Perbandingan Komponen Pasang Surut dengan Analisis Harmonik antara Satelit Altimetri Jason-2 dan Jason-3 dengan Stasiun Pasang Surut pada Perairan Jawa

Comparison of Tide Constituents by Harmonic Analysis between Satellite Altimetry Jason-2 and Jason-3 with Tide Gauge in Java Waters

Muhammad Nahdi Febriansyah, Eko Yuli Handoko*

Departemen Teknik Geomatika, FTSLK-ITS, Kampus ITS Sukolilo, Surabaya, 60111, Indonesia *Korespondensi penulis: ekoyh@geodesy.its.ac.id

Diterima: 14082020; Diperbaiki: 04052022; Disetujui: 30082022; Dipublikasi: 01102022

Abstrak: Teknologi satelit altimetri memiliki peran penting dalam studi oceanografi pada pengamatan pasang surut. Dalam penelitian ini digunakan satelit altimetri Jason-2 dan Jason-3 untuk menghitung SSH yang di interpolasikan diatas titik normal untuk menentukan 9 konstanta pasang surut di daerah perairan Jawa. Dalam penentuan konstanta pasang surut digunakan analisis harmonik metode Least Square dengan menerapkan frekuensi aliasing karena perbedaan interval waktu pengamatan. Hasil komponen pasang surut yang didapat dibuat Co-Tidal untuk mengetahui persebaran amplitudo dan fase komponen pasang surut. Kemudian dilakukan perbandingan dengan hasil komponen dari data pengamatan stasiun pasang surut, didapatkan RMSE paling besar yaitu sebesar 0.176 m pada komponen pasang surut P1 dan RMSE terkecil yaitu sebesar 0.018 m pada komponen pasang surut M4.

Copyright © 2022 Geoid. All rights reserved.

Abstract: Altimetry satellite technology has an important role in oceanographic studies of tidal observations. In this study, the Jason-2 and Jason-3 altimetry satellites are used to calculate the SSH interpolated above the normal point to determine 9 tidal constants in the waters of Java. In determining tidal constants, the harmonic analysis method of Least Square is used by applying the aliasing frequency due to differences in the observation time interval. The results of the tidal components obtained were made by Co-Tidal to determine the distribution of the amplitude and phase of the tidal component. Then do a comparison with the results of components from the tidal station observation data, obtained the greatest RMSE that is equal to 0.176 m on the tidal component P1 and the smallest RMSE that is equal to 0.018 m on the tidal component M4.

Kata kunci : Altimetri, Least Square, Komponen Pasang Surut

Cara untuk sitasi: Febriansyah, M.N, Handoko, E.Y. (2022). Perbandingan Komponen Pasang Surut dengan Analisis Harmonik antara Satelit Altimetri Jason-2 dan Jason-3 dan Stasiun Pasang Surut pada Perairan Jawa. *Geoid*, *18*(1), 20-33.

Pendahuluan

Perairan Jawa ini memiliki banyak potensi baik dari segi ekologi maupun oceanografi yang dapat menghasilkan sumber daya alam yang melimpah (Sella, 2008). Selain memiliki keunikan kondisi oseanografi, perairan di Jawa juga memiliki potensi terjadinya bencana alam seperti tsunami. Salah satu fenomena yang bisa dijadikan acuan untuk mengetahui kondisi perairan suatu daerah yaitu dengan pengamatan pasang surut. Pasang surut merupakan naik atau turunnya permukaan laut merupakan hal yang sering mengemuka dengan perubahan gerak relatif dari materi suatu planet, bintang, dan benda – benda angkasa lainnya yang diakibatkan aksi tarik menarik. Studi tentang pasang surut cukup penting, mengingat banyak hal untuk keperluan teknis maupun sains pada wilayah laut, misalnya untuk keperluan pembangunan pelabuhan di wilayah pantai dan pengeboran *offshore rig* atau lepas pantai (Mardhiyah, 2017).

Pada komponen penyusun pasang surut dapat ditentukan dengan analisis harmonik dengan metode Least

Square, dengan dasar bahwa pasang surut yang terjadi adalah superposisi atau penjumlahan berbagai ampitudo dan beda fase dari masing-masing komponen pembangkit pasang surut. Untuk bisa menganalisa pasang surut tersebut dibutuhkan data yang lengkap dan akurat. Bahkan diperlukan pengamatan yang cukup lama untuk bisa menentukan dengan baik karakteristik pasang surut suatu perairan.

