Synthesis of Titanium Dioxide Nanoparticles (3nm) by adding PEO

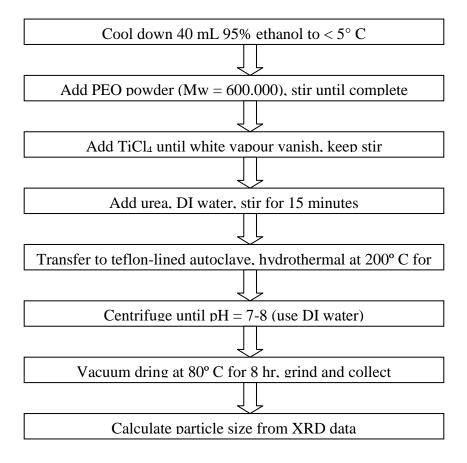
Yatim Lailun Ni'mah⁽¹⁾ and Hwang, Bing Joe⁽²⁾

⁽¹⁾ Chemistry Department, Faculty of Mathematics and Natural Sciences, Institut Teknologi sepuluh Nopember, Surabaya

⁽²⁾ Chemical Engineering Department, National Taiwan University of Science and technology

ABSTRACT: Nanosized Titanium dioxide (TiO) powder was synthesized via hydrothermal method using titanium tetrachlorida (TiCl₄) as the precursor and add PEO (Mw = 600.000). The obtained nano powder was used for further characterization. The phase transformation was investigated by an X-ray diffractometer (XRD). The grain size of the TiO2 particle was found to be 3.4 nm. Experimental results have shown that the nano powders have entirely consisted with anatase crystalline phase.

KEYWORDS: Titanium dioxide (TiO₂), nanoparticles, hydrothermal method, X-ray Diffraction.


I. INTRODUCTION

Nanoparticles Titanium dioxide (TiO₂) is a very useful transition metal oxide material and exhibits unique properties such as low cost, easy handling, non-toxicity and resistance to photochemical and chemical erosion. TiO₂ also has several potential technological applications in electrochemical energy storage and conversion technology such as sensors, solar cells, photo catalysis, memory devices, fuel cell, and Lithium ion battery [1-5]. These advantages make TiO₂ a material in solar cells, chemical sensors, for hydrogen gas evolution, as pigments, self-cleaning surfaces and environmental purification applications [6]. The nanoparticles synthesized by several oxide methods appear more and more useful, because these nanoparticles have good electrical, optical and magnetic properties that are different from their bulk counterparts [7].

Titanium oxide is a semiconducting metal oxide with the band gap of 3.2eV, it can exist in three main crystallographic phases : rutile, anatase, and brookite. It is inexpensive, non-toxic and easily available [16]. The major drawback of titania is its low electronic conductivity, thus the enhancement of the electronic conductivity is desired. Generally, there are two methods to improve titania electronic conductivity, first method is by creating more oxygen vacancy, converting part of the Ti⁴⁺ into Ti³⁺ and the second method is by introducing dopant into titania [17].

 TiO_2 nanoparticles can be synthesized using various methods such as sulphate process, chloride process, impregnation [8], coprecipitation hydrothermal method [10-12], direct [9], oxidation of TiCl₄ [13], metal organic chemical vapor deposition method, etc [14]. Sol-gel method [15] is one of the most convenient ways to synthesize various metal oxides due to low cost, ease of fabrication and low processing temperatures. It is widely used to prepare TiO_2 for films, particles or monoliths. In general, the sol gel process involves the transition of a system from a liquid "sol" (mostly colloidal) into a solid "gel" phase. The homogeneity of the gels depends on the solubility of reagents in the solvent, the sequence of addition of reactants, the temperature and the pH. The precursors normally used for the synthesis and doping of nanoparticles are organic alkoxides, acetates or acetylacetonates as well as inorganic salts such as chlorides. Among the classes of solvents, alcohols are largely used but other solvents such as benzene may also be used for some alkoxides.

