Network Connectivity Quality Assessment Case of Major Roads of Padangsidimpuan City

Fithriyah Patriotika

Departement of Civil Engineering, Universitas Graha Nusantara, Padangsidimpuan, Indonesia e-mail: pfithriyah@yahoo.com

Hitapriya Suprayitno

Departement of Civil Engineering, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia e-mail: suprayitno.hita@gmail.com

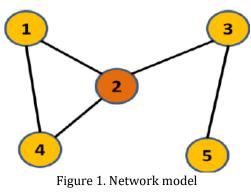
ABSTRACT : Assessment of network connectivity in this study was done by using a special matrix operation. The quality of connectivity is measured based on network performance comparison value, between those of existing road network against those of expected road network. This network connectivity quality is derived into three aspects: number of connected nodes, total shortest path distance and total road length. The quality of the road network connectivity for the Truck Class 1 can be concluded as follows: The connectivity quality of the existing road network, in order to be equals to the expected road network needs an addition of 2 nodes: freight terminal 1 and freight terminal 2 and needs an addition of 1 ringroad and 2 access road, while warehouse in the existing network compared to the expected road network is 12.77 km, equal to a ratio of 0.76. Therefore, the existing road network requires an addition of 12.77 km in order to achieve the same quality as the expected road network. The total shortest path distance of the existing road network is infinite (∞) and the one of expected road network is 295.44 km.

Keywords: network quality, connectivity, special matrix technique, assessment, distance, node

1. INTRODUCTION

The quality of transport infrastructure, especially roads and terminals are very influential on the development of a city, since transportation plays an important role for the mobility of people and goods. Further more, this development will affect the improvement of economic development. The quality of the road must be assessed not only in terms quality of road segments and intersection, but also in terms of the overall network quality of the road network.

The research about the road network quality, especially the of connectivity quality in Padangsidimpuan city has never been done. Therefore, this research was conducted to assess how good or bad the road network quality in Padangsidimpuan cities at this time. In 2014 a research has been conducted to develop a quality assessment method for road network, where all the calculations were done using some special matrix operations and algebra min-plus matrix operations to calculate the shortest path. This method will be used in assessing the road network quality in Padangsidimpuan city. The reason for using this method because it is easy to used, it needs just Microsoft Excel software for calculations


(Suprayitno, 2014, Suprayitno, 2015). Moreover, application of this method aims to introduce a new method that can be used as a reference for the analysis of the road network quality for those who want to do a study of the road network quality assessment.

This paper is focused on assessing the quality of the major road network connectivity in Padangsidimpuan city. Later on the connectivity quality value can be used to find a solution for quality improvement of road network connectivity in the future.

2. LITERATURE REVIEW

2.1 Network Model

The network model is composed of two elements: nodes and links (Suprayitno, 2014, Suprayitno, 2015) The nodes consist of three components: regional node, intersection and auxiliary node. While the link is the road segments. The network model is presented in the following Figure-1.

2.2 Special Matrix Technique

Quality of road network connectivity will be calculated by using special matrix in the form of a square matrix. Number of columns or rows indicates the number of nodes. This matrix technique needs three types of special matrix, i.e. basic matrix, expanded matrix and identification matrix (Suprayitno, 2014, Suprayitno, 2015). Three types of special matrix are presented in Table 1. below.

2	3	4		EM	1	2	3	4	SR	EM	1	2	3
				1						1			
				2						2			
				3						3			
				4						4			
			•	SC					SM	SC			
					•	•	•	•		IC			

Table 1. Three Types of Special MatrixExpanded MatrixIdentification Matrix

	SM	SI
	SIC	

4

SR

IR

Basic Matrix

1

BM

1

2

3

4

• Expanded Matrix

Expanded Matrix is always an expansion of a basic matrix, it contains: row, column and matrix summation (Suprayitno, 2014, Suprayitno, 2015). The summation formula is presented below.

m. E = m. B + SR_i + SC_j + SM SR_i = Σm_{ij} SC_i = Σm_{ij} SM = Σm_{ij} atau Σ SR_j atau Σ SC_i

• Identification Matrix

Identification Matrix, most of all is an expansion of an Expanded Matrix, to contain certain identification, based on Expanded Matrix Value, for certain characteristics of the network (Suprayitno, 2014, Suprayitno, 2015).

 $IC_j = C_1 \text{ for } IC_j = mathematical condition, else C2$

SIR = ΣIR_i

SIC = ΣIC_j

• Distance

• Direct Distance

Direct distance between nodes is calculated using the following formula (Suprayitno, 2014):

m. D	=	$\sqrt{mD^2}$	(3)
$m. D^2$	=	$m. DX^2 + m. DY^2$	
m. DX ²	=	m. DX * m. DX	
m. DY ²	=	m. DY * m. DY	
m. DX	=	a. sumcX – a. sumrX	
m. DY	=	a. sumcY – a. sumrY	
Where:			

m.D	=	The matrix of direct distance between nodes
m.D ²	=	The square matrix of direct distance between nodes

