
 IPTEK, The Journal for Technology and Science, Vol. 22, No. 3, August 2011 135

Minimum Constructive Back Propagation Neural

Network Based on Fuzzy Logic for Pattern

Recognition of Electronic Nose System

Radi, Muhammad Rivai

, and Mauridhi Hery Purnomo

1

AbstractConstructive Back Propagation Neural Network (CBPNN) is a kind of back propagation neural network

trained with constructive algorithm. Training of CBPNN is mainly conducted by developing the network’s architecture

which commonly done by adding a number of new neuron units on learning process. Training of the network usually

implements fixed method to develop its structure gradually by adding new units constantly. Although this method is simple

and able to create an adaptive network for data pattern complexity, but it is wasteful and inefficient for computing. New

unit addition affects directly to the computational load of training, speed of convergence, and structure of the final neural

network. While increases training load significantly, excessive addition of units also tends to generate a large size of final

network. Moreover, addition pattern with small unit number tends to drop off the adaptability of the network and extends

time of training. Therefore, there is important to design an adaptive structure development pattern for CBPNN in order to

minimize computing load of training. This study proposes Fuzzy Logic (FL) algorithm to manage and develop structure of

CBPNN. FL method was implemented on two models of CBPNN, i.e. designed with one and two hidden layers, used to

recognize aroma patterns on an electronic nose system. The results showed that this method is effective to be applied due to

its capability to minimize time of training, to reduce load of computational learning, and generate small size of network.

KeywordsCBPNN, structure development pattern, fuzzy logic, effective

AbstrakConstructive Back Propagation Neural Network (CBPNN) adalah jaring saraf perambatan balik galat yang dilatih

dengan algoritma konstruktif. Pelatihan CBPNN pada dasarnya dilakukan melalui metode pengembangan arsitektur jaring

yang biasanya dilakukan dengan menambahkan sejumlah neuron baru pada lapis tersembunyi pada proses pelatihannya.

Pelatihan jaring saraf ini dapat dilakukan dengan metode fixed, yaitu metode pengembangan struktur jaring dengan pola

penambahan sejumlah neuron konstan secara bertahap. Meskipun cara ini mudah dilakukan dan telah mampu membangun

struktur jaring yang adaptif terhadap kempleksitas data pelatihan, namun dari sisi komputasi dipandang kurang efisien.

Penambahan neuron baru secara langsung berdampak terhadap beban komputasi pelatihan, kecepatan konvergensi, dan

struktur jaring saraf yang terbentuk. Selain memberatkan beban komputasi, penambahan neuron yang terlalu banyak

cenderung menghasilkan struktur jaring akhir yang besar. Di lain pihak, pola penambahan dengan sedikit neuron dapat

menurunkan kemampuan adaptasi jaring saraf dan cenderung menambah waktu pelatihan. Oleh karena itu, pola

pengembangan struktur jaring CBPNN yang adaptif perlu didesain untuk menurunkan beban komputasi pelatihan. Penelitian

ini mengusulkan algoritma Fuzzy Logic (FL) untuk mengadaptifkan pengembangan struktur jaring CBPNN. Metode FL ini

diterapkan pada pelatihan CBPNN dengan dua struktur, yaitu CBPNN dengan satu lapisan tersembunyi dan CBPNN dengan

dua lapisan tersembunyi. Hasil penelitian menunjukan bahwa metode ini cukup efektif untuk diterapkan karena mampu

meminimumkan waktu pelatihan, mengurangi beban komputasi dan menghasilkan struktur jaring saraf akhir yang lebih kecil.

Kata KunciCBPNN, pola pengembangan struktur, logika fuzzy, efektif

I. INTRODUCTION
4

lectronic nose system is artificial olfaction

technology, works as a representative of human

olfactory system, usually used to analyze gaseous

mixtures, discriminate different mixtures, or quantify the

concentration of gas component. This instrument

consists of four main parts, namely an odor sampling

system, odor sensitive receptor, electronic circuitry, and

data analysis software. Part of odor receptor usually

implements a number of gas sensors arranged in an array

form. While a pattern recognition software is commonly
used to analyze the data [1]. Beside sensors, performance

of the electronic nose system is determined by pattern

recognition system. One of the pattern recognition

algorithm broadly used in electronic nose systems is

Artificial Neural Network (ANN). Researches on

electronic nose system by using ANN as pattern

Radi, Muhammad Rivai, and Mauridhi Hery Purnomo are with

Department of Electrical Engineering, FTI, Institut Teknologi Sepuluh

Nopember, Surabaya, 60111, Indonesia. Email:

radi10@mhs.ee.its.ac.id.

recognition algorithms for product quality have been

conducted, such as applied to identify the quality of tea

and spoiled beef [2-3].

ANN algorithm has been developed and mostly applied
in many disciplines especially those related to the

artificial intelligence systems. ANN is very helpful in the

field of control and pattern recognition systems.

Implementation of ANN increased significantly in recent

decades, mainly supported by the development of pattern

recognition research for various object studies. One

model of ANN usually used as pattern recognition is

Multi Layer Perceptron (MLP). MLP network can be

trained with error back propagation method. Hence, this

network is often popular with Back Propagation Neural

Network (BPNN) [4]. Study showed that compared to
other networks, BPNN has better performance [5].

BPNN has great ability to identify and recognize data

patterns. Performance of the network is very dependent

on the network architecture. The solution quality found

by general BPNN depends strongly on the network size

used. Size of network also determines learning process

and its ability to recognize a given data pattern. Small

structure of BPNN has limited capability to classify and

E

 136 IPTEK, The Journal for Technology and Science, Vol. 22, No. 3, August 2011

identify complex patterns. Otherwise, BPNN with larger

structure has better performance to recognize difficult

patterns accurately [6-8]. On the other hand, large-sized

of BPNN is more difficult to be trained than the small
one. Choosing large size of BPNNs in one case often

does not improve their performance and tends to

aggravate the computational burden of training.