Pengamatan perubahan kedudukan air laut pertama telah dilakukan dengan memantau melalui stasiun pasangsurut pada abad ke-18. Pengamatan stasiun pasang surut tersebut dilakukan disepanjang garis pantai (Church, et al., 2011). Pada pengamatan stasiun pasang surut memiliki beberapa keterbatasan seperti distribusi, dampak lokal dan khususnya dipengaruhi oleh pergerakan tanah vertikal seperti penurunan muka tanah. Meskipun demikian sampai saat ini karakteristik dari kedudukan pasang surut di wilayah perairan belum dipahami secara baik dan komprehensif. Ketersediaan akan data di wilayah perairan Indonesia terbatas. Keterbatasan akan data ini disebabkan karena sulitnya melakukan pengambilan data terutama di daerah lepas pantai. Maka dari itu perilaku kedudukan pasang surut, baik variasi temporal maupun spasialnya di wilayah perairan Jawa merupakan salah satu data penting yang diperlukan untuk mendukung keselamatan pelayaran.

Perkembangan teknologi saat ini, pasang surut dapat ditentukan menggunakan satelit Altimetri (Safi'I, 2018). Satelit Altimetri menangkap fenomena permukaan laut dari hasil pengukuran jarak dari permukaan laut ke satelit. Satelit altimetri didesain khusus untuk mempelajari dinamika lautan. Teknologi satelit altimetri dapat digunakan pada pengamatan pasang surut air laut pada wilayah yang lebih luas. Penelitian ini akan menggunakan satelit altimetri Jason-2 dan Jason-3 yang merupakan misi kerjasama 4 badan yaitu NASA, CNES, EUMETSAT dan NOAA dalam pengamatan pasang surut.

Data dan Metode

Lokasi penelitian ini berada di Perairan Jawa yang terletak pada 10 titik normal dengan 5 titik di utara Pulau Jawa dan 5 titik lainnya di selatan pulau Jawa. Secara geografis, berikut merupakan lokasi penelitian yang ditunjukan pada Tabel 1 dan Gambar 1.

Tabel 1. Lokasi Penelitian						
Titik	Koordinat Geografis	Deskripsi Geografis	Terletak pada Pass			
1	5°52'53.18" LS 106°18'59.05" BT	Perairan Serang	229			
2	6°38'16.82" LS 108°52'36.93" BT	Perairan Cirebon	051			
3	6°44'53.38" LS 109°25'39.65" BT	Perairan Pemalang	064			
4	6°39'19.14" LS 111°42'19.48" BT	Perairan Tuban	127			
5	6°47'15.73" LS 112°16'38.42" BT	Perairan Lamongan	140			
6	6°53'59.49" LS 105°56'50.51" BT	Perairan Binuangeun	229			
7	7°54'20.47" LS 108°24'55.19" BT	Perairan Ciamis	051			
8	7°55'1.28" LS 109°51'13.88" BT	Perairan Purworejo	064			
9	8°20'29.51" LS 111° 5'24.15" BT	Perairan Pacitan	127			
10	8°28'55.89" LS 112°53'44.38" BT	Perairan Malang	140			

Gambar 1. Lokasi Penelitian (Penulis, 2020)

Data satelit altimetri yang digunakan adalah data Jason-2 phase A tahun 2008-2016 dan Jason-3 phase A tahun 2016-2019 yang diambil dari RADS (*Radar Altimeter Database System*). Dengan parameter-parameter yang digunakan dalam pengolahan data adalah tinggi orbit satelit (*altitude*), tinggi altimeter (*range*), waktu pengukuran, *dry tropospheric correction, wet tropospheric correction, ionospheric correction, sea state bias correction, pole tides correction, solid tides correction, dynamic atmospheric correction* (DAC), dan *reference frame offset* (RFO). Selain itu digunakan juga data pengamatan stasiun pasang surut yang terdiri dari Sunda Kelapa, Cirebon, Pekalongan, Tuban, Surabaya, Binuangeun, Pangandaran, Glagah, Pacitan dan Sendang Biru kurang lebih dari tahun 2008-2019.

Pada data Jason-2 dan Jason-3 berekstensi *.nc dibaca diubah menjadi bentuk *.txt. Setiap model setiap parameter diambil juga perlu ditentukan dalam pemrosesan. Model pada data dapat dilihat pada file NetCDF Jason-2 dan Jason-3 pada perangkat Panoply 4.10.12. Pada penelitian diambil model parameter seperti pada Tabel 2.