(1)

m.DX ²	=	The square matrix of the difference an abscissa x between nodes
m.DY ²	=	The square matrix of the difference an abscissa y between nodes
m.DX	=	The matrix of the difference an abscissa x between nodes
m.DY	=	The matrix of the difference an abscissa y between nodes

• Shortest Path

The shortest path can be calculated using the Min-Plus Algebra (Suprayitno, 2014). The formulas are as follows. The M^{sp} is calculated by using the spreadsheet.

$$M^{SP} = M_{II} \stackrel{\min \otimes (N-1)}{\longrightarrow}$$
(4)

Where:

MSP	=	The	matrix	of	shortest	path	distance
		betw	veen noo	le i	to node j		
M_{LL}	=	The	matrix o	f lin	k length		
Ν	=	Num	ber of n	ode	S		

Mechanism of matrix power Min-Plus algebra (Suprayitno, 2014) is as follows:

$$m_{ij}^{*} = \min(m_{i1} + m_{1n}, m_{i2} + m_{2n}, m_{i...} + m_{...n}, \dots, m_{in} + m_{nn})$$
 (5)

The following is an example of virtual network to calculate the matrix of shortest path distance. The network consists of 5 nodes connected by 8 links (Suprayitno, 2014) as presented in Figure 2. Using Microsoft Excel the matrix of shortest path calculation is show in the following Table 2.

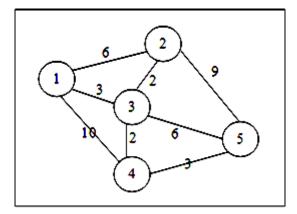


Figure 2. Virtual Network

1	1	2	3	4	5
1	0	6	3	10	99
2	6	0	2	99	9
3	3	2	0	2	6
4	10	99	2	0	3
5	99	9	6	3	0

	1	2	3	4	5
1	0	6	3	10	99
2	6	0	2	99	9
3	3	2	0	2	6
4	10	99	2	0	3
5	99	9	6	3	0

2	1	2	3	4	5
Z	1	2	5	4	5
1	0	5	3	5	9
2	5	0	2	4	8
3	3	2	0	2	5
4	5	4	2	0	3
5	9	8	5	3	0

3	1	2	3	4	5
1	0	5	3	5	8
2	5	0	2	4	7
3	3	2	0	2	5
4	5	4	2	0	3
5	8	7	5	3	0

4	1	2	3	4	5
1	0	5	3	5	8
2	5	0	2	4	7
3	3	2	0	2	5
4	5	4	2	0	3
5	8	7	5	3	0

2.3 Quality of Road Network

The quality of the road network can be derived into three components: quality of connectivity (connectivity and accessibility), quality of traffic flow and quality of coverage (Suprayitno, 2015). The model used is a very simple network consisting of lines (segments) and node (the center of regional activities, transportation terminals, junction or point geometry aids) (Suprayitno, 2014). Network quality components are represented in Table 3. below.

Function Quality item Explanation To connect different nodes of the region Connectivity How well the nodes are constructed on the construction Accessibility How well a node can be accessibility How well a node can be accessibility To flow the traffic Traffic flow itenary The itinerary quality for origin-destination.	
nodes of the region other. Accessibility How well a node can be accessibility To flow the traffic Traffic flow itenary	
others and vice versa.To flow the trafficTraffic flow itenaryThe itinerary quality for	onnected each
	essed from the
	each pair of
Traffic flow fluidityThe traffic flow performance stops – traffic engineering.	e: speed, delay,
To cover the region Coverage How well the region is cover	red.
Density How good is the network den	nsity part.

Source: Suprayitno, 2015

2.4 Connectivity Quality

The connectivity quality deals with how well the nodes are connected each other by road network (Suprayitno, 2014). Connectivity is important because an increasing of connectivity can decrease traffic on arterial streets, reduce travel time, create shorter travel distances and reduce the number of vehicle-kilometers travelled, provide continuous and more direct routes for travel by walking and biking, provide greater emergency vehicle access and reduced response time, provide improved utility connections, easier maintenance, and more efficient trash and recycling pick-up, lower speeds and reduce accident severity, better accommodate transit use (toolkit.valleyblueprint. org, 2015). Figure 3. and Figure 4. below shows the benefit of connectivity and efficiency of connectivity (Lehigh Valley Commission, 2011).

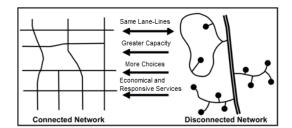


Figure-3 Benefit of connectivity

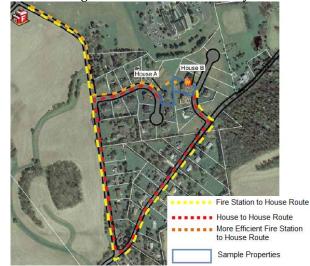


Figure 4. Efficiency of connectivity

The relative degree of connectedness within a transportation network (Information on webspace ship.edu, 2015) :

High connectivity = low isolation, high accessibility.

Low connectivity = high isolation, low accessibility.

