108 49 88.49 45.62 

Average 55 104 51 91.47 48.71 

A: Final network size of the best fixed method performance 

B: Average of final network size of fixed methods used 

 

TABLE 5. 

TRAINING ITERATION COMPARISON OF FL AND RELATED FIXED METHOD 

Network 
Training 

Data Set 

A 

(epoch) 

B 

(epoch) 

FL 

(epoch) 

FL/A 

(%) 

FL/B 

(%) 

OHL-

CBPNN 

Data 1 22,968 24,598 23,565 102.60 95.80 

Data 2 18,499 20,536 20,304 109.76 98.87 

Data 3 17,675 18,507 21,000 118.81 113.47 

Data 4 16,764 18,755 18,099 107.96 96.50 

Data 5 14,836 18,775 19,710 132.85 104.98 

Average 18,148 20,234 20,535 114.40 101.92 

DHL-

CBPNN 

Data 1 4,594 5,387 6,232 135.66 115.68 

Data 2 4,148 5,022 4,961 119.62 98.78 

Data 3 4,595 6,064 7,292 158.69 120.24 

Data 4 4,145 5,478 6,629 159.92 121.00 

Data 5 4,720 5,553 5,878 124.52 105.86 

Average 4,440 5,501 6,198 139.68 112.31 

A: Training iteration of the best fixed method performance 

B: Average of training iteration of fixed methods used 

 

 

TABLE 6. 

TRAINING TIME COMPARISON OF FL AND RELATED FIXED METHOD 

Network 
Training 

Data Set 

A 

(s) 

B 

(s) 

FL 

(s) 

FL/A 

(%) 

FL/B 

(%) 

OHL-

CBPNN 

Data 1 37.18 62.54 24.43 65.72 39.07 

Data 2 18.83 47.94 18.94 100.58 39.52 

Data 3 17.94 41.27 21.30 118.76 51.62 

Data 4 26.31 41.26 16.66 63.32 40.38 

Data 5 26.12 41.23 20.30 77.73 49.24 

Average 25.28 46.85 20.33 85.22 43.96 

OHL-

CBPNN 

Data 1 11.34 21.00 9.41 82.95 44.81 

Data 2 8.89 18.13 6.11 68.70 33.70 

Data 3 16.39 28.19 11.53 70.37 40.91 

Data 4 13.74 23.20 10.43 75.92 44.98 

Data 5 12.89 27.16 9.21 71.48 33.91 

Average 12.65 23.53 9.34 73.88 39.66 

A: Training time of the best fixed method performance 

B: Average of training time of fixed methods used 
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TABLE 7. 

FREQUENCY ITERATION COMPARISON OF FL AND RELATED FIXED METHOD 

Network 
Training 

Data Set 

A 

(Hz) 

B 

(Hz) 

FL 

(Hz) 

FL/A 

(%) 

FL/B 

(%) 

OHL-

CBPNN 

Data 1 617.74 393.29 964.43 156.12 245.22 

Data 2 982.17 428.39 1071.79 109.12 250.19 

Data 3 985.35 448.42 985.76 100.04 219.83 

Data 4 637.18 454.57 1086.40 170.50 239.00 

Data 5 568.00 455.36 970.76 170.91 213.19 

Average 758.09 436.01 1015.83 141.34 233.48 

OHL-

CBPNN 

Data 1 404.96 256.57 662.30 163.55 258.14 

Data 2 466.35 277.05 812.03 174.13 293.10 

Data 3 280.38 215.15 632.33 225.53 293.90 

Data 4 301.59 236.15 635.27 210.64 269.01 

Data 5 366.27 204.40 638.07 174.20 312.16 

Average 363.91 237.87 676.00 189.61 285.26 

A: Iteration frequency of the best fixed method performance 

B: Average of f of fixed methods used 
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