Tabel 2. Model pada Parameter (Scharro, 2018)				
Parameter	Jason-2 dan Jason-3			
Altitude	CNES GDR-E			
Range	Ku-band			
Dry Troposphere	ERA			
Wet Troposphere	ERA			
Ionosphere	Smoothed Dual Frequency			
Sea State Bias	Tran2012			
DAC	MOG2D			
Solid tide	Solid Earth Tide			
Pole tide	Pole Tide			

Tabel 3. Kontrol Kualitas Data (Scharro), 2018)
---	----------

Parameter	Batas (m)
Dry Troposphere	$-2,40 \le x(m) \le -2,10$
Wet Troposphere	$-0,60 \le x(m) \le 0,05$
Ionosphere	$-0,40 \le x(m) \le 0,04$
Sea State Bias	$-1,00 \le x(m) \le 1,00$
DAC	$-1,00 \le x(m) \le 1,00$
Solid tide	$-1,00 \le x(m) \le 1,00$
Pole tide	$-0,10 \le x(m) \le 0,10$

Pembacaan data tersebut, diterapkan batas pada setiap parameter dengan tujuan menghindari data yang outlier

sesuai dengan Tabel 3. Selain itu data yang tidak memiliki nilai atau NaN (Not a Number) akan dianggap bernilai 9.999 m sehingga termasuk dalam data *outlier*. Kontrol kualitas pada data stasiun pasang surut yaitu data dengan nilai elevasi berbeda melonjak signifikan (*shifted*), maka akan dilakukan koreksi shifting dengan penyamaan rerata data yang benar.

Dalam perhitungan SSH atau Sea Surface Height dengan menggunakan persamaan (1) dengan menerapkan parameter sebagai koreksi dalam perhitungan.

 $h_{\rm SSH} = H - R - \Delta R_{dry} - \Delta R_{wet} - \Delta R_{iono} - \Delta R_{ssb} - \Delta R_{DAC} - \Delta R_{poletides} - \Delta R_{solidtides}$ (1)

dimana:

 ΔR_{dry} = Koreksi troposfer kering ΔR_{wet} = Koreksi troposfer ΔR_{iono} = Koreksi ionosfer ΔR_{ssb} = Koreksi Sea State Bias ΔR_{DAC} = Koreksi dinamika atmosferik $\Delta R_{poletides}$ = Koreksi Pole Tide $\Delta R_{solidtides} =$ Koreksi Solid Earth Tide

Pada satelit altimetri Jason-2 dan Jason-3 telah dirancang untuk dapat mengulang pengamatan di atas tempat yang sama, namun tetap saja terdapat variasi tiap ground track ± 1 km. Karena itu untuk menciptakan kekonsistensian sebuah titik normal dengan koordinat yang tetap sebagai titik pengamatan dengan tujuan memudahkan proses pengolahan data. Titik-titik yang diamati Jason-2 dan Jason-3 akan diinterpolasi nilai SSH-nya terhadap titik normal sehingga nilai SSH yang digunakan di dalam pengolahan data merupakan nilai SSH diatas titik normal.

Satelit altimetri Jason-2 dan Jason-3 terjadi misi tandem yaitu pada cycle 281-303 dan cycle 1-23. Proses Interkalibrasi dilakukan untuk menghilangkan selisih data jarak pada misi tandem diakibatkan oleh perbedaan koreksi instrumen dan model antara Jason baru menggantikan Jason yang lama. Perhitungan interkalibrasi dilakukan dengan mengitung bias pada cycle yang terjadi misi tandem, yang akan digunakan untuk mengurangi Jason baru. Perhitungan interkalibrasi untuk data Jason-2 dan Jason-3 ditunjukan pada persamaan (2).

$$Corrected SSH (J3) = SSH (J3) - bias (J2, J3)$$
⁽²⁾

Pengamatan pasang surut pada umumnya memiliki interval waktu ± 1 jam, sedangkan untuk pengamatan satelit altimetri direkam setiap interval waktu 9.9156 hari. Dengan pengamatan > 1 jam maka semakin tidak menggambarkan fenomena pasut sebenarnya. Hal ini dikatakan sebagai fenomena aliasing frekuensi komponen pasut, vaitu berubahnya frekuensi asli komponen pasut menjadi frekuensi palsu (alias) vaitu nol, setengah tahunan, maupun tahunan. Frekuensi aliasing bisa dihitung dengan beberapa metode, salah satunya dengan metode pelipatan (folding). Berikut langkah-langkah perhitungan frekuensi aliasing menggunakan metode pelipatan (Yanagi, Morimoto, & Ichikawa, 1997):