Connectivity quality measures can be defined (Suprayitno,2014) as follows:

• Connectivity Quality in Terms of Number of Nodes Connected

This is a comparison between the number of nodes connected in the existing road network against the number of nodes connected in the expected road network. The formula is as follows:

$$CQ^{N} = \sum EXN^{N} / \sum EPN^{N}$$

Where:

 CQ^{N} = connectivity quality in terms of nodes connected ΣEXN^{N} = number of nodes connected by the existing network ΣEPN^{N} = number of nodes connected by the expected network

Connectivity Quality in Terms of Total Shortest Path Distance

The connectivity quality in terms of total shortest path distance will be calculated in two ways: first, total of the shortest path distance of the existing road network compared to the total direct distance of the existing network and second, the total shortest path distance of

(6)

the existing network compared to the total shortest path distance of the expected road network.

• Compared to the direct distance, the formula is as follows:

$$CQ^{DD} = \sum EXN^{SP} / \sum EPN^{DD}$$
(7)

Where:

 CQ^{DD} = connectivity quality types 1 ΣEXN^{SP} = total of the shortest paths distances between nodes ΣEPN^{DD} = total of direct distance between nodes

• Compared to the expected networks, the formula is as follows:

$$CQ^{SP} = \sum EXN^{SP} / \sum EPN^{SP}$$
(8)

Figure 5. Road network Padangsidimpuan city

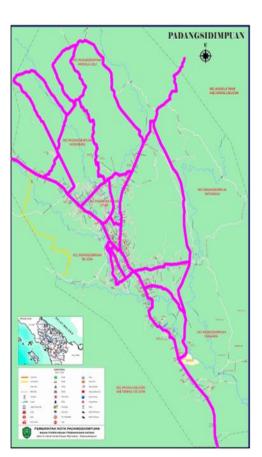


Figure 6. Road network will be reviewed

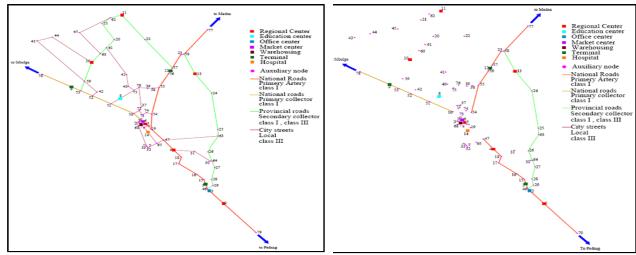


Figure 7. Road network model will be reviewed

Figure 8. Existing Road network model for Truck Class 1

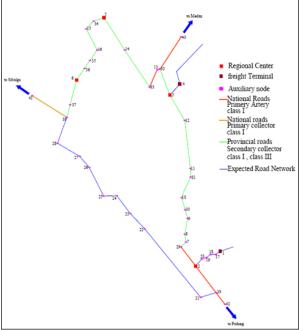


Figure 10 The nodes coordinate man

Figure 9. Expected road network model for Truck Class Figure 10. The nodes coordinate map 1

2.5 Data

Nodes Coordinate data are obtained from Google Earth. The coordinate data will be used to calculate the direct distance, as the first step of assessing the connectivity quality. The nodes coordinate of the existing road network and the expected road network are presented in Table 4. and Table 5. bellow:

