Pengaruh Penambahan Bacillus subtilis Pada Biodegradasi DDT Oleh Phlebia brevispora

Adi Setyo Purnomo, Fajriah Fajriah


DDT merupakan pestisida yang bersifat persisten di lingkungan, dan memiliki resiko kesehatan bagi manusia. Pada penelitian ini, pengaruh penambahan bakteri Bacillus subtilis pada biodegradasi DDT oleh jamur Phlebia brevispora telah diteliti. B. subtilis ditambahkan pada volume 1, 3, 5, 7, dan 10 mL (1 ml ≈ 6,7 × 108 sel bakteri / ml kultur). Hasil degradasi DDT oleh P. brevispora tanpa penambahan bakteri adalah 64%. Degradasi tertinggi DDT diperoleh pada penambahan 10 mL bakteri sekitar 75% selama masa inkubasi 7 hari. DDD, DDE and DDMU terdeteksi sebagai produk metabolit. Penelitian ini menunjukkan bahwa penambahan B. subtilis dapat meningkatkan degradasi DDT oleh P. brevispora.


Biodegradasi, DDT, Phlebia brevispora, Bacillus subtilis.

Full Text:



World Health Organization, “Environmental Health Criteria 9: DDT and its derivatives,” WHO, Geneva, 1979.

M. A. Dalvie, “DDT: Health Effects. University of Cape Town, Cape Town, South Africa.” Elsevier, 2011.

R. Boussahel, D. Harik, M. Mammar and S. Lamara-Mohamed, “Degradation of obsoletes DDT by Fenton oxidation with zero-valent iron.” Desalination, vol. 206(1), 2007, pp. 369-372.

R. Borello, C. Minero, E. Pramauro, E. Pelizzetti, N. Serpone, and H. Hidaka, “Photocatalytic degradation of DDT mediated in aqueous semiconductor slurries by simulated sunlight.” Environ. Toxicol. Chem., vol. 8(11), 1989. pp. 997-1002.

J. Bumpus, D. D. Focht, M. Alexander, and S. D. Aust, “Biodegradation of DDT (1,1,1 trikloro-2,2-bis (4-klorofenil) etane) by Phanerochaete chrysosporium.” Chemosphere, vol. 19, 1985, Issues 8-9.

J. M. Aislabie, N. K. Richards, and H. L. Boul, “Microbial degradation of DDT and its residues—a review.” NZJ. Agricul. Res., vol. 40(2), 1997, pp. 269-282.

P. Xiao, T. Mori, I. Kamei, and R. Kondo, “A novel metabolic pathway for biodegradation of DDT by the white rot fungi, Phlebia lindtneri and Phlebia brevispora.” Biodegradation, vol. 22(5), 2011, pp. 859-867.

B. T. Johnson, and J. O. Kennedy, “Biomagnification of p,p'-DDT and methoxychlor by bacteria.” Appl. Microbiol., vol. 26, 1973, pp. 66-71.

N. Awasthi, A. Kumar, R. Makkar, and S. Cameotra, “Enhanced biodegradation of endosulfan, a chlorinated pesticide in presence of a biosurfactant.” J. Environ. Sci. Health B, vol. 34, 1999, pp. 793-803.

C. N. Mulligan, “Environmental application for biosurfactans.” Environ. J., vol. 133(2), 2005, pp. 183-198.

F. T. Hermansyah, “Optimasi degradasi DDT oleh Pleurotus ostreatus dengan penambahan bakteri Bacillus subtilis”, Skripsi, Institut Teknologi Sepuluh November, Surabaya, 2014.

A. S. Purnomo, I. Kamei, and R. Kondo, “Degradation of 1,1,1-trichlro-2,2-bis (4-chlorophenyl) ethane (DDT) by brown-rot fungi.” J. Biosci. Bioeng., vol. 105 (6), 2008, pp. 614-621.

A. S. Purnomo, F. Koyama, T. Mori, and R. Kondo, ”DDT degradation potential of cattle manure compost.” Chemosphere, vol. 80 (6), 2010, pp. 619-624.

A. S. Purnomo, T. Mori, I. Kamei, T. Nishii, and R. Kondo, ”Application of mushroom waste medium from Pleurotus ostreatus for bioremediation of DDT-contaminated soil.” Inter. Biodet. Biodeg., vol. 64 (5), 2010, pp. 397-402.

A. S. Purnomo, T. Mori, and R. Kondo, ”Involvement of Fenton reaction in DDT degradation by brown-rot fungi.” Inter. Biodet. Biodeg., vol. 64 (7), 2010, pp. 560-565.

A. S. Purnomo, T. Mori, K. Takagi, and R. Kondo, ”Bioremediation of DDT contaminated soil using brown-rot fungi.” Inter. Biodet. Biodeg., vol. 65 (5), 2011, pp. 691-695.

A. S. Purnomo, T. Mori, I. Kamei, and R. Kondo, ”Basic studies and applications on bioremediation of DDT: A review.” Inter. Biodet. Biodeg., vol. 65 (7), 2011, pp. 921-930.

S. Wahyuni, M. T. Suhartono, A. Khaeruni, A. S.Purnomo, Asranudin, Holilah, P. A. Riupassa, “Purification and Characterization of Thermostable Chitinase from Bacillus SW41 for Chitin Oligomer Production.” Asian J. Chem., vol. 28(12), 2016, pp. 2731-2736.

A. S. Purnomo, T. Mori, S. R. Putra, and R. Kondo, R. ”Biotransformation of heptachlor and heptachlor epoxide by white-rot fungus Pleurotus ostreatus.” Inter. Biodet. Biodeg., vol. 82, 2013, pp. 40-44.

A. S. Purnomo, S. R. Putra, K. Shimizu, and R. Kondo, ”Biodegradation of heptachlor and heptachlor epoxide-contaminated soils by white-rot fungal inocula.” Environ. Sci. Poll. Res., vol. 21, 2014, pp. 11305-11312.

N. Pornsunthorntawee, N. Arttaweeporn, S. Paisanjit, P. Somboonthanate, M. Abe, R. Rujiravanit, and S. Chavadej, “Isolation and comparison of biosurfactants produced by Bacillus subtilis Pt2 and Pseudomonas aeruginosa SP4 for microbial surfactant-enhanced oil recovery.” Biochem. Eng. J., vol. 42, 2008, pp. 172-179.

E. J. Gudiña, V. Rangarajan, R. Sen, and L. R. Rodrigues, “Potential therapeutic applications of biosurfactants.” Trends Pharmac. Sci., vol. 34, 2013, pp. 667-675.

R. Zouari, S. E. Chaabouni, and D. G. Aydi, “Optimization of Bacillus subtilis SPB1 biosurfactant production under solid-state fermentation using by-products of a traditional olive mill factory.” Achiev. Life Sci., vol. 8, 2014, pp. 162-169.

D. Kantachote, I. Singleton, N. McClure, R. Naidu, M. Megharaj, and B. D. Harch, “DDT resistance and transformation by different microbial strains isolated from DDT-contaminated soils and compost materials.” Compost Sci. Utiliz., vol. 11 (4), 2003, pp. 300-310.

B. E. Langlois, J. A. Collins, and K. G. Sides, “Some factors affecting degradation of organochlorine pesticide by bacteria.” J. Dairy Sci., vol. 53, 1970, pp. 1671-1675.

R. Bidlan, “Studies on DDT degradation by bacterial strains.” PhD Thesis, Central Food Technological Research Institute, University of Mysore, India, 2003.

F. I. Hai, O. Modin, K. Yamamoto, K. Fukushi, F. Nakajima, and L. D. Nghiem, “Pesticide removal by a mixed culture of bacteria and white-rot fungi.” J. Taiwan Inst. Chem. Eng., vol. 43, 2012, pp. 459-462.

S. Wang, N. Nomura, T. Nakajima, and H. Uchiyama, “Case study of the relationship between fungi and bacteria associated with high-molecular-weight polycyclic aromatic hydrocarbon degradation.” J. Biosci. Bioeng., vol. 113 (5), 2012, pp. 624-630.

F. A. Bezza, and E. M. N. Chirwa, “Production and applications of lipopeptide biosurfactant for bioremediation and oil recovery by Bacillus subtilis CN2.” Biochem. Eng. J., vol. 101, 2015, pp. 168-178.

J. A. Buswell, Y. J. Cai, and S. T. Chang, “Fungal-and substrate- associated factors affecting the ability of individual mushroom species to utilize different lignocellulosic growth substrates.” In: S. Chang, J. A. Buswell, and S. Chiu, (Eds.), Mushroom Biology and Mushroom Products. The Chinese Univ. Press, Hong Kong, 1993, pp. 141-150.

M. Hofrichter, T. Lundell, and A. Hatakka, “Conversion of milled pine wood by manganese peroxidase from Phlebia radiata.” Appl. Environ. Microbiol., vol. 67, 2001, pp. 4588-4593

T. Vares, M. Kalsi, and A. Hatakka, “Lignin peroxidases, manganese peroxidases, and other ligninolytic enzymes produced by Phlebia radiata during solid-state fermentation of wheat straw. Appl. Environ. Microbiol., vol. 61, 1995, pp. 3515-3520.

A. A. Leontievsky, T. Vares, P. Lankinen, J. K. Shergill, N. N. Pozdnyakova, N. M. Myasoedova, N. Kalkkinen, L. A. Golovleva, R. Cammack, C. F. Thurston, and A. Hatakka, ”Blue and yellow laccases of ligninolytic fungi.” FEMS Microb. Lett., vol. 156, 1997, pp. 9-14

S. Masaphy, D. Levanon, Y. Henis, K. Venkateswarlu, and S. L. Kelly, “Evidence for cytochrome P-450 and P-450-mediated benzo(a)pyrene hydroxylation in the white rot fungus Phanerochaete chrysosporium.” FEMS Microbiol. Lett., vol. 135, 1996, pp. 51-55.

L. Bezalel, Y. Hadar, P. P. Fu, J. P. Freeman, and C. E. Cerniglia, “Initial oxidation products in the metabolism of pyrene, anthracene, fluorene, and dibenzothiophene by the white rot fungus Pleurotus ostreatus.” Appl. Environ. Microbiol., vol. 62, 1996, pp. 2554-2559.

I. Kamei, and R. Kondo, “Biotransformation of dichloro-, trichloro-, and tetrachlorodibenzo-p-dioxin by the white-rot fungus Phlebia lindtneri.” Appl. Microbiol. Biotech., vol. 68, 2005, pp. 560-566.

I. Kamei, S. Sonoki, K. Haraguchi, and R. Kondo, “Fungal bioconversion of toxic polychlorinated biphenyls by white-rot fungus,” Phlebia brevispora. Appl. Microbiol. Biotech., vol. 73, 2006, pp. 932-940.

T. Mori, and R. Kondo, ”Oxidation of chlorinated dibenzo-p-dioxin and dibenzofuran by white-rot fungus, Phlebia lindtneri.” FEMS Microbiol. Lett., vol. 216, 2002, pp. 223-227.

T. Mori, K. Nakamura, and R. Kondo, “Fungal hydroxylation of polychlorinated naphthalenes with chlorine migration by wood rotting fungi.” Chemosphere, vol. 77, 2009, pp. 1230-1235.

N. Hiratsuka, H. Wariishi, and H. Tanaka, “Degradation of diphenyl ether herbicides by the lignin-degrading basidiomycete Coriolus Versicolor.” Appl. Microbiol. Biotech., vol. 57, 2001, pp. 563-571.

A. Cùany, M. Pralavorio, D. Pauron, J. B. Berge, D. Fournier, and C. Blais, “Characterization of microsomal oxidative activities in a wild-type and in a DDT resistant strain of Drosophila melanogaster.” Pestic. Biochem. Physiol., vol. 37, 1990, pp. 293-302.

N. Joußen, D. G. Heckel, M. Haas, I. Schuphan, and B. Schmidt, “Metabolism of imidacloprid and DDT by P450 CYP6G1 expressed in cell cultures of Nicotiana tabacum suggests detoxification of these insecticides in Cyp6g1-overexpressing strains of Drosophila melanogaster, leading to resistance.” Pest Manag. Sci., vol. 64, 2008, pp. 65-73.

H. Suhara, A. Adachi, I. Kamei, and N. Maekawa, “Degradation of chlorinated pesticide DDT by litter-decomposing basidiomycetes.” Biodegradation, vol. 22, pp. 1075-1086.



  • There are currently no refbacks.

Licence Creative Commons
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.