1. Menghitung frekuensi Nyquist (frekuensi terkecil yang bias diamati oleh data pengamatan dengan interval waktu pengamatan yang ada) dengan rumus:

$$f_N = \frac{1}{2\,\Delta t}\tag{3}$$

2. $n = round (\Delta t \ x \ f)$ 3. $Ta = \frac{1}{2 \ mf_N \pm f}$, m= 0, 1, 2, ... n

4. Mencari nilai Ta yang frekuensinya terletak di dalam selang $[-f_N, f_N]$, maka formula Ta diatas menjadi:

(4)

$$Ta = \min |\frac{1}{2 \, m f_N \pm f}|$$

dimana $Fa = \frac{1}{Ta}$

dengan Δt = periode pengulangan orbit satelit (jam), f = frekuensi gelombang pasang surut yang sebenarnya (cycle per hour), Ta = periode aliasing (jam), dan Fa = frekuensi aliasing (cycle per hour).

Penentuan nilai konstanta pasang surut dengan analisis harmonik metode *Least Square* (kuadrat terkecil). Analisis harmonik metode *Least Square* ini melakukan perhitungan nilai konstanta harmonik pasut yang meliputi perhitungan nilai amplitudo dan fase masing-masing konstanta dari data Satelit altimetri Jason-2 dan Jason-3 dengan data pengamatan stasiun pasut. Persamaan metode *Least Square* dapat dilihat sebagai berikut (Ongkosongo, 1989).

$$h(t_i) = So + \sum A_n \cos(\omega_n t_i) + \sum B_n \sin(\omega_n t_i)$$

(5)

dimana:

h(ti) = tinggi permukaan air pada waktu ke-*i* (m) So = tinggi rata-rata permukaan air (m) ti = waktu ke-*i* (jam) C_n = amplitudo komponen ke-n (m) $\omega_n = 2\pi f_n$ = kecepatan sudut-n (rad/jam) g_n = fase komponen ke-n (°)

Setelah penentuan amplitude dan fase konstanta pasang surut dilakukan pembuatan kontur pasut atau Co-Tidal. Dengan menerapkan *Gridding* berukuran setengah dari jarak antar *pass* Jason yaitu 1.5° x 1.5°. *Gridding* dilakukan untuk mengisi kekosongan data terhadap nilai lintang dan bujur untuk membuat kontur persebaran nilai konstanta pasut. Dan dilakukan interpolasi ntuk membentuk kontur amplitudo dan fase. Kemudian dilakukan hitung korelasi yang dihitung dengan persamaan 6, sebagai berikut (Hasan, 2013):

$$r = \frac{n(\Sigma xy) - (\Sigma x)(\Sigma y)}{\sqrt{(n(\Sigma x^2) - (\Sigma x)^2)(n(\Sigma y^2) - (\Sigma y)^2)}}$$
(6)

dimana

r = koefisien Korelasi x = variabel X

y = variabel Yn = jumlah pengamatan

Dilakukan hitung tingkat kesalahan untuk menghitung akurasi dari nilai konstanta pasang surut dengan menggunakan persamaan berikut (Victor., Bosco, Franca, & Gregerio, 2014).

$$RMS = \left(\frac{1}{N}\sum_{N}\frac{1}{2}\left\{\left[H_{0}\cos(G_{0}) - H_{m}\cos(G_{m})\right]^{2} + \left[H_{0}\sin(G_{0}) - H_{m}\sin(G_{m})\right]^{2}\right\}\right)^{\frac{1}{2}}$$
(7)

dimana

N = jumlah poin yang digunakan $H_0 = amplitudo didapatkan dari satelit altimetri$ $G_0 = fase didapatkan dari satelit altimetri$ $H_m = amplitudo pasang surut untuk dibandingkan$ $G_m = fase pasang surut untuk dibandingkan$

Hasil dan Pembahasan

Data pengamatan stasiun pasang surut dengan periode panjang, perlu diperhatikan ketika data terjadi lonjakan dan terpenggal dengan nilai elevasi yang berbeda signifikan (*shifted*). Fenomena ini dinamakan bias referensi. Maka perlu dilakukan koreksi *shifting*. Koreksi *shifting* dilakukan dengan cara menyamakan rerata kelompok data yang benar dengan rerata kelompok data yang mengalami bias referensi (Faridatunnisa, Leni, & Lestari, 2018). Dengan tujuan agar data membentuk Seharusnya, nilai rerata kelompok data tersebut tidak berbeda signifikan. Salah satu data yang mengalami bias referensi dan setelah dilakukan koreksi *shifting* dapat dilihat pada Gambar 2 berikut.