				1	abic	T. NO	des Coordinates	50	чь	nist	ing it	uau r		лк	
	No	Node	Coordinate	Coordinate	Coordinate	Coordinate	Description		No	Node	Coordinate	Coordinate	Coordinate	Coordinate	Description
	.00	Node	x (m)	y (m)	x (km)	y (km)	Description		140	Node	x (m)	y (m)	x (km)	y (km)	Description
	1	1	534527.81	146664.86	534.53	146.66	Southeast Padangsidimpuan Subdistrict		42	42	528120.27	154577.14	528.12	154.58	Curve Segment 28
	2	2	533651.06	147660.03	533.65	147.66	Office Center		43	43	524612.03	159028.85	524.61	159.03	Curve Segment 29
Γ	3	3	533550.86	147885.90	533.55	147.89	HM. Tohar Bayo Angin Terminal (Type C)		44	44	525428.48	159614.66	525.43	159.61	Curve Segment 30
Γ	4	4	531809.63	150545.23	531.81	150.55	South Padangsidimpuan Subdistrict		45	45	526895.59	159579.55	526.90	159.58	Curve Segment 31
	5	5	530117.25	152329.31	530.12	152.33	North Padangsidimpuan Subdistrict		46	46	533625.24	147705.05	533.63	147.71	Intersection 1
Nodes	6	6	530127.64	152313.36	530.13	152.31	Market Center		47	47	531237.29	151232.58	531.24	151.23	Intersection 2
ž [7	7	529927.37	152203.84	529.93	152.20	Warehousing		48	48	530172.13	152275.21	530.17	152.28	Intersection 3
Region	8	8	528788.60	154147.05	528.79	154.15	Education Center		49	49	529977.45	152460.36	529.98	152.46	Intersection 4
2 [9	9	526376.41	155046.59	526.38	155.05	Hutaimbaru Terminal (Type C)		50	50	529576.86	153140.41	529.58	153.14	Intersection 5
	10	10	527015.43	156255.96	527.02	156.26	Padangsidimpuan Hutaimbaru Subdistrict		61	51	528394.46	153852.01	528.39	153.85	Intersection 6
	11	11	528709.78	160578.97	528.71	160.58	Padangsidimpuan Angkola Julu Subdistrict		52	52	527728.79	154351.76	527.73	154.35	Intersection 7
	12	12	531640.19	156150.15	531.64	156.15	Batunadua Terminal (Type C)		53	53	526712.80	154950.38	526.71	154.95	Intersection 8
	13	13	532975.72	155908.48	532.98	155.91	Padangsidimpuan Batunadua Subdistrict		- 64	54	530555.80	153132.68	530.56	153.13	Intersection 9
	14	14	530299.16	151715.00	530.30	151.72	Hospital	nodes	55	55	531000.80	155067.16	531.00	155.07	Intersection 10
	15	15	533412.84	148456.74	533.41	148.46	Curve Segment 1	8	56	56	531605.65	156119.08	531.61	156.12	Intersection 11
	16	16	533056.99	148793.09	533.06	148.79	Curve Segment 2	E.	67	57	531665.73	156254.83	531.67	156.25	Intersection 12
	17	17	532051.32	149615.58	532.05	149.62	Curve Segment 3	Auxiliary	58	58	532338.18	157317.49	532.34	157.32	Intersection 13
Γ	18	18	532211.89	150076.37	532.21	150.08	Curve Segment 4	N.	59	59	527627.29	157497.19	527.63	157.50	Intersection 14
Γ	19	19	530495.67	152088.37	530.50	152.09	Curve Segment 5		60	60	528042.91	157991.67	528.04	157.99	Intersection 15
Γ	20	20	528516.01	158393.10	528.52	158.39	Curve Segment 6		61	61	528174.48	158130.91	528.17	158.13	Intersection 16
- Г	21	21	527957.18	159626.86	527.96	159.63	Curve Segment 7		62	62	528200.42	160458.78	528.20	160.46	Intersection 17
Γ	22	22	530214.00	158498.39	530.21	158.50	Curve Segment 8		63	63	534224.56	151571.10	534.22	151.57	Intersection 18
L	23	23	532143.35	157283.14	532.14	157.28	Curve Segment 9		64	64	533883.68	149738.85	533.88	149.74	Intersection 19
Nodes	24	24	533841.87	154558.94	533.84	154.56	Curve Segment 10		65	65	530794.32	151033.24	530.79	151.03	Intersection 20
2 [25	25	534247.62	152031.94	534.25	152.03	Curve Segment 11		66	66	530419.76	150849.83	530.42	150.85	Intersection 21
Auxiliary	26	26	533637.61	150381.94	533.64	150.38	Curve Segment 12		67	67	530100.73	151138.64	530.10	151.14	Intersection 22
Έ	27	27	533993.04	149287.00	533.99	149.29	Curve Segment 13		68	68	529833.57	152122.54	529.83	152.12	Intersection 23
₹[28	28	533853.47	148452.13	533.85	148.45	Curve Segment 14		69	69	530028.89	152119.63	530.03	152.12	Intersection 24
	29	29	533895.65	148001.12	533.90	148.00	Curve Segment 15		70	70	529813.77	152294.06	529.81	152.29	Intersection 25
	30	30	533714.77	149717.27	533.71	149.72	Curve Segment 16		71	71	529891.80	152371.04	529.89	152.37	Intersection 26
	31	31	532819.30	150518.41	532.82	150.52	Curve Segment 17		72	72	529977.12	153445.40	529.98	153.45	Intersection 27
	32	32	530347.15	150707.94	530.35	150.71	Curve Segment 18		73	73	530194.67	153127.12	530.19	153.13	Intersection 28
	33	33	530288.77	150923.71	530.29	150.92	Curve Segment 19		74	74	530254.11	153170.97	530.25	153.17	Intersection 29
	34	34	529764.44	152202.22	529.76	152.20	Curve Segment 20		75	75	529700.25	154849.04	529.70	154.85	Intersection 30
	35	35	529764.77	152214.64	529.76	152.21	Curve Segment 21		76	76	529886.98	154954.27	529.89	154.95	Intersection 31
	36	36	529889.73	152391.50	529.89	152.39	Curve Segment 22		77	77	533578.23	159283.02	533.58	159.28	To Medan
	37	37	530125.24	153682.15	530.13	153.68	Curve Segment 23		78	78	524666.49	155853.91	524.67	155.85	To Sibolga
	38	38	530440.64	154996.95	530.44	155.00	Curve Segment 24		79	79	535684.17	144133.57	535.68	144.13	To Padang
	39	39	530175.05	155058.16	530.18	155.06	Curve Segment 25								
	40	40	529359.78	155012.50	529.36	155.01	Curve Segment 26								
Г	41	41	529313.47	155994.41	529.31	155.99	Curve Segment 27								

Table 4. Nodes Coordinates of Existing Road Network

Table 5. Nodes Coordinates of Expected Road Network

	No	Node	Coord	linate	Coord	linate	Description		No	Node	Coord	linate	Coord	linate	Description
	INO	Node	x (m)	y (m)	x (km)	y (km)	Description		INO	Node	x (m)	y (m)	x (km)	y (km)	Description
	1	1	535879.69	146761.96	535.88	146.76	Freight Terminal 1		22	22	530946.08	150132.01	530.95	150.13	Curve Segment 16
Nodes	2	2	534527.81	146664.86	534.53	146.66	Southeast Padangsidimpuan Subdistrict		23	23	530411.72	150294.36	530.41	150.29	Curve Segment 17
2	3	3	532975.72	155908.48	532.98	155.91	Padangsidimpuan Batunadua Subdistrict		24	24	529546.65	150562.07	529.55	150.56	Curve Segment 18
Region	4	4	533424.38	156459.70	533.42	156.46	Freight terminal 2		25	25	527565.71	150688.58	527.57	150.69	Curve Segment 19
a a	5	5	528709.78	160578.97	528.71	160.58	Padangsidimpuan Angkola Julu Subdistrict		26	26	527254.54	151968.62	527.25	151.97	Curve Segment 20
	6	6	527015.43	156255.96	527.02	156.26	Padangsidimpuan Hutaimbaru Subdistrict		27	27	527276.54	152701.00	527.28	152.70	Curve Segment 21
	7	7	533895.65	148001.12	533.90	148.00	Curve Segment 1		28	28	526297.70	153747.96	526.30	153.75	Curve Segment 22
	8	8	533853.47	148452.13	533.85	148.45	Curve Segment 2 Curve Segment 3		29	29	533625.24	147705.05	533.63	147.71	Intersection 1
	9	9	533993.04	149287.00	533.99	149.29			30	30	533883.68	149738.85	533.88	149.74	Intersection 2
	10	10	533637.61	150381.94	533.64	150.38	Curve Segment 4	Auxiliary	31	31	534224.56	151571.10	534.22	151.57	Intersection 3
	11	11	534247.62	152031.94	534.25	152.03	Curve Segment 5		32	32	532338.18	157317.49	532.34	157.32	Intersection 4
Nodes	12	12	533841.87	154558.94	533.84	154.56	Curve Segment 6	×	33	33	531665.73	156254.83	531.67	156.25	Intersection 5
	13	13	532143.35	157283.14	532.14	157.28	Curve Segment 7		34	34	528200.42	160458.78	528.20	160.46	Intersection 6
Auxiliary	14	14	530214.00	158498.39	530.21	158.50	Curve Segment 8		35	35	528174.48	158130.91	528.17	158.13	Intersection 7
8	15	15	527957.18	159626.86	527.96	159.63	Curve Segment 9		36	36	528042.91	157991.67	528.04	157.99	Intersection 8
	16	16	528516.01	158393.10	528.52	158.39	Curve Segment 10		37	37	527627.29	157497.19	527.63	157.50	Intersection 9
	17	17	535507.76	146724.99	535.51	146.72	Curve Segment 11		38	38	526712.80	154950.38	526.71	154.95	Intersection 10
	18	18	535239.15	146858.28	535.24	146.86	Curve Segment 12		39	39	535542.97	145162.84	535.54	145.16	Intersection 11
	19	19	535055.52	146863.48	535.06	146.86	Curve Segment 13		40	40	533578.23	159283.02	533.58	159.28	To Medan
	20	20	534865.09	146900.83	534.87	146.90	Curve Segment 14		41	41	524666.49	155853.91	524.67	155.85	To Sibolga
	21	21	534827.54	145215.82	534.83	145.22	Curve Segment 11 Curve Segment 12 Curve Segment 13		42	42	535684.17	144133.57	535.68	144.13	To Padang

2.6 Calculation

The connectivity quality is measured based on performance comparison, between those of the existing road network against those of the expected road network. This connectivity quality is derived into three aspects: number of connected nodes, total shortest path distance and total road length.

• Direct Distance Calculation

The direct distance is an important variable in network connectivity quality assessment. Therefore the first step to be done is to calculate the direct distance between the nodes. The direct distance calculation is executed by using the Eq. 3. The result of direct distance calculation can be seen in Table 6. below.

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	77	78	79	
D(l	cm)																		
1		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
2		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
3		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
4		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
5		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
6		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
7		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	7.97	6.40	9.91	24.28
8		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
9		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
10		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
11		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
12		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
13		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
14		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
77		0.00	0.00	0.00	0.00	0.00	0.00	7.97	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	9.55	15.30	32.81
78		0.00	0.00	0.00	0.00	0.00	0.00	6.40	0.00	0.00	0.00	0.00	0.00	0.00	0.00	9.55	0.00	16.09	32.04
79		0.00	0.00	0.00	0.00	0.00	0.00	9.91	0.00	0.00	0.00	0.00	0.00	0.00	0.00	15.30	16.09	0.00	41.29
		0.00	0.00	0.00	0.00	0.00	0.00	24.28	0.00	0.00	0.00	0.00	0.00	0.00	0.00	32.81	32.04	41.29	130.42

Table 3. Matrix of Direct Distance

• Road Segments Existence of The Existing Network for Truck Class 1

The existence of road segments for truck class 1 is presented in binary numbers matrix. Number 1 means the segment exist, while the number 0 means no segments. Matrix of road segments existence will be used to calculate the total road length of the existing network. The existence of road segments for truck class 1 is presented in Table 7. below.