Moreover, large size neural network commonly contains

of noise, which cause the network lose its ability to

recognize patterns [7-8]. Therefore, properly network has

to be designed carefully.

Application of small BPNN provides many advantages.

Small BPNN can be easily trained with a light

computational load. Besides, this network is also

programmable. Implementation of this network requires

only a minimum space of memory. Today, technology
enables to design a portable electronic nose by applying

microprocessor such as microcontroller or FPGA. In this

system, application of small neural network is desirable.

Therefore, designing minimum size of ANN is required.

Researchers still investigate and review some algorithms

in order to design minimum neural networks, such as

finding minimum network by using pruning methods for

business intelligent applications [9].

There are three methods commonly used to design

neural network correspond to the patterns which want to

be classified [6]. First is trial and error method. This
method is conducted by training various sizes of neural

network for a training data set, and then selects an

appropriate neural network. Beside difficult to be

implemented, this method needs experiences. The second

method is pruning algorithm. Firstly, we train large size

network. During training, the network size is reduced by

eliminating some neurons, which have less contribution

to the network outputs. Elimination of unnecessary

neuron is done continuously in order to obtain an

appropriate neural network. The last is constructive

method. Training of the neural network is started with

simple architecture. Adding new unit progressively is
required to develop the initial network. Training is

finished when the network was able to classify the data

pattern. Other methods are developed by combining

some of these methods.

Constructive method has advantages compared to other

methods [4, 6]. Constructive method applied on neural

network is used to modify its previous structure in order

to get a proper neural network. Constructive algorithm

tries to find suitable network from very simple

architecture, so this algorithm is easy to be computed.

Besides, this method also tends to generate smaller
network. In addition, it is also consistent to the

provisions of CASA (Continuous Automation Structure

Adaptation) which commonly used as standard of

adaptive neural network.

BPNN trained with constructive method is known as

Constructive Back Propagation Neural Network

(CBPNN). Training of CBPNN can be characterized by

developing structure of the network gradually in order to

create adaptive algorithm for various complexity of

training data patterns. Before trained, the neural network

is initiated by a simple structure. This initial network is

trained to recognize a given training data. If the first
network fails to recognize the patterns, developing

structure has to be conducted by adding new neurons in

the hidden layer. Adding unit is approved continuously

until the neural network produce accurate results on

patterns outside its training set.

Pattern of structures development is the focus on
training of CBPNN. Pattern by adding new unit

constantly, which in this paper referred to fixed method,

is structure development pattern that widely

implemented to train of general CBPNN. In this method,

number of new units added at each step of training

should be managed fixedly. Although the training pattern

can be implemented easily and creates adaptive CBPNN

for the data patterns complexity, but it is wasteful and

inefficient computing. Adding size of network will affect

to the computational load of learning, speed of

convergence, and structure of the final network. Change

of structure due to new unit added tends to enlarge load
of computational running. Adding new unit means

increasing neuron number and network connection

simultaneously. Lot of neurons needs hard effort to be

computed. Besides, too many connections must be

modified concurrently. In addition, excessive addition

pattern while increasing computational load also tends to

produce large-sized of final network. Furthermore,

addition pattern by too small new unit number will

reduce the network adaptability and extend time to learn.

Therefore, there is important to design adaptive structure

development pattern for CBPNN in order to minimize
load of training process.

The aim of this study is to implement Fuzzy Logic

algorithm (FL) in training of CBPNN. This algorithm

will be used to modify structure development pattern of

CBPNN. Modifying structure development is desired to

minimize effort and to streamline training process of the

network. We expect that this method is powerful to be

implemented on training of CBPNN.

II. METHOD

A. Basic Training of CBPNN

Learning process of CBPNN is closely related to the

learning process of mostly BPNN. As discussed in the

previous section, BPNN is trained with error back

propagation method. Generally, training process of

BPNN can be described as follows. First, we should
prepare a pair of input and target pattern into a set of

training data and training parameters required (learning

rate, momentum, maximum error). BPNN is early

initialized with random weights. Input pattern of data set

is fed to the input nodes of the BPNN. Learning process

is started by forwarding this input signal through to all

neurons in the hidden layer. All neurons in this layer will

count all input signals based on the appropriate

connection weight. Hidden neurons respond the signal by

issuing output signals based on their activation function.

These signals are forwarded to the output neurons

through to their connection weight. Output neurons
respond these signals by issuing signals as output signals

of the network. After that, these signals are compared to

the target. Network error is defined as deference of the

target and the network output. The error has to be

propagated back to the previous layer and then

forwarded to the input layer. Interconnection weights of

the network are modified based on the value of the back

propagation of error related to the learning parameter.

 IPTEK, The Journal for Technology and Science, Vol. 22, No. 3, August 2011 137

Learning process is finished when the network converges

at the specified error threshold.

Training network with back propagation involves three

steps, they are: step to feed-forward all input patterns,
step to calculate and back propagate the associated error,

and step to modify connection weight of the network [9].

Structure of one hidden layer of BPNN is illustrated on

Figure 1. This network consists of n input units of input

layer, n hidden neurons of hidden layer, n output neurons

of output layer, hidden bias, and output bias. w1 is

connection weights between input layer and hidden

layer, b1 is connection weights of hidden bias and hidden

layer, w2 is connection weight of hidden layer and

output layer, and b2 represents connection weight

between output bias and output layer.

Before training is started, we ought to prepare a
training data set. This data consists of n data pairs of

input data pattern xi (i = 1, 2, 3, … n input) and target tj

(j = 1, 2, …n output). These Data Patterns prepared (DP)

can be formulated as follows:

)} t,(x ,), t,(x), t,{(x DP nDatanData2211  (1)

w1, b1, w2, b2 are firstly initiated by randomize function.