In the previous study, TiO_2 was synthesized with sol-gel synthesis process and the TiO_2 precursor obtained was treated with HMDS vapors at 150°C under nitrogen atmosphere to eliminate its surface hydroxyl groups and get the nanoparticle TiO_2 with size 40 nm. In this work, the synthesis of TiO_2 with hydrothermal process was modified by adding PEO. TiO_2 was synthesized using a hydrothermal method with PEO being added at an appropriate time (determined by the temperature in the reaction vessel) to inhibit the growth of particle size. The growth of the TiO_2 grains was effectively inhibited by the addition of PEO, while aggregation of the treated TiO_2 powders could be avoided to result in a better dispersion of the particles. The characterization of particles was carried out by XRD (X Ray Diffraction).

Scheme 1. Synthesis of nano-sized TiO₂ powder

II. PROCEDURE

2.1 Materials

The materials that used in this experiment are Titanium (IV) Chloride [TiCl₄; MW : 189.91; 99.9% purity] Acros Organics, Ethyl Alcohol [C₂H₅OH; MW : 46.07; 99.5% purity] Shimakyu's Pure Chemicals, Urea [Co(NH₂)₂; MW : 60, 99.5% purity] Acros Organics, Deionized Water (ionic resistance : 18 MΩ), Millipore and Poly Ethylene Oxide $[HO(CH_2CH_2O)_nH; MW : 600.000)$ Acros Organics

2.2 Synthesize of nano-sized TiO₂ powder

TiO₂ powders were prepared by a hydrothermal process. TiCl₄ (Acros), DI water, Urea and ethanol (Acros) solvent were mixed, stirred for 15 minutes and kept the temperature < 5 °C. PEO (molecular weight = 600,000) was dissolved in ethanol and added to the previous solution and stirred for 15 minutes. The hydrothermal process was conducted at 200 °C, for 2 hours with a

heating rate of 10 °C/minute. To separate the product, it was centrifuged and then oven dried under vacuum overnight.

III. RESULTS AND DISCUSSIONS

X-Ray Diffraction (XRD), also known as powder diffraction is a technique to characterize the crystallographic structure, crystallite size (grain size) and preferred orientation in polycrystalline samples. XRD is commonly used to identify unknown substances or to determine the purity of crystalline material by comparing diffraction data against a database maintained by the International Centre for Diffraction Data (ICDD).

In this particular study, XRD was used to characterize the crystallinity and the grain size of Tio₂. XRD analysis in this study was performed using desktop Bruker D2 Phaser XRD machine with Cu K_a irradiation as photon source, λ = 1.5406 Å, Ni filter, 40 kV and 100 mA. All samples was analyze in the range of 2 θ = 20° –60°, scanning speed 1°/min and 0.05°/point scanning step.

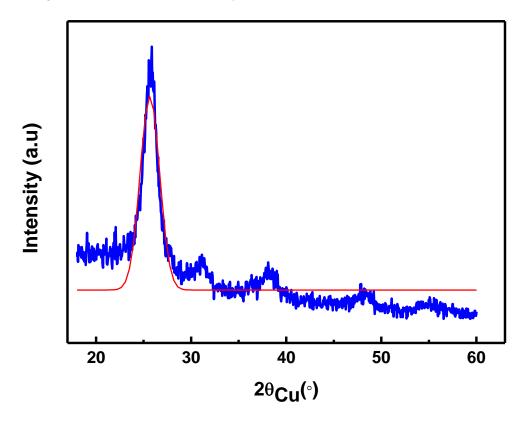


Figure 1. Fitting curve of XRD Pattern for TiO₂

Obtained XRD patterns were then compared with JCPDS reference from ICDD. EVA DIFFRAC 2.0 software was used to access JCPDS references. For the crystallite size estimation, Debye-Scherrer equation (eq. 1) was applied.

$$t = \frac{K \cdot \lambda}{B \cdot \cos \theta} \tag{1}$$

where :

$$\begin{split} K &= shape \mbox{ factor (throughout this study } K = 0.9) \\ t &= crystallite \mbox{ size } (\text{\AA}) \end{split}$$

 $\lambda = X$ -ray wavelength (Cu K_{α} = 1.5406 Å)

B = full width at half height maximum, FWHM θ = angle (degree)

The FWHM was estimated by using OriginLab 8.0 software based on the strongest intensity XRD peak, this peak was fitted by using PsigVoigdt1 function.

Figure 1 shows the XRD pattern of nano sized TiO₂. The peak appeared at 2 θ value ranging the diffraction peak at 2 θ with 25.3°, 38.3°, 48°, 54°,

indicate to the formation of anatase phase of TiO_2 . The phase of nanosized TiO_2 is pure anatase phase, agree with our previous result [5]. The smallest particle size after optimazion is 3.4 nm. This smallest particles size due to adding PEO during synthesize process and PEO inhibit the growth of particle size.

The avarage size of the particles was calculated using Debye-Scherrer's formula. By following (1) equation, we can calculate and get the particle size (t) is 3.4 nm.

REFERENCES

- W. Li, S. Ismat Shah, C. P. Huang, O. Jung and C. Ni, Mater. Sci. Eng. B 96, 247, (2002).
- [2] J. T. Remillard, J. R. Mc Bride, K. E. Nietering, A. R. Drews and X. Zhang, J. Phys. Chem. B 104, 4440, (2000).
- [3] E. Traversa, J. Am. ceram. Soc. 78, 2625, (1995).
- [4] A. I. Kingon, J. P. Maris and S. K. Steiffer, Nature (London) 406, 1032, (2000).
- [5] Lin, C.W., et al., Influence of TiO2 nano-particles on the transport properties of composite polymer electrolyte for lithium-ion batteries. Journal of Power Sources, 146(1-2): p. 397-401, (2005).
- [6] M. R. Hoffmann, S. T. Martin, W. Choi and D. W. Bahnemann, 'Environmental Applications of Semiconductor Photocatalysis", Che. Rev., Vol. 95, No. 1, pp. 69-96, (1995).
- [7] H. Xu, X. Wang and I. Zhang, "Selective preparation of nanorods and micro-octahedron of Fe2O3 and their catalytic performances for Thermal decomposition of Ammonium perchlorate", Powder Technol., Vol. 185, No.2, pp. 176-180, (2008).
- [8] Litter, M.I. and J.A. Navio, Comparison of the photocatalytic efficiency of TiO 2, iron oxides and mixed Ti (IV), Fe (III) oxides: photodegradation of oligocarboxylic acids. Journal of

Photochemistry and Photobiology A: Chemistry, 1994. **84**(2): p. 183-193.

- [9] Palmisano, L., et al., Activity of chromium-iondoped titania for the dinitrogen photoreduction to ammonia and for the phenol photodegradation. The Journal of Physical Chemistry, 1988. 92(23): p. 6710-6713.
- [10] Wang, Y., et al., Preparation, characterization and photoelectrochemical behaviors of Fe(III)doped TiO2 nanoparticles. Journal of Materials Science, 1999. 34(15): p. 3721-3729.
- [11] Cheng, H., et al., *Hydrothermal preparation of uniform nanosize rutile and anatase particles*. Chemistry of Materials, 1995. 7(4): p. 663-671.
- [12] Wang, Y., et al., The photoelectrochemistry of transition metal-ion-doped TiO2 nanocrystalline electrodes and higher solar cell conversion efficiency based on Zn2+-doped TiO2 electrode. Journal of Materials Science, 1999. 34(12): p. 2773-2779.
- [13] Akhtar, M.K., Y. Xiong, and S.E. Pratsinis, Vapor synthesis of titania powder by titanium tetrachloride oxidation. AIChE Journal, 1991. 37(10): p. 1561-1570.
- [14] Li, W., et al., Metallorganic chemical vapor deposition and characterization of TiO 2 nanoparticles. Materials Science and Engineering: B, 2002. 96(3): p. 247-253.
- [15] Wang, C.-C., Z. Zhang, and J.Y. Ying, *Photocatalytic decomposition of halogenated* organics over nanocrystalline titania. Nanostructured Materials, 1997. 9(1–8): p. 583-586.
- [16] Chen, X. and S.S. Mao, *Titanium dioxide* nanomaterials: synthesis, properties, modifications, and applications. Chemical reviews, 2007. 107(7): p. 2891-2959.
- [17] Leroux, F., et al., *Study of the formation of mesoporous titania via a template approach and of subsequent Li insertion.* Journal of Materials Chemistry, 2002. **12**(11): p. 3245-3253.