								REGION	AL NODE							AUX	CILIARY N	ODE
		1	2	3	4	5	6	7	8	9	10	11	12	13	14	77	78	79
	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
	2	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
×	5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
REGUONAL NODE	6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
M	7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ğ	8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
gen	9	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
2	10	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	11	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	12	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	13	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	14	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ΨΨ	77	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
AUXILIAR Y NODE	78	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
٩×	79	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Table 4. Matrix of Road Segments Existence for Truck Class 1

• Roads Length Calculation for Truck Class 1 - The Existing Network

Matrix of roads length for Truck Class 1 is obtained from matrix intersection of road segments existence for Truck Class 1 with a matrix of road length of all segments. The calculation is done by using the matrix extraction operation (Suprayitno,2014) as follows:

m. M = m. X π m. E

m. $M_{i,j} = m. X_{i,j} \forall m. E_{i,j} \neq 0$

where:

m. M = Matrix of roads length for Truck Class 1– The existing network

m. X = Matriks of roads length for all segments – The existing network

m. E = Matrix of Road Segments Existence for Truck Class 1

 π = Extraction

(9)

∀ = If

The value of 99 indicate that the road length is infinite (∞), thus the nodes indicated are not connected, this gives indication that road network is not well connected. The calculation results can be seen in Table 8.

								REGION	AL NODE							AUX	(ILIARY N	ODE	
		1	2	3	4	5	6	7	8	9	10	11	12	13	14	77	78	79	
	1	0.00	1.33	99.00	99.00	99.00	99.00	99.00	99.00	99.00	99.00	99.00	99.00	99.00	99.00	99.00	99.00	2.78	4.11
	2	1.33	0.00	99.00	99.00	99.00	99.00	99.00	99.00	99.00	99.00	99.00	99.00	99.00	99.00	99.00	99.00	99.00	1.38
	3	99.00	99.00	0.00	99.00	99.00	99.00	99.00	99.00	99.00	99.00	99.00	99.00	99.00	99.00	99.00	99.00	99.00	0.78
	4	99.00	99.00	99.00	0.00	99.00	99.00	99.00	99.00	99.00	99.00	99.00	99.00	99.00	99.00	99.00	99.00	99.00	1.51
8	5	99.00	99.00	99.00	99.00	0.00	99.00	99.00	99.00	99.00	99.00	99.00	99.00	99.00	99.00	99.00	99.00	99.00	0.00
NODE	6	99.00	99.00	99.00	99.00	99.00	0.00	99.00	99.00	99.00	99.00	99.00	99.00	99.00	99.00	99.00	99.00	99.00	0.00
Z	7	99.00	99.00	99.00	99.00	99.00	99.00	0.00	99.00	99.00	99.00	99.00	99.00	99.00	99.00	99.00	99.00	99.00	0.00
NO NO	8	99.00	99.00	99.00	99.00	99.00	99.00	99.00	0.00	99.00	99.00	99.00	99.00	99.00	99.00	99.00	99.00	99.00	0.00
REGIUONAL	9	99.00	99.00	99.00	99.00	99.00	99.00	99.00	99.00	0.00	99.00	99.00	99.00	99.00	99.00	99.00	1.89	99.00	2.24
2	10	99.00	99.00	99.00	99.00	99.00	99.00	99.00	99.00	99.00	0.00	99.00	99.00	99.00	99.00	99.00	99.00	99.00	0.00
	11	99.00	99.00	99.00	99.00	99.00	99.00	99.00	99.00	99.00	99.00	0.00	99.00	99.00	99.00	99.00	99.00	99.00	0.00
	12	99.00	99.00	99.00	99.00	99.00	99.00	99.00	99.00	99.00	99.00	99.00	0.00	99.00	99.00	99.00	99.00	99.00	0.15
	13	99.00	99.00	99.00	99.00	99.00	99.00	99.00	99.00	99.00	99.00	99.00	99.00	0.00	99.00	99.00	99.00	99.00	3.15
	14	99.00	99.00	99.00	99.00	99.00	99.00	99.00	99.00	99.00	99.00	99.00	99.00	99.00	0.00	99.00	99.00	99.00	0.00
ЧЧ ЧЧ	77	99.00	99.00	99.00	99.00	99.00	99.00	99.00	99.00	99.00	99.00	99.00	99.00	99.00	99.00	0.00	99.00	99.00	4.35
AUXILIAR Y NODE	78	99.00	99.00	99.00	99.00	99.00	99.00	99.00	99.00	1.89	99.00	99.00	99.00	99.00	99.00	99.00	0.00	99.00	3.57
ΑU	79	2.78	99.00	99.00	99.00	99.00	99.00	99.00	99.00	99.00	99.00	99.00	99.00	99.00	99.00	99.00	99.00	0.00	15.18
		4.11	1.38	0.78	1.51	0.00	0.00	0.00	0.00	2.24	0.00	0.00	0.15	3.15	0.00	4.35	3.57	15.18	79.55

Table 5. Matrix of Roads Length for Truck Class 1 - The Existing Network

• Shortest Path Distance Calculation for Truck Class 1 - The Existing Network

The shortest path distance is calculated by using Eq. 4 and Eq. 5. The result can be seen in matrix of the shortest path distance, presented in Table 9. below.

7	8							RECION	AL NODE							AUX		ODE
,	•	1	2	3	4	5	6	7	8	9	10	11	12	13	14	77	78	79
	1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	2	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Ħ	5	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
I NO	6	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
W	7	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	99	99	99
REGIUONAL NODE	8	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
g	9	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
2	10	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	11	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	12	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	13	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	14	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ЧЧ	77	0.00	0.00	0.00	0.00	0.00	0.00	99	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	99	16.84
AUXILIAR Y NODE	78	0.00	0.00	0.00	0.00	0.00	0.00	99	0.00	0.00	0.00	0.00	0.00	0.00	0.00	99	0.00	99
₹≻	79	0.00	0.00	0.00	0.00	0.00	0.00	99	0.00	0.00	0.00	0.00	0.00	0.00	0.00	16.84	99	0.00

Table 6. Matrix of Shortest Path Distance for Truck Class 1- The Existing Network

• Identification of Connected Nodes for Truck Class 1 - The Existing Network

The number of nodes must be connected are four (4), nodes: 7, 77, 78, and 79. Identification of connected nodes can be obtained with this conditional: $IR_j = 0 \forall SR_j = 0$, else= 1 and $IC_i = 0 \forall SC_i = 0$, else= 1. Quality of nodes connected can be seen in Table 10. bellow.

		-						REGION				-						0		
7	8	1	2	3	4	5	6	7	8	9	10	11	12	13	14	77	78	79	SR	IR
	1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0
	2	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0
	3	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0
	4	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0
B	5	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0
NO.	6	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0
REGIUONAL NODE	7	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	99	99	99	297.00	0
No.	8	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0
g	9	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0
2	10	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0
	11	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0
	12	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0
	13	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0
	14	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0
AR JE	77	0.00	0.00	0.00	0.00	0.00	0.00	99	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	99	16.84	214.84	1
AUXILIAR Y NODE	78	0.00	0.00	0.00	0.00	0.00	0.00	99	0.00	0.00	0.00	0.00	0.00	0.00	0.00	99	0.00	99	297.00	0
٩.	79	0.00	0.00	0.00	0.00	0.00	0.00	99	0.00	0.00	0.00	0.00	0.00	0.00	0.00	16.84	99	0.00	214.84	1
S	С	0.00	0.00	0.00	0.00	0.00	0.00	297.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	214.84	297.00	214.84	1023.67	2
I	С	0.00	0.00	0.00	0.00	0.00	0.00	594.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	429.67	594.00	429.67	2047.34	

Table 7. Identification Matrix of Connected Nodes for Truck Class 1 - The Existing Network

• Calculation for Truck Class 1 - The Expected Network

Matrix of roads length, matrix of shortest path distance and identification matrix of connected nodes of the expected network for Truck Class 1 are calculated by the same way and the results are presented in Table 11., Table 12. and Table 13.

The connectivity quality of the road network for Truck Class 1 is presented in Table 14. below. Those were calculated by using Eq. 6 - Eq. 9

				REGION	AL NODE			AUX	ALLIARY N	ODE
		1	2	3	4	5	6	40	41	42
R	1	0.00	99.00	99.00	99.00	99.00	99.00	99.00	99.00	99.00
Į	2	99.00	0.00	99.00	99.00	99.00	99.00	99.00	99.00	99.00
REGIONAL NODE	3	99.00	99.00	0.00	0.71	99.00	99.00	99.00	99.00	99.00
NO	4	99.00	99.00	0.71	0.00	99.00	99.00	99.00	99.00	99.00
5	5	99.00	99.00	99.00	99.00	0.00	99.00	99.00	99.00	99.00
В	6	99.00	99.00	99.00	99.00	99.00	0.00	99.00	99.00	99.00
KRY E	40	99.00	99.00	99.00	99.00	99.00	99.00	0.00	99.00	99.00
AUXILIARY NODE	41	99.00	99.00	99.00	99.00	99.00	99.00	99.00	0.00	99.00
(INV	42	99.00	99.00	99.00	99.00	99.00	99.00	99.00	99.00	0.00

Table 8. Matrix of Roads Length for Truck Class 1 - The Expected Network

	1			REGION	AL NODE			AUX	ILIARY N	ODE	SR
	1	1	2	3	4	5	6	40	41	42	SK
Æ	1	0.00	0.00	0.00	12.36	0.00	0.00	15.52	20.70	4.31	52.88
REGIONAL NODE	2	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
AL 1	3	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
NO	4	12.36	0.00	0.00	0.00	0.00	0.00	4.58	20.54	13.74	51.22
BG	5	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
×	6	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
KRY E	40	15.52	0.00	0.00	4.58	0.00	0.00	0.00	20.61	16.90	57.61
XILLAF	41	20.70	0.00	0.00	20.54	0.00	0.00	20.61	0.00	18.46	80.30
	42	4.31	0.00	0.00	13.74	0.00	0.00	16.90	18.46	0.00	53.42
s	С	52.88	0.00	0.00	51.22	0.00	0.00	57.61	80.30	53.42	295.44

	_			REGION	AL NODE			AUX	ILIARY N	ODE		
4	41 1 2 3 4 4 4 4 4 4 4 4 4 4 4 4 4		2	3	4	5	6	40	41	42	SR	IR
В	1	0.00	0.00	0.00	12.36	0.00	0.00	15.52	20.70	4.31	52.88	1
QD .	2	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0
TT I	3	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0
NO	4	12.36	0.00	0.00	0.00	0.00	0.00	4.58	20.54	13.74	51.22	1
BG	5	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0
≅	6	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0
kRY E	40	15.52	0.00	0.00	4.58	0.00	0.00	0.00	20.61	16.90	57.61	1
	41	20.70	0.00	0.00	20.54	0.00	0.00	20.61	0.00	18.46	80.30	1
	42	4.31	0.00	0.00	13.74	0.00	0.00	16.90	18.46	0.00	53.42	1
s	с	52.88	0.00	0.00	51.22	0.00	0.00	57.61	80.30	53.42	295.44	5
I	C	1	0	0	1	0	0	1	1	1	5	

Table 10. Identification Matrix of Connected Nodes for Truck Class 1 – The Expected
Network

Result

3. CONCLUSIONS

The quality of the road network connectivity for Truck Class 1can be concluded as follows:

Number of nodes connected for the existing road network are 2 nodes, while those for the expected road network are 5 nodes. The ratio then is 0.5. The expected road network has 5 nodes which should be connected, because the warehouse in existing road network must be displaced and added by 2 new freight terminals. The connectivity quality of the existing road network then, it needs an addition of 2 nodes: freight terminal 1 and freight terminal 2, while the warehouse (node ID 7) in the existing road network is abolished. Then, those nodes must be connected each other by new road network.

Quality Aspect			Value		Ratio	
Nodes connected	existing	Number of nodes need to be connected	4	node	7 0 o/	
		Number of nodes connected	2	node	- 50 %	50/100= 0.5
		Number of nodes unconnected	2	node		
	expected	Number of nodes need to be connected	5	node		
		Number of nodes connected	5	node	100%	
		Number of nodes unconnected	0	node		
Shortest path distance	existing	Total of shortest path distance	∞	km	$\infty/295.44 = \infty$	
	expected		295.44	km		
	direct distance		130.42	km	$\infty/130.42 = \infty$	
Roads length	existing	Total of roads length	39.77	km	39.77/52.54= 0.76 Δ= 52.54 - 39.77= 12.77 km	
	expected		52.54	km		

Table 11. Connectivity Quality of Road Network for Truck Class 1

The shortest path distance of the existing road network is infinite (∞). It means there are certain nodes which are unconnected. The shortest path distance for the expected road network is 295.44 km. The ratio is then ∞ . In order to achieve the expected road network quality it needs 2 addition of nodes and all must be connected each other by road network.

Total roads length of the existing road network and the expected road network are 39.77 km and 52.54 km respectively, with a difference of 12.77 km and a ratio of 0.76. Therefore, the existing road network requires an addition of 12.77 km in order to achieve the same quality as the expected road network.

REFERENCES

- Informationonhttp://toolkit.valleyblueprint.org/sites/default/files/05_streetconnectivity_oki_200 7.pdf10 December 2015.
- Information on webspace ship.edu. /pgmarr/ TransMeth/Lec2-Connectivity.pdf, 8th May 2015.
- Lehigh Valley Commission, Street Connectivity, Improving the Function and Performance of Your Local Streets, Lehigh ValleyCommission, Allentown, Pennsylvania, 2011.
- Suprayitno, H., Mochtar, I. B. & Achmad Wicaksono, A Special Matrix Power Operation Development For Simultaneous Calculation Of All Network's Shortest Path, Journal of Theoretical and Applied Information Technology, Vol. 62 No.1, 22-23, 2014.
- Suprayitno, H., Development Of A special Matrix Technic For Road Network Analysis, The 18th FSTPT International Symposium, 4-5, 2015.
- Suprayitno, H., Metoda Penelitian Kualitas Jaringan Jalan Utama Wilayah, Disertasi, Jurusan Teknik Sipil Institut Teknologi Sepuluh Nopember, Surabaya. No.29, 2014.
- Suprayitno, H., Traffic Flow Quality as Part of Network Quality for A Sparse Road Network, Procedia Engineering 125 (2015) 564 570, Elsevier, 2015.