Gambar 2. Grafik (a) Data pengamatan Stasiun Pasut Sunda Kelapa mengalami bias referensi ditunjukkan pada kotak merah, dan (b) Data pengamatan Stasiun Pasut Sunda Kelapa setelah koreksi *shifting*

Gambar 3. Grafik SSH Sebelum dan Sesudah Interkalibrasi

Data antara Jason-2 dan Jason-3 terdapat beberapa cycle yang mempunyai data untuk titik yang sama. Hal ini didapat ketika satelit melakukan misi tandem untuk kalibrasi satelit yang lebih baru sehingga selisih data terjadi pada data tinggi untuk titik yang sama. Apabila digambarkan secara grafik, data antara Jason-2 dan Jason-3 serupa namun tidak saling berhimpit. Selisih pada data Jason-2 dan Jason-3 serta Jason-3 setelah interkalibrasi dapat dilihat pada Gambar 3.

Didapatkan selisih rata-rata atau bias Jason-3 terhadap Jason-2 yaitu negatif 98.542 mm. Data Jason-2 dan Jason-3 yang telah terkalibrasi akan menjadi satu time series dari tahun 2008 sampai 2019 seperti yang ditunjukan pada Gambar 3. Data Jason-2 ditunjukan oleh garis warna biru dengan nomer *cycle* 1-190. Data Jason-3 ditunjukan oleh garis warna merah dengan nomer *cycle* 11-107.

Pada grafik diatas, data Jason-2 dan Jason-3 didapatkan tingkat SSH tertinggi terdapat pada *cycle* 57 pada Jason-3 dengan nilai Mean SSH 15326.676 mm. Sedangkan tingkat SSH terendah pada *cycle* 175 pada Jason-2 dengan nilai Mean SSH 8316.606 mm.

Pengamatan satelit altimetri Jason-2 dan Jason-3 yang memiliki waktu pengamatan selama 9.9156 hari atau 10 hari, yang berbeda dengan waktu pengambilan data pasang surut pada umumnya. Periode dan frekuensi aliasing pada Tabel 4 diaplikasikan dalam analisis harmonik metode *least square* dalam penentuan komponen pasang surut. Periode dan frekuensi aliasing dihitung menggunakan persamaan (4).

		U
Konstanta	Та	Fa
	(hari)	(cpd)
M2	62.121	0.016
S 2	58.742	0.017
N2	49.523	0.020
K2	86.553	0.012
K1	173.255	0.006
O1	45.726	0.022
P1	88.874	0.011
M4	31.061	0.032
MS4	1080.376	0.001

Tabel 4. Periode	dan	Frekuensi	Aliasing
------------------	-----	-----------	----------

Data sejumlah 303 *cycle* Jason-2 dan 103 *cycle* dari Jason-3 didapatkan konstanta pasang surut di perairan Jawa pada 10 titik pengamatan dilakukan perhitungan konstanta pasut yang yang dihasilkan dari analisis harmonik metode *Least Square* dengan persamaan (4) dihasilkan 9 konstanta pasut yang terdiri dari M2, S2, K1, O1, K2, P1, M4, dan MS4. Hasil dari perhitungan tersebut didapatkan amplitudo pada Tabel 5 berikut.

	Altimetri			Stasiun I	Pasut
	Konstanta	Amplitudo	Fase	Amplitudo	Fase
		(m)	(°)	(m)	(°)
	M2	0.030	118 923	0.016	147 214
	S2	0.027	180 736	0.010	55 282
	K1	0.027	161 263	0.022	78 998
	01	0.054	88 267	0.021	22 480
1	01 N2	0.034	123 478	0.021	112 1/19
1	K2	0.044	59 218	0.010	109 878
	P1	0.273	28 131	0.004	8 997
	M4	0.016	97 144	0.012	91.602
	MS/	0.010	40.454	0.002	55 360
	M2	0.054	207 158	0.001	19 274
	N12 S2	0.007	104 848	0.044	65 301
	52 K1	0.105	68 800	0.043	128 630
	K1 01	0.049	08.022	0.001	02 833
2	N2	0.033	90.222 154 722	0.009	124 207
2	N2 K2	0.010	20 482	0.021	124.297
	K2 D1	0.109	29.402	0.009	133.478
	Г1 М4	0.191	190.074	0.014	120.105
	IVI4 MS4	0.049	93.400	0.003	107.800
	M34	0.037	180.807	0.005	32.234
	MZ	0.031	231.209	0.054	127.047
	52 K1	0.018	68./63	0.051	88.096
		0.051	127.965	0.114	112.231
2		0.051	121.161	0.023	166.697
3	N2 K2	0.024	104.861	0.012	58.922
	K2	0.125	127.266	0.026	140.752
	PI	0.127	106.177	0.028	58.545
	M4	0.015	234.933	0.001	143.723
	MS4	0.091	240.356	0.002	139.522
	M2 52	0.038	56.287	0.026	84.483
	52 K1	0.035	23.793	0.020	89.679
		0.055	110.494	0.115	127.700
4		0.053	235.434	0.020	84.388
4	N2 K2	0.061	68.259	0.008	115.989
	K2	0.114	218.248	0.004	142.626
	PI	0.105	22.380	0.060	/8.424
	M4 MC4	0.020	68.384 251.029	0.001	1/4.426
	M54	0.013	351.938	0.001	202.034
	MZ	0.066	214.510	0.050	47.029
	52 K 1	0.059	108.791	0.030	/8.900
	KI Ol	0.045	103.265	0.113	131.547
_		0.014	125.219	0.030	54.081
5	N2 K2	0.035	185.604	0.011	119.406
	K2	0.110	99.407	0.008	98.210
	PI	0.110	96.014	0.059	/0.660
	M4	0.032	72.993	0.003	3.425
	M84	0.058	339.257	0.002	20.785
	M2	0.104	99./31	0.145	112.642
	S2	0.095	151.940	0.053	162.774
	KI Ol	0.005	187.475	0.052	144.428
6		0.095	109.089	0.040	107.944
-	N2	0.144	151.608	0.017	145.925
	K2	0.410	134.995	0.003	61.953
	PI	0.519	116.712	0.017	179.612
	M4	0.024	156.766	0.001	61.602

Tabel 5	5. Hasil	Perhitungan	Least S	Sauare

	MCA	0.179	104 602	0.001	222 512
	M34 M2	0.178	194.095	0.001	10 163
	N12 S2	0.109	192.008 81.210	0.023	10.103
	52 V1	0.141	124 014	0.038	90.085 52.025
		0.041	124.014	0.037	52.925
7		0.039	/1.55/	0.016	37.030
/	N2 K2	0.028	81.720	0.005	47.577
	K2	0.272	14.293	0.017	9./19
	PI	0.261	1/0.489	0.035	137.254
	M4	0.028	72.438	0.001	137.648
	MS4	0.145	86.593	0.001	146.709
	M2	0.281	212.721	0.140	163.096
	S2	0.304	104.441	0.051	52.474
	K1	0.099	18.406	0.042	137.265
	01	0.090	124.428	0.040	96.277
8	N2	0.074	34.862	0.045	103.696
	K2	0.118	9.040	0.017	130.430
	P1	0.222	185.941	0.018	124.552
	M4	0.041	150.072	0.009	54.286
	MS4	0.097	122.862	0.011	62.006
	M2	0.101	205.389	0.079	230.749
	S2	0.124	65.809	0.062	17.126
	K1	0.051	132.802	0.044	6.273
	01	0.023	295.440	0.045	226.444
9	N2	0.051	155.279	0.021	166.218
	K2	0.313	110.784	0.022	74.883
	P1	0.305	94.278	0.020	167.928
	M4	0.028	151.151	0.003	123.627
	MS4	0.053	159.345	0.001	84.421
	M2	0.132	68.638	0.107	153.991
	S2	0.104	113.514	0.182	122.879
	K1	0.038	175.493	0.058	106.770
	01	0.056	98.530	0.041	94.475
10	N2	0.042	161.072	0.042	177.203
	K2	0.519	106.767	0.059	93.270
	P1	0.456	85.136	0.007	91.033
	M4	0.021	172.306	0.003	141.045
	MS4	0.075	191.442	0.002	159.084

Pada Tabel 5 sampai Tabel 14 memiliki perbedaan nilai antara hasil Jason-2 (J2) dan Jason-3 (J3) dengan stasiun pasut, yang memiliki nilai paling tinggi dan paling rendah ditunjukan pada Tabel 6 berikut.

Tabel 6. Nilai	Amplitudo	Tertinggi dan	Terendah pada	Lokasi Pengamatan
	1	00	1	0

Lokasi	Dongomoton	Nilai Amplitudo (m)		
Pengamatan	Pengamatan –	Terbesar	Terkecil	
1	J2 dan J3	K2(0.275)	M4(0.016)	
1	Stasiun Pasut	K1(0.037)	MS4(0.001)	
2	J2 dan J3	P1(0.191)	N2(0.010)	
2	Stasiun Pasut	K1(0.051)	M4, MS4(0.003)	
2	J2 dan J3	P1(0.127)	M4(0.015)	
5	Stasiun Pasut	K1(0.114)	M4(0.001)	
4	J2 dan J3	K2(0.114)	MS4(0.013)	
4	Stasiun Pasut	K1(0.115)	M4, MS4 (0.001)	
5	J2 dan J3	K2, P1(0.110)	M4(0.032)	
3	Stasiun Pasut	K1(0.113)	MS4(0.002)	
6	J2 dan J3	P1(0.519)	K1(0.005)	
0	Stasiun Pasut	M2(0.145)	M4, MS4 (0.001)	
7	J2 dan J3	K2(0.272)	M4,N2(0.028)	

	Stasiun Pasut	S2(0.058)	M4, MS4(0.001)
0	J2 dan J3	S2(0.304)	M4(0.041)
8	Stasiun Pasut	M2(0.140)	M4(0.009)
0	J2 dan J3	K2(0.313)	O1(0.023)
9	Stasiun Pasut	M2(0.079)	MS4(0.001)
10	J2 dan J3	K2(0.519)	M4(0.021)
10	Stasiun Pasut	S2(0.182)	MS4(0.002)

Selanjutnya dibuat Co-Tidal dengan menggunakan Gridding, dengan masing-masing grid berukuran 1.5°x 1.5° kemudian dilakukan interpolasi untuk membentuk kontur yang menggambarkan persebaran nilai amplitude dan fase. Seperti pada Gambar 5 hingga Gambar 13.

Gambar 5. Kontur Pasang Surut M2, Kiri: Hasil Jason-2 dan-3; Kanan: Hasil Stasiun Pasut

Gambar 6. Kontur Pasang Surut S2, Kiri: Hasil Jason-2 dan-3; Kanan: Hasil Stasiun Pasut

Gambar 7. Kontur Pasang Surut K1, Kiri: Hasil Jason-2 dan-3; Kanan: Hasil Stasiun Pasut

Gambar 8. Kontur Pasang Surut O1, Kiri: Hasil Jason-2 dan-3; Kanan: Hasil Stasiun Pasut

Gambar 9. Kontur Pasang Surut N2, Kiri: Hasil Jason-2 dan-3; Kanan: Hasil Stasiun Pasut

Gambar 10. Kontur Pasang Surut K2, Kiri: Hasil Jason-2 dan-3; Kanan: Hasil Stasiun Pasut

Gambar 11. Kontur Pasang Surut P1, Kiri: Hasil Jason-2 dan-3; Kanan: Hasil Stasiun Pasut

Gambar 12. Kontur Pasang Surut M4, Kiri: Hasil Jason-2 dan-3; Kanan: Hasil Stasiun Pasut

Gambar 13. Kontur Pasang Surut MS4, Kiri: Hasil Jason-2 dan-3; Kanan: Hasil Stasiun Pasut

Didapatakan nilai amplitude tertinggi dan terendah hasil dari analisis harmonik metode Least Square pada data Jason-2, Jason-3 dan stasiun pasang surut pada Tabel 15 pada ke 10 titik lokasi di Perairan Jawa. Pada hasil analisis harmonik Jason-2 dan Jason-3, lokasi pengamatan utara Jawa (titik 1-5) nilai amplitudo tertinggi yaitu konstanta K2 dan P1, untuk terendah pada konstanta M4 dan MS4. Sehingga dapat menjelaskan bahwa pada lokasi pengamatan di utara Jawa yaitu Perairan Serang, Cirebon, Pemalang, Tuban, dan Lamongan konstanta K2 dan P1 memiliki pengaruh yang besar yang dipengaruhi oleh perubahan jarak bumi dengan matahari akibat lintasan elips dan deklinasi matahari, untuk konstanta M4 dan MS4 dipengaruhi oleh dua kali kecepatan sudut M2 akibat pengaruh bulan di perairan dangkal dan interaksi M2 dan S2 di perairan dangkal dan interaksi M2 dan S2 di perairan dangkal, memiliki pengaruh yang rendah dibanding konstanta lainnya dalam pembentukan pasang surut di lokasi pengamatan. Sedangkan lokasi pengamatan selatan Jawa (titik 6-10) nilai amplitudo tertinggi yaitu K2, P1, S2 dan untuk yang terendah pada konstanta M4. Sehingga dapat menjelaskan bahwa pada lokasi pengamatan di selatan Jawa yaitu Perairan Binuangeun, Ciamis, Purworejo, Pacitan, dan Malang konstanta K2, P1, dan S2 memiliki pengaruh yang besar karena dipengaruhi hal yang sama seperti di utara Jawa tetapi juga dipengaruhi Gravitasi matahari dengan orbit lingkaran dan sejajar ekuator bumi, untuk konstanta M4 dipengaruhi oleh dua kali kecepatan sudut M2 akibat pengaruh bulan di perairan dangkal yang memiliki pengaruh paling rendah.

Hasil analisis harmonik dari data pengamatan stasiun pasut, lokasi pengamatan utara Jawa (titik 1-5) nilai amplitudo tertinggi yaitu konstanta K1, untuk terendah pada konstanta M4 dan MS4. Sehingga dapat menjelaskan bahwa pada lokasi pengamatan di utara Jawa yaitu Perairan Serang, Cirebon, Pemalang, Tuban,

dan Lamongan konstanta K1 memiliki pengaruh yang besar yang dipengaruhi oleh deklinasi sistem bulan dan matahari, untuk konstanta M4 dan MS4 dipengaruhi oleh dua kali kecepatan sudut M2 akibat pengaruh bulan di perairan dangkal dan interaksi M2 dan S2 di perairan dangkal dan interaksi M2 dan S2 di perairan dangkal dan interaksi M2 dan S2 di pengaruh yang rendah dibanding konstanta lainnya dalam pembentukan pasang surut di lokasi pengamatan. Sedangkan lokasi pengamatan selatan Jawa (titik 6-10) nilai amplitudo tertinggi yaitu M2 dan S2, untuk terendah pada konstanta M4. Maka dapat menjelaskan bahwa pada lokasi pengamatan di selatan Jawa yaitu Perairan Binuangeun, Ciamis, Purworejo, Pacitan, dan Malang konstanta M2 dan S2 memiliki pengaruh yang besar yang dipengaruhi oleh gravitasi bulan dengan orbit lingkaran dan sejajar ekuator bumi, untuk konstanta M4 dan MS4 dipengaruhi oleh dua kali kecepatan sudut M2 akibat pengaruh bulan di perairan dangkal dan interaksi M2 dan S2 di perairan dangkal dan interaksi M2 dan S2 di perairan dangkal, memiliki pengaruh yang rendah dibanding konstanta lainnya dalam pembentukan pasang surut di lokasi pengaruh bulan di perairan dangkal dan interaksi M2 dan S2 di perairan dangkal, memiliki pengaruh yang rendah dibanding konstanta lainnya dalam pembentukan pasang surut di lokasi pengamatan.

Fase yang dihasilkan menunjukan besar nilai dari perambatan gelombang dan arah perambatan gelombang masing-masing konstanta harmonik. Adanya variasi nilai dan arah perambatan tersebut yang menggambarkan perbedaan respon di setiap lokasi terhadap gaya pembangkit pasang surut. Arah perambatan pada masing-masing konstanta tersebut dapat dilihat dengan membandingan nilai fase pada konstanta yang sama dilokasi pengamatan yang berdekatan. Apabila nilai fase di lokasi A lebih kecil dari nilai fase di lokasi B, maka komponen pasang surut tersebut akan merambat dari lokasi A menuju ke lokasi B.

Selanjutnya dihitung korelasi dan tingkat akurasi pada masing-masing konstanta pasang surut. Proses kontrol kualitas dapat dilakukan dengan menghitung koefisien korelasi, pada konstanta hasil analisis harmonik metode Least Square Jason-2 dan Jason-3 terhadap stasiun pasang surut pada setiap grid dan lokasi pengamatan. Hasilnya didapatkan nilai korelasi bervariasi. Didapatkan korelasi mulai dari yang terkuat sampai terlemah konstanta P1 sebesar -0.740, M2 sebesar 0.723, K2 sebesar 0.657, M4 sebesar 0.602, S2 sebesar 0.312, MS4 sebesar 0.225, O1 sebesar 0.191, N2 sebesar 0.187, dan K1 sebesar -0.100.

Untuk verifikasi akurasi hasil analisis harmonik untuk mengestimasi konstanta pasut dari hasil pengamatan satelit Jason-2 dan Jason-3 terhadap referensi (pada penelitian ini digunakan pengamatan stasiun pasang surut) salah satunya dengan menghitung RMS pada konstanta pasang surut (Victor., Bosco, Franca, & Gregerio, 2014). dengan menggunakan persamaan (7). Berikut merupakan perbandingan nilai RMS masing-masing konstanta sebagai berikut:

Gambar 14. Perbandingan RMS masing-masing konstanta.

Seperti yang diