Study of Reaction Conditions for the Synthesis of Methyl Oleic from Used Cooking Oil

Nasriadi Dali Wela, Arniah Dali Wela

Abstract


Abstrak

 

Penelitian tentang studi kondisi reaksi sintesis metil oleat dari minyak jelantah telah dilakukan. Penelitian ini bertujuan untuk: (1) menurunkan kadar asam lemak bebas (ALB) minyak jelantah dengan menggunakan adsorben arang aktif biji alpukat; (2) menentukan kondisi optimum reaksi sintesis metil oleat dari minyak jelantah; (3) menentukan kualitas metil oleat; (4) mengkarakterisasi metil oleat dengan FTIR. Metil oleat diperoleh melalui dua tahap, yaitu tahap pemurnian dan sintesis. Pada tahap pemurnian, 150 mL minyak jelantah diadsorpsi dengan (2, 4, 6, 8, dan 10) g arang aktif biji alpukat selama 2 jam pada suhu 70oC. Hasil pemurnian menunjukkan bahwa arang aktif biji alpukat dapat menurunkan kadar ALB minyak jelantah sebesar 93,79% (b/b). Pada tahap sintesis, metil oleat disintesis dengan menggunakan perbandingan mol (triolein : metanol) (1 : 3), (1 : 6), dan (1 : 9), serta konsentrasi NaOH (1, 8, dan 16) % (b/b) dari berat minyak. Hasil penelitian menunjukkan bahwa kondisi optimum reaksi sintesis metil oleat dari minyak jelantah dengan rendemen tertinggi (84,32% b/b) adalah rasio mol (triolein : metanol) (1 : 9) dengan konsentrasi NaOH 1% (b/b). Kualitas metil oleat yang dihasilkan memenuhi syarat sebagai biodiesel menurut SNI 04-7182-2015 dengan nilai bilangan iodin 4,44 g I2/sampel, angka penyabunan 114,44 mg KOH/g sampel, angka setana 82,96, kadar air 0,03% (b/b), dan bilangan asam 0,71 mg KOH/g sampel. Hasil karakterisasi metil oleat dengan FTIR menunjukkan bahwa metil oleat memiliki tipe serapan gugus fungsi yang khas dari senyawa ester asam lemak tak jenuh.

Abstract

 Research on the study of the reaction conditions for the synthesis of methyl oleic from used cooking oil has been carried out. This study aims to: (1) reduce levels of free fatty acids (FFA) used cooking oil using activated charcoal adsorbent avocado seed; (2) determining the optimum conditions for the synthesis of methyl oleic from used cooking oil; (3) determining the quality of methyl oleic; (4) characterized methyl oleic by FTIR. Methyl oleic was obtained in two stages, namely the purification and synthesis stages. In the purification stage, 150 mL of used cooking oil was adsorbed with (2, 4, 6, 8, and 10) g of avocado seed activated charcoal for 2 hours at 70oC. The purification results showed that the avocado seed activated charcoal could reduce the FFA content of used cooking oil by 93.79% (w/w). In the synthesis stage, methyl oleic was synthesized using the mol ratio (triolein : methanol) (1 : 3), (1 : 6), and (1 : 9), as well as the concentration of NaOH (1, 8, and 16)% (w/w) by weight of oil. The results showed that the optimum condition for the synthesis of methyl oleic from used cooking oil with the highest yield (84.32% w/w) was the mol ratio (triolein : methanol) (1 : 9) with a concentration of NaOH 1% (w/w). The quality of the resulting methyl oleic meets the requirements as biodiesel according to INS 04-7182-2015 with an iodine number value of 4.44 g I2/sample, saponification number of 114.44 mg KOH/g sample, cetane number of 82.96, water content of 0.03% (w/w), and the acid number of 0.71 mg KOH/g sample. The results of characterization of methyl oleic by FTIR showed that methyl oleic had a typical functional group absorption type of unsaturated fatty acid esters.

Keywords


Kata Kunci: minyak jelantah, arang aktif biji alpukat, triolein, metil oleat, biodiesel, transesterifikasi.Keywords: used cooking oil, avocado seed activated charcoal, triolein, methyl oleic, biodiesel, transesterification.

Full Text:

Full Text

References


References

Sugiono, A. 2014. Current Energy Problems and Policies. Proceedings of the Launch Outlook Book of Indonesia Energy 2014 & Joint Seminar with BPPT and BKK-PII. 9-16.

Dali, N., and Dali, A. 2019. Synthesis of Nitro Ethyl Oleic from Used Cooking Oil. Al-Kimia. Vol. 7(1): 46-55. doi: 10.24252/al-kimia.v7i1.7642

Zang, T. 2020. The Benefits of Biodiesel. Green America. (On line). (https://www.greenamerica.org/green-living/benefits-biodiesel, accessed September 17, 2020).

BPPT. 2018. Biodiesel Manufacturing and Testing Process. Deepening of Material 3 Bioenergy 2 Technique (Bioethanol and Biodiesel). Jakarta.

Aziz, I., Nurbayti, S., and Ulum, B. 2011. Biodiesel Production from Used Cooking Oil by Esterification and Transesterification. Valensi. Vol. 2 (3): 443-448.

Dahlan, M. H., Siregar, H. P., and Yusra, M. 2013. The Use of Activated Carbon from Moringa Seeds Can Purify Cooking Oil. J. Teknik Kimia. Vol. 2, No. 19, 44-53.

Taufiq, M. 2007. Purification of Used Cooking Oil Using Moringa Oleifera Lamk Seeds. Unpublished Thesis, Malang.

Niken, H., and Djajeng, S. 2011. Processing of Jatropha curcas L. Seeds Into a Source of Biofuels and Utilization of Side Products. Buletin Teknologi Pascapanen Pertanian. Vol. 7 (1): 37-43.

Kolo, S. M. D., Siburian, R. A. F., and Lulan, T. Y. K. 2016. Biodiesel Production from Jatropha curcas L. Seed Oil. Bio-Edu: Jurnal Pendidikan Biologi. Vol. 1 (1): 6-8.

Berghuisi, N. T., Tamako, P. D., and Supriadin, A. 2019. Utilization of Avocado Seeds (Persea americana) Waste as Biodiesel Raw Material. al-Kimiya. Vol. 6 (1): 36-45.

Rachmanita, R. E. and Safitri, A. 2020. Utilization of Avocado Seeds Oil (Persea americana Mill) as Raw Material for Making Biodiesel by Purifying Water Washing. Jurnal Ilmiah Sains. Vol. 20 (2): 88-99. doi: https://doi.org/10.35799/jis.-20.2.2020.28266

Risnoyatiningsih, S. 2010. Biodiesel from Avocado Seeds by Transesterification Process. Jurnal Teknik Kimia. Vol. 5(1): 345-351.

Buchori, L., Sasongko, S. B., Anggoro, D. D., and Aryanti, N. 2012. Soybean Oil Extraction from Tofu Dregs as Raw Material for Making Biodiesel. Jurnal Ilmu Lingkungan. Vol. 10 (2): 49-53.

Faputri, A. and Setiorini, I. 2020. Production of Biodiesel from Peanut Oil from Satay Traders Using 3 Process Stages and Differences in KOH Catalyst Concentrations. Jurnal Teknik Patra Akademika. Vol. 10 (02): 15-22.

Winarti, S. and Wicaksono, L. A. 2020. Utilization of Sunflower Seeds as Raw Material for Tempe Fermentation. Agrointek. Vol. 14(1): 112-121. doi: https://doi.org/10.-21107/agrointek.v14i1.6315

Katja, D. W. 2012. Quality of Commercial Sunflower Oil and The Extraction Result Oil of Sunflower Seeds (Helianthus annuus L.). Jurnal Ilmiah Sains. Vol. 12 (1): 60-64.

Riskah, F., Ridhay, A., Mappiratu, and Rahim, E. A. 2019. Production of Methyl Oleat Through Methanolysis Reaction of Moringa oleifera Lam Seeds Oil. KOVALEN: Jurnal Riset Kimia. Vol. 5(1): 1-8.

Prasetyo, J. 2018. Study of Utilization of Used Cooking Oil as a Raw Material for Making Biodiesel. Jurnal Ilmiah Teknik Kimia. Vol. 2(2): 1-10. doi: 10.32493/jitk.v2i2. 1679

Yandri, V. R. 2012. Utilization of Used Cooking Oil as Biodiesel to Fuel Unand Campus Buses in Padang. Jurnal Aplikasi Ipteks untuk Masyarakat. Vol. 1(2): 119-125.

Rezeika, S. H., Ulfin, I., and Ni'mah, Y. L. 2018. Synthesis of Biodiesel from Used Cooking Oil Using NaOH Catalysts with Variations in Transesterification Reaction Time and Performance Test with a Diesel Engine. Akta Kimindo. Vol. 3(2): 175-189. doi: http://dx.doi.org/-10.12962/j25493736.v3i2.3098

Ouellette, R. J. 2018. Introduction to General, Organic, and Biological Chemistry. Macmillan Publishing Company, New York.

Fitriani and Nurulhuda. 2018. Purification of Used Cooking Oil Using Activated Avocado Seeds Adsorbent. Jurnal Pendidikan Matematika dan IPA. Vol. 9(2): 65-75. doi: 10.26418/jpmipa.v9i2.26770

Kartika, G. F., Itnawita, T., Hanifah, A., Anita, S., Dewi, N. O. M., and Absus, S. 2017. Effect of Activators on The Ability of Avocado Seeds Powder (Persea americana Mill) to Absorb Lead(II) Ions. Chimica et Natura Acta. Vol. 5(1): 9-12. doi: https://doi.org/10.24198/cna.v5.n1.12814

Solomons, T. W. G. 1988. Organic Chemistry. 4th Edition. John Wiley & Sons, New York.

Marlinda, M., Sangi, M. S., and Wuntu, A. D. 2012. Analysis of Secondary Metabolite Compounds and Toxicity Test for Ethanol Extract of Avocado Seeds (Persea Americana Mill). J. MIPA Unsrat. Vol. 1(1): 27-32.

Wikipedia. 2020. Triolein. (On line). (https://en.wikipedia.org/wiki/Triolein, accessed June 07, 2020).

Wikipedia. 2020. Methanol. (On line). (https://id.wikipedia.org/wiki/-Metanol, accessed September 15, 2020).

Aufar, A., and Hendra, K. R. 2017. Synthesis of Methyl Ester Nitrate as a Solar Fuel Additives to Increase Cetane Numbers (CN). Department of Chemical Engineering ITS, Surabaya.

SNI. 2015. Biodiesel, SNI 04-7182-2015. Indonesian National Standard Agency, Jakarta.

ASTM. 1998. Standard Test Methods of Petroleum Products. Annual Book of ASTM Standards. 05.01, 845-847.

Kemp, W. 1991. Organic Spectroscopy. 3rd Edition. Macmillan Education Ltd, London.

Lambert, J. B., Gronert, S., Shurvell, H. F., Lightner, D. A. 2011. Organic Structural Spectroscopy. 2nd Edition. Prentice Hall, Boston.

Sastrohamidjojo, H. 1992. Infrared Spectroscopy. 1st Edition. Liberty, Yogyakarta.

Hashatan, D., Sunaryo, J., and Komariah, L. N. 2012. Effect of H2SO4 Ratio and Reaction Time on the Quantity and Quality of Biodiesel from Jatropha Oil. J. Teknik Kimia. Vol. 2(18): 26-36.

Wikipedia. 2020. Glycerol. (On line). (https://en.wikipedia.org/wiki/Glycerol, accessed May 02, 2020).

Pubchem. 2020. Methyl oleate. (On line). (https://pubchem.ncbi.nlm.nih. gov/compound/methyl_oleate, accessed August 17, 2020).

Ningtyas, D. P. 2013. Effect of Base Catalyst (NaOH) in the Transesterification Reaction Stage on the Quality of Biofuel from Sardine Fish Meal Oil. Jurnal Teknosains. Vol. 2(2): 35-40.

Ramdja, A. F., Febriana, L., and Krisdianto, D. 2010. Purification of Used Cooking Oil Using Sugarcane Dregs as Adsorbent. Jurnal Teknik Kimia. Vol. 17(1): 23-33.




DOI: http://dx.doi.org/10.12962/j25493736.v6i1.8106

Refbacks

  • There are currently no refbacks.


Licence Creative Commons
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.