Detail of these steps can be explained as follow:

1. Step to feed-forward the input patterns

This step is also popular with forward step. This step

calculates all output signals of the network. Each pair of

the training data is used to train the network. The first
pair of the data that consist of n input data are used as

first input pattern of the neural network. In the input

layer, the data is forwarded to all hidden neurons with

their related connection weight w1. Each hidden unit (Vj,

j = 1, .. n hidden) counts all input signals from the

previous layer and connection weight of the bias (b1).

Mathematically, it can be formulated as follows:





nInput

i

jiijj wxbVin
1

,11 (2)

All neurons in the hidden layer will issue output

signals that appropriate to their activation function (f).

Signals of all hidden unit neurons can be written with the

following formula:

)(jj VinfV  (3)

Then, output signals of the hidden layer are forwarded

to all units of the output layer after multiplied with

suitable connection weights. Each output unit of the

network sums weighted signal of the previous layer and

its bias. Output neurons generate output signals (Yk, k =

1, 2, ... n output) based on their activation function,
which can be formulated as follows:

)(

22
1

,

kk

nHidden

j

kjjkk

YinfY

wVbYin



 
 (4)

 2. Step to calculate and back propagate the associated

error

This step is frequently called with backward step. This

step counts error of the network and propagates the error
to all connections of the network. Each output neuron is

going to receive target pattern tk accordance with the

training input patterns. Difference between the network

outputs and the target is defined as error (ek) of the

network. This error is calculated by the following

equation:

kkk Yte  (5)

Means Square Error (MSE) of the network can be

formulated from the errors with the equation as follow:

 



nOutput

1k

2

kk

nOutput

1k

2

k Yt
2

1
e

2

1
MSE (6)

After that, this MSE has to be minimized by gradient

descent procedure. This method is conducted by back

propagating the error started from the output to the input

layer. It is used to modify the overall network

connections. Weight corrections of the network can be

calculated from the derivative of the MSE for the

connection weights which are going to be modified.

Weight correction of w2 (Δw2) can be determined with
the following equation:

jkkkj

kj

k

kkj

kj

VYinfew

w

Yin

Yin

MSE

w

MSE
w


















)('2

22
2

,

,,

,



 (7)

where µ is learning rate parameter. While the weight
correction of b2 (Δb2) is determined by the following

formula:

)('2

22
2

kkk

k

k

kk

k

Yinfeb

b

Yin

Yin

MSE

b

MSE
b




















 (8)

Weight correction of w1 (Δw1) is calculated with the

following equation:

ijkjkkji

ji

j

j

j

j

k

kji

ji

xVinfwYinfew

w

Vin

Vin

V

V

Yin

Yin

MSE

w

MSE
w




























)('2)('1

11
1

,,

,,

,



 (9)

Then, equation 10 is used to calculate weight correction

of b1 (Δb1).

)('2)('1

11
1

, jkjkkj

j

j

j

j

j

k

kj

j

VinfwYinfeb

b

Vin

Vin

V

V

Yin

Yin

MSE

b

MSE
b






























 (10)

3. Step to modify connection weight of the network

If the network is trained with momentum constant (⍺),

weight connection of the network (w1, w2, b1, and b2)

can be modified with the following equation:

)(2)(2)(2)(2

)(2)(2)(2)(2

)(1)(1)(1)(1

)(1)(1)(1)(1

,,,,

,,,,

oldbnewboldbnewb

oldwnewwoldwneww

oldbnewboldbnewb

oldwnewwoldwneww

kkkk

kjkjkjkj

jjjj

jijijiji

















 (11)

Training process is continued until the network is able

to recognize the training data pattern, which can be

indicated by its ability to convergence at a specified error

threshold. Training of BPNN with some hidden layers
can be adopted from the previous training algorithm.

 Training of CBPNN is conducted with error back

propagation algorithm as same as learning process of

BPNN. Constructive algorithm is added to modify

structure of the network. Principally, training algorithm

of general CBPNN can be described into 4 steps, as

follows:

a. Initialization step, the phase of initial network

configuration. Initial network is constructed without

hidden units. The weight of this configuration is

updated by error back propagation to minimize the
MSE

b. Structure development step by adding new hidden

units, i.e. by connecting input units to the new hidden

 138 IPTEK, The Journal for Technology and Science, Vol. 22, No. 3, August 2011

unit and connecting the new hidden unit to the output

units of the network. All connection weights are

firstly initialized with random function.

c. Training of new network. After adding new units, the
new network is trained by error back propagation to

modify connection weight of the network in order to

minimize the new MSE. Correcting weight can be

done by modifying all network connections or only

limited to the new connection added.

d. Convergence test, that is by checking the network

output. When the network yields an acceptable

solution, then stop the training, otherwise return to

step 2.

Adding few hidden units can simultaneously accelerate

the formation of the neural network. Besides that, this

way tends to minimize the output error faster than
training of some units independently [4].

Constructive method effects on the number of hidden

unit neuron. The number is modified by pattern of

structure development. Constructive method modifies

size of the network structure automatically. Hence,

learning equation of CBPNN can be rewritten as follows:





nInput

i

jiijj wxbVin
1

,11 (12)







NUnHidden

j

kjjkk wVbYin
1

,22 (13)

jkkkj VYinfew )('2 ,  (14)

ijkjkkji xVinfwYinfew )('2)('1 ,,  (15)

)('2)('1 , jkjkkj VinfwYinfeb   (16)

where NU is number of new unit and j is used to

represent adaptive variable. NU is set constantly on fixed
method and is going to be modified by FL method. Then,

the new network weight can be determined as follow:

)(2)(2)(2)(2

)(2)(2)(2)(2

)(1)(1)(1)(1

)(1)(1)(1)(1

,,,,

,,,,

oldbnewboldbnewb

oldwnewwoldwneww

oldbnewboldbnewb

oldwnewwoldwneww

kkkk

kjkjkjkj

jjjj

jijijiji

















 (17)

B. Implementation of Fuzzy Logic on Training Of
CBPNN

CBPNN is firstly initiated with simplest structure,

commonly without hidden unit. In this study, we design

one neuron in the hidden layer for the first arrangement.

This initial configuration is trained to recognize data

pattern provided at limited iteration. If the network fails

to recognize the data set, some neurons are added to the
hidden layer. Then the new network architecture is

trained with the previous pattern. Training process is

continued until we get suitable network for the training

data set. Training method by modifying structure is

typical algorithm of CBPNN.

As already discussed, changing of network structure

effects to the computing process. The number of new

units added has to be tuned carefully to simplify

computational process of training. Fast and slow

structure changes will be not effective in learning

process [6]. In order to minimize training process,

structure development pattern has to be managed.
Number of new units ought to be adjusted based on the

error value at that step. If the network issue signal with

big error then a number of hidden units must be added,

but if the error is small means that the network has been

closely to the expected structure. In this condition, the

network only needs addition time to convergence and

even does not require new neurons. On the other cases,

rapid dropping off error indicates that the network is

possible to recognize the training data set. Based on the

previous consideration, number of new units should be

modified automatically and called with adaptive

structure development pattern. FL algorithm is used to
the algorithm. Implementation of FL on training of

CBPNN can be presented on Figure 2.

FL algorithm is designed by two inputs. Both inputs

are formulated on fuzzy rules to generate FL output that

represents new unit number should be added. Fuzzy

logic thinking involves three processes namely

fuzzification, inference, and defuzzification step. Input

signal must be converted into fuzzy variables. These

fuzzy variables are determined based on the membership

functions of these variables. Inference is stage to

calculate fuzzy output based on the fuzzy rules defined.
The last step is converting the fuzzy variable into desired

output number. Design of FL implemented on CBPNN

can be outlined as follows:

1. Memberships function of input

FL algorithm is constructed with two inputs, i.e. value

of error (MSE) and change of MSE (dMSE). MSE is

transformed into fuzzy variable based on the

membership functions, which can be presented on Figure

3.

There are five membership functions of MSE, namely

VS for very small MSE, S for small MSE, M for medium

MSE, B for big MSE, and VB for very big MSE. While,
value of dMSE is grouped into 3 membership functions,

i.e. B for fast changes, M for medium changes, and S for

slowly changes. Value of these functions can be exposed

on Figure 4.

2. Rules of FL

Rules are the key of FL operation. These rules connect

the input variable and the output of FL. Fuzzy rules used

in this study are described on Table 1.

3. Memberships function of output

Output of FL is used to modify number of New Units

(NU). To simplify the case, we implement singleton
function as membership function of the fuzzy output.

There are five membership functions used, namely VS

for very small, S for small, M for medium, B for big, and

VB for very big. Value of each function can be shown on

Figure 5.

4. Inference

Main part of fuzzy logic operation is inference. In this

study, we use min method, formulated as follow:

 dMSEMSE  ,min (18)

Output of this logic (z) is calculated with centroid

function, which can be formulated as follow:







D
z

 (19)

 IPTEK, The Journal for Technology and Science, Vol. 22, No. 3, August 2011 139

where D is decision index. Then NU can be formulated

as follows:

)(zfNU  (20)

C. Experimental Design

FL method is implemented in training of CBPNN.

There are two structures of the network investigated in
this study, i.e. One Hidden Layer of CBPNN (OHL-

CBPNN) and Double Hidden Layer of CBPNN (DHL-

CBPNN). Both networks are commonly used on an

electronic nose system. The result will be compared to

the fixed method implemented on the same network for

the similar training data set.

Implementation of both methods can be detailed as

follows. Fixed method on OHL-CBPNN is conducted by

adding fixed unit number. There are five variations of

unit number studied, i.e. 1 unit, 2 units, 3 units, 4 units,

and 5 units. Batch iteration is set up at 300 epochs,

related to the previous study conducted by Radi et.al.
(2011). While, NU is arranged in the following section:





300 :iteration Batch

0 : (unit) NU
VS





300 :iteration Batch

1 : (unit) NU
 S





300 :iteration Batch

2 : (unit) NU
 M





300 :iteration Batch

3 : (unit) NU
 B





300 :iteration Batch

4 : (unit) NU
VB

where VS is for very small (z ≤ 0.2), S is for small (0.2 <

z ≤ 0.4), M is for medium (0.4 < z ≤ 0.6), B is for big

(0.6 < z ≤0.8), and VB is for v ry big (0.8 < z).

For DHL-CBPNN, we implemented the fixed method
by varying number of new units added on the first and

second hidden layer simultaneously. By equal internal

iteration, number of new units is managed with range of

1 to 5 units gradually. Whereas, implementation of FL

method on DHL-CBPNN training is performed by

modifying NU based on the following arrangement:










300 : iteration Batch

0 :unit) layer, hidden (2 NU

0 :unit) layer, hidden (1 NU

VS nd

st










300 : iteration Batch

1 :unit) layer, hidden (2 NU

1 :unit) layer, hidden (1 NU

 S nd

st










300 : iteration Batch

1 :unit) layer, hidden (2 NU

2 :unit) layer, hidden (1 NU

 M nd

st










300 : iteration Batch

2 :unit) layer, hidden (2 NU

3 :unit) layer, hidden (1 NU

 B nd

st










300 : iteration Batch

3 :unit) layer, hidden (2 NU

4 :unit) layer, hidden (1 NU

 VB nd

st

where VS is for very small (z ≤ 0.2), S is for small (0.2 <

z ≤ 0.4), M is for medium (0.4 < z ≤ 0.6), B is for big

(0.6 < z ≤ 0.8), and VB is for very big (0.8 < z).

D. Training Data Set

Training data sets used in this study were aroma

patterns of tobacco. There were five samples of tobacco,

captured by combination of 7-gas sensors, namely
MQ135, MQ136, MQ137, MQ138, MQ3, TGS2620, and

TGS822. Average pattern of these samples are presented

on Figure 6. We prepared five training data sets with

different combination of these sensors. Data 1

represented 5 patterns of tobacco captured by

combination of 3 sensors. Data 2 was pattern of the

sample odor with 4 sensors, data 3 with 5 sensors, data 4

with 6 sensors, and the last data was captured by

combination of seven sensors.

III. RESULTS AND DISCUSSION

Both CBPNNs were trained to recognize all data sets.

Training was conducted for both neural networks for five

repetitions for each data set. Both of them were trained

with learning rate of 0.7, momentum of 0.2, and

maximum error threshold of 0.001. This study conducted

on laptop with specification of Intel Celeron M processor

440 (1.86 GHz, 533 MHz FSB, 1 MB L2 cache) with

memory of 1.5 MB DDR2.

Effectiveness of both algorithms (fixed and FL) have
been evaluated. There are three components used for this

evaluation, i.e. size of final network, number of training

iteration, and time of network learning. The network size

in general MLP network involves the number of layers

and the number of hidden-units per layer. Both of them

reflect the complexity of the network. Number of units in

each layer presents the numbers of connections in the

network. Number of layers indicates the stage of

computing process when it trained and used. Normally,

the number of units in the input and output layers can be

determined by the dimensionality of the problem or

training data set, so the number cannot be set up when
the network trained. Studying neural network which have

determined configuration layer, observation of the

network size is focused on the number of neurons in the

hidden layer. In this study, the network size is

represented by the number of neurons in the hidden

layer. Time for training and number of iterations are used

to represent the load of learning process. Result of this

study is detailed as follows:

A. Training of OHL-CBPNN

OHL-CBPNN was prepared and trained for all data

sets. Observation involves size of final network, training

iteration, and training time. The result of this study is

presented on Table 2. This result written on the table is

average value of five experimental data.

From the Table 2, we clearly know that the smaller
size of final network is generated by fixed 1 and FL

methods. Based on size consideration, result showed that

adding more unit numbers simultaneously tends to

generate bigger size of the final network. Comparison of

both algorithms is clearly understood on Figure 7.

It follows from Figure 7 that size of final OHL-

CBPNN is determined by structure development pattern

which has been implemented. The figure shows that

 140 IPTEK, The Journal for Technology and Science, Vol. 22, No. 3, August 2011

smaller structure is generated by applying smaller new

unit number. The study shows that fixed 1 method can

construct final network with smaller size. Compare to

fixed 1 method, FL method also generate small network.
From this result, both methods can be recommended to

train the OHL-CBPNN.

Beside size of network, effectiveness of the proposed

method is evaluated from number of training iteration.

Comparison of iteration number for both methods can be

shown on Figure 8. Figure 8 presents that application of

both methods does not significantly affect to the number

of iteration. The biggest influence is only seen on the

OHL-CBPNN with fixed 1 method. Result shows that

this method tends to increase number of training

iteration. This is understandable because this method

cause the structure changed slowly. Based on these
results, the FL and fixed method with smaller number of

iteration may be selected.

Time of network training is also used to evaluate

performance of the proposed algorithm. Training time of

the OHL-CBPNN with various data sets is presented on

Figure 9. With this result, we know that number of new

unit added in the fixed method determines speed of the

network convergence. Fixed method with small number

of units tends to accelerate its training process. FL

method also shows good performance. This method is

able to minimize load of computation and results
network with high speed of convergence. Compare to the

studied method, FL method can be recommended.

Based on the previous parameters, we can conclude

that FL methods applied on OHL-CBPNN training

shows the best performance. This method can be used to

optimize training of the network. This is due to results of

training time, training iteration, and network size of the

network.

B. Training of DHL-CBPNN

DHL-CBPNN is trained to recognize the same data

sets. The similar manner is applied in this experiment in

accordance with the previous experimental design. In

this study, we also focus to evaluate 3 parameters, i.e.

size of network, training time, and iteration. Study result

shows on Table 3.
Based on Table 3, we can analyze that both, proposed

method and comparison method, show similar

performance with the previous study. Smaller size of

network is also generated by applying of FL and Fixed 1

methods. Both FL and fixed 1 method may be chosen to

generate small CBPNN. Evaluation of network size for

both applied algorithm for all variations of data sets is

presented on Figure 10. From this result, we consider

that both algorithms show the similar characteristic.

Observations of training iteration of DHL-CBPNN are

presented in Figure 11. The graph shows that variations

of the fixed method employed are not exhibited
significantly affects to the network training iterations.

The biggest influence can be understood on the

implementation of the fixed 1 method. Applying of this

method for DHL-CBPNN tends to increase number of

training iteration. The result shows that the network

convergent with higher number of training iterations than

the other methods implemented. This is understandable

because the structure development was too slow and

each change of structure requires considerable training

iteration. Based on the results, FL method and big new

unit number on fixed method can be recommended.

Training time of DHL-CBPNN for both algorithms

can be clearly evaluated from Figure 12. The figure
shows that training time of the network for all data

patterns was determined by implementation of training

methods. From the figure, we can conclude that FL

method give the best performance due to minimum time

of convergence.

Based on the three parameters studied before, we

consider that FL method can be used as new strategy on

training of DHL-CBPNN. Due to the same result on

training of OHL-CBPNN, we sure that this method can

be implemented on training of general CBPNN.

C. Analyze of Both Algorithms on Training of OHL-
CBPNN and DHL-CBPNN

In this section, we focus on analyzing performance of

FL method compared to fixed methods. In order to

evaluate effectiveness of FL method, we only compare

the method to the best and average performance of fixed
method. Best performance in this section is defined as

method, which is able to generate small size of final

network with minimum iteration and time. Percentages

of network size, training iteration, and training time are

discussed. Network size comparison of FL method and

related fixed method is presented on Table 4.

Colum A in the Table 4 is smaller network size for all

fixed methods implemented in training of CBPNN. Fixed

1 method showed the best performance due to its ability

to generate smallest network for all data patterns. We can

evaluate the performances of both algorithms by
comparing the data. Result shows that FL method

implemented on OHL-CBPNN was able to generate

smaller network compare to fixed 1 method (94.98 %).

Better performance of FL method is showed if we

compare it with the average size of final network of

various fixed methods. FL method is able to produce less

than a half size of final network with fixed method.

Similar performance of FL method is also presented on

training of DHL-CBPNN. FL method is effective to

minimize final network size with average of 91.47 %

compared to the best fixed method and 48.71 %
compared to average fixed method implemented. This

result showed that the proposed method is effective to

find minimum network architecture.

Beside network size, performance evaluation of both

methods can be evaluated from training iteration.

Comparison of training iteration between FL method and

related fixed method is presented on Table 5. It shown

that fixed method (the best and average) has better

performance than FL method for OHL-CBPNN and

DHL-CBPNN. CBPNN trained by fixed method is able

to convergence with less training iteration than FL

method implemented. It can be understood from the
design of FL discussed in the previous section.

Effectiveness of both methods can also be evaluated

by comparing time of training process. Training time

assessment of both methods for OHL-CBPNN and DHL-

CBPNN are detailed on Table 6. The table shows that

comparing to fixed method; FL method has better

performance due to its capability to minimize time of

convergence. Based on the study result, training of OHL-

CBPNN with FL method is able to convergence with

 IPTEK, The Journal for Technology and Science, Vol. 22, No. 3, August 2011 141

only 43.96 % of training time used by average fixed

method and 14.78 % less than the best fixed method.

The similar result is showed on training of DHL-

CBPNN. In this case, the proposed method also presents
better performance. The study result shows that the

network trained using FL method was able to recognize

the data pattern more than two times faster than the

average performance of fixed methods studied. The data

shows that DHL-CBPNN with FL method is able to

convergence with only 39.66 % of average time needed

when the fixed method applied and 73.88 % of time

needed by the best fixed method implemented.

Based on the study result, we can conclude that FL

method is suitable to train not only OHL-CBPNN but

also DHL-CBPNN. Although this method tends to add a

few number of training iteration, FL method is able to
minimize the final network size and time of training.

D. Computational Load of Training

Computational load is mainly used to evaluate

effectiveness of an algorithm or method. Computational
load is closely related to the algorithm design. A

program, which contains a lot of multiplier, is usually

difficult to be executed. In this case, the algorithm has

high computational load. We also can predict the

computational load by evaluating difficulty level of the

algorithm. Besides, computational load can also be

valued from the computer load when the algorithm is

running. Light algorithm is easy to be computed. In this

section, we only focus on the effect showed on computer

when the both methods implemented on the OHL-

CBPNN and DHL-CBPNN.
In the previous section, we captured training iteration

and training time data. Both are used to calculate

iteration frequency (f) of training of the neural network.

Frequency of iteration means number of iteration for

each second, which can be formulated as follows:

t

I
f  (21)

where I is number of training iteration and t is total time

needed to train the network. Number of f shows the load

of computing process.

Comparison of f for both methods implemented on
both CBPNN is presented on Table 7. It shown that

proposed method has better performance than proper

fixed method. Value of iteration frequency of CBPNN

trained by FL method is bigger than the similar neural

network when fixed method is implemented. It means

that FL method tends to reduce load of computational

process significantly. Implementation of FL shows that

load of processor is lighter than the other methods

implemented on training of CBPNN.

These results prove that the addition of the algorithm

does not necessarily aggravate the computational load,

but in this case, the addition of FL algorithm can
decrease load the network training. Thus, we agree that

combining FL algorithm on CBPNN does not increase

training load, but otherwise, it tends to drop off training

load.

IV. CONCLUSION

This paper presented training of CBPNN by

implementing FL method and fixed method. The neural
network was used to recognize aroma pattern on an

electronic nose system. The result shows that FL method

applied on OHL-CBPNN and DHL-CBPNN is able to

generate small final neural network. Besides that, FL

method on both CBPNNs can minimize training time. FL

method is also possible to reduce load of computational

training. Combining FL method and CBPNN is possible

to increase performance of the network. Therefore, this

method can be recommended to arrange structure

development of general CBPNN.

Input

layer
Hidden

layer

Output

layer

w1 w2

.

.

.

11

Output

bias

Hidden

bias

b1 b2

Input

pattern

x1

x1

.

.

.

xnInput

Target

t1
t1

.

.

.

tnOutput

Figure 1. Structure of one hidden layer of BPNN

 142 IPTEK, The Journal for Technology and Science, Vol. 22, No. 3, August 2011

Set of Training Data

Network Training

Parameter

Start

Accepted Error

Design of Initial Network

Design of New Network

Save Final Network

StopYes

No

Input

layer
Hidden 1

layer

Hidden 2

layer

Output

layer

Output

w1

w2

w3

Bias

hidden

Bias

hidden

Bias

output

.

.

.

1 1

.

.

.

1

Input

Network Training

Forward

Step

Backward

Step

Updating

Weight

FL Method

MSE

dMSE
Fuzzification Inference Defuzzification

Figure 2. FL method implemented on CBPNN

VS S M B VB

10xErrLim 100xErrLim 1000xErrLim nOutput JumData

1

alfa

Figure 3. Memberships function of MSE

S M B

-nOutput -1000xErrLim -10xErrLim

1

alfa

Figure 4. Memberships function of dMSE

VS S M B VB

0 0.1 0.3 0.5 0.7 0.9 1

Figure 5. Membership function of FL output

 IPTEK, The Journal for Technology and Science, Vol. 22, No. 3, August 2011 143

(a)

(b)

(c)

(d)

(e)

Figure 6. Patterns of training data set (a) data 1, (b) data 2, (c) data 3, (d) data 4, (e) data 5

Figure 7. Final network size of OHL-CBPNN with fixed and FL

methods for all training data sets

Figure 8. Training iteration of OHL-CBPNN with fixed and FL

methods for all training data sets

Figure 9. Training time of OHL-CBPNN with fixed and FL methods

for all training data sets

Figure 10. Final network size of DHL-CBPNN with fixed and FL

methods for all training data sets

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1 2 3 4 5

M Q135 M Q136 TGS2620

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1 2 3 4 5

M Q135 M Q137 M Q136 TGS2620

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1 2 3 4 5

M Q135 M Q3 M Q137 M Q136 TGS2620

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1 2 3 4 5

M Q135 TGS822 M Q3 M Q137 M Q136 TGS2620

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1 2 3 4 5

M Q138 M Q135 TGS822 M Q3 M Q137 M Q136 TGS2620

Network Size

0

100

200

300

400

500

Fixed 5 Fixed 4 Fixed 3 Fixed 2 Fixed 1 FL

U
n

it

Data 1 Data 2 Data 3 Data 4 Data 5

Training Iteration

0

10,000

20,000

30,000

40,000

Fixed 5 Fixed 4 Fixed 3 Fixed 2 Fixed 1 FL

E
p

o
ch

Data 1 Data 2 Data 3 Data 4 Data 5

Training Time

0

30

60

90

120

Fixed 5 Fixed 4 Fixed 3 Fixed 2 Fixed 1 FL

T
im

e
(s

)

Data 1 Data 2 Data 3 Data 4 Data 5

Network Size

0

40

80

120

160

200

Fixed 5 Fixed 4 Fixed 3 Fixed 2 Fixed 1 FL

U
n

it

Data 1 Data 2 Data 3 Data 4 Data 5

 144 IPTEK, The Journal for Technology and Science, Vol. 22, No. 3, August 2011

Figure 11. Training Iteration of DHL-CBPNN with fixed and FL

methods for all training data sets

Figure 12. Training time of OHL-CBPNN with fixed and FL methods

for all training data sets

TABLE 1.

RULE OF FL

MSE
dMSE

S M B

VS VS S S

S S M M

M M M B

B M B B

VB B VB VB

TABLE 2.

COMPARISON OF TWO METHODS IN TRAINING OF OHL-CBPNN

Method
Training

Data Set

Network size

(units)*

Iteration

(epoch)

Training

Time (s)

Fixed 1

Data 1 105 31095 37.181

Data 2 72 21221 18.834

Data 3 70 20565 17.938

Data 4 82 24221 26.310

Data 5 81 23823 26.119

Fixed 2

Data 1 159 23616 42.719

Data 2 153 22643 41.588

Data 3 117 17321 24.987

Data 4 117 17347 26.335

Data 5 131 19406 33.262

Fixed 3

Data 1 236 23351 61.706

Data 2 213 21127 52.779

Data 3 190 18750 43.878

Data 4 177 17557 39.203

Data 5 191 18885 47.422

Fixed 4

Data 1 295 21959 70.950

Data 2 258 19190 58.865

Data 3 246 18223 54.500

Data 4 240 17885 54.515

Data 5 228 16926 51.113

Fixed 5

Data 1 386 22968 100.162

Data 2 311 18499 67.619

Data 3 298 17675 65.053

Data 4 283 16764 59.931

Data 5 249 14836 48.240

FL

Data 1 96 23565 24.434

Data 2 74 20304 18.944

Data 3 77 21000 21.303

Data 4 67 18099 16.660

Data 5 72 19710 20.303

*) number of hidden neurons of the final networks

TABLE 3.

COMPARISON OF TWO METHODS IN TRAINING OF DHL-CBPNN

Method
Training

Data Set

Network size

(units)*

Iteration

(epoch)

Training

Time (s)

Fixed 1

Data 1 54 7655 11.344

Data 2 48 6803 8.894

Data 3 62 8863 16.388

Data 4 58 8286 13.744

Data 5 56 7883 12.888

Fixed 2

Data 1 81 5803 14.897

Data 2 72 5224 12.709

Data 3 92 6598 21.213

Data 4 69 4933 10.681

Data 5 67 4748 9.831

Fixed 3

Data 1 100 4903 19.991

Data 2 98 4705 17.250

Data 3 106 5124 24.453

Data 4 99 4739 20.543

Data 5 100 4851 19.969

Fixed 4

Data 1 111 3982 18.153

Data 2 117 4231 21.259

Data 3 141 5143 38.994

Data 4 146 5289 38.866

Data 5 152 5560 46.319

Fixed 5

Data 1 158 4594 40.603

Data 2 142 4148 30.525

Data 3 158 4595 39.887

Data 4 144 4145 32.156

Data 5 164 4720 46.816

FL

Data 1 51 6232 9.409

Data 2 44 4961 6.110

Data 3 56 7292 11.531

Data 4 53 6629 10.435

Data 5 49 5878 9.212

*) number of hidden neurons of the final networks

Training Iteration

0

2,000

4,000

6,000

8,000

10,000

Fixed 5 Fixed 4 Fixed 3 Fixed 2 Fixed 1 FL

E
p

o
ch

Data 1 Data 2 Data 3 Data 4 Data 5

Training Time

0

15

30

45

60

Fixed 5 Fixed 4 Fixed 3 Fixed 2 Fixed 1 FL

T
im

e
(s

)

Data 1 Data 2 Data 3 Data 4 Data 5

 IPTEK, The Journal for Technology and Science, Vol. 22, No. 3, August 2011 145

TABLE 4.

FINAL NETWORK SIZE COMPARISON OF FL AND RELATED FIXED METHOD

Network
Training

Data set

A

(unit)

B

(unit)

FL

(unit)

FL/A

(%)

FL/B

(%)

OHL-

CBPNN

Data 1 105 236 96 91.05 40.45

Data 2 72 201 74 103.06 36.85

Data 3 70 184 77 110.00 41.81

Data 4 82 180 67 81.71 37.22

Data 5 81 176 72 89.11 40.92

Average 82 196 77 94.98 39.45

DHL-

CBPNN

Data 1 54 101 51 95.15 50.60

Data 2 48 96 44 92.08 46.27

Data 3 62 112 56 90.26 49.75

Data 4 58 103 53 91.38 51.32

Data 5 56 108 49 88.49 45.62

Average 55 104 51 91.47 48.71

A: Final network size of the best fixed method performance

B: Average of final network size of fixed methods used

TABLE 5.

TRAINING ITERATION COMPARISON OF FL AND RELATED FIXED METHOD

Network
Training

Data Set

A

(epoch)

B

(epoch)

FL

(epoch)

FL/A

(%)

FL/B

(%)

OHL-

CBPNN

Data 1 22,968 24,598 23,565 102.60 95.80

Data 2 18,499 20,536 20,304 109.76 98.87

Data 3 17,675 18,507 21,000 118.81 113.47

Data 4 16,764 18,755 18,099 107.96 96.50

Data 5 14,836 18,775 19,710 132.85 104.98

Average 18,148 20,234 20,535 114.40 101.92

DHL-

CBPNN

Data 1 4,594 5,387 6,232 135.66 115.68

Data 2 4,148 5,022 4,961 119.62 98.78

Data 3 4,595 6,064 7,292 158.69 120.24

Data 4 4,145 5,478 6,629 159.92 121.00

Data 5 4,720 5,553 5,878 124.52 105.86

Average 4,440 5,501 6,198 139.68 112.31

A: Training iteration of the best fixed method performance

B: Average of training iteration of fixed methods used

TABLE 6.

TRAINING TIME COMPARISON OF FL AND RELATED FIXED METHOD

Network
Training

Data Set

A

(s)

B

(s)

FL

(s)

FL/A

(%)

FL/B

(%)

OHL-

CBPNN

Data 1 37.18 62.54 24.43 65.72 39.07

Data 2 18.83 47.94 18.94 100.58 39.52

Data 3 17.94 41.27 21.30 118.76 51.62

Data 4 26.31 41.26 16.66 63.32 40.38

Data 5 26.12 41.23 20.30 77.73 49.24

Average 25.28 46.85 20.33 85.22 43.96

OHL-

CBPNN

Data 1 11.34 21.00 9.41 82.95 44.81

Data 2 8.89 18.13 6.11 68.70 33.70

Data 3 16.39 28.19 11.53 70.37 40.91

Data 4 13.74 23.20 10.43 75.92 44.98

Data 5 12.89 27.16 9.21 71.48 33.91

Average 12.65 23.53 9.34 73.88 39.66

A: Training time of the best fixed method performance

B: Average of training time of fixed methods used

 146 IPTEK, The Journal for Technology and Science, Vol. 22, No. 3, August 2011

TABLE 7.

FREQUENCY ITERATION COMPARISON OF FL AND RELATED FIXED METHOD

Network
Training

Data Set

A

(Hz)

B

(Hz)

FL

(Hz)

FL/A

(%)

FL/B

(%)

OHL-

CBPNN

Data 1 617.74 393.29 964.43 156.12 245.22

Data 2 982.17 428.39 1071.79 109.12 250.19

Data 3 985.35 448.42 985.76 100.04 219.83

Data 4 637.18 454.57 1086.40 170.50 239.00

Data 5 568.00 455.36 970.76 170.91 213.19

Average 758.09 436.01 1015.83 141.34 233.48

OHL-

CBPNN

Data 1 404.96 256.57 662.30 163.55 258.14

Data 2 466.35 277.05 812.03 174.13 293.10

Data 3 280.38 215.15 632.33 225.53 293.90

Data 4 301.59 236.15 635.27 210.64 269.01

Data 5 366.27 204.40 638.07 174.20 312.16

Average 363.91 237.87 676.00 189.61 285.26

A: Iteration frequency of the best fixed method performance

B: Average of f of fixed methods used

 REFERENCES

[1] T. C. Pearce, S. S. Schiffmen, H. T. Nagle, and J. W. Gardner,

Handbook of Machine Olfaction. New York: WILEY-VCH

Verlag GmbH & Co. KgaA., 2003.

[2] H. Yu, J. Wang, C. Yao, H. Zhang, and Y. Yu, “Quality grad

identification of green tea using E-nos by CA and ANN”, LWT,

vol. 41, pp. 1268–1273, 2008.

[3] S. Panigrahi, S. Balasubramanian, H. Gu, C. Lague, and M.

March llo, “N ural-network-integrated electronic nose system for

id ntification of spoil d b f”, LWT, vol. 39, pp. 135–145, 2005,.

[4] M. H. Purnomo and A. Kurniawan, Supervised Neural Networks

dan Aplikasinya. Yogyakarta: Graha Ilmu, 2006.

[5] Z. B. Shi, T. Yu, Q. Zhao, Y. Li, and Y. B. Lan, “Comparison of

Algorithms for an El ctronic Nos in Id ntifying Liquors”,

Journal of Bionic Engineering, vol. 5, pp. 253–257, 2008.

[6] M. L htokangas, “Mod ling ith constructiv backpropagation”,
Neural Networks, vol. 21, pp.707–716, 1999.

[7] M. L htokangas, “Modifi d constructiv backpropagation for

r gr ssion”, Neurocomputing, vol. 35, pp. 113-122, 2000.

[8] . S tiono, “Finding minimal n ural networks for business

int llig nc application”. presented at IFSA-AFSS International

Conference, Surabaya-Bali Indonesia, 2011.

[9] T. S. Widodo, Sistem Neurofuzzy. Yogyakarta: Graha Ilmu, 2005.

[10] Radi, M. Rivai,M. H. Purnomo, “Multi-thread constructive back

propagation n ural n t ork for aroma patt rn classification”, in

Proc. 2011 IFSA-AFSS International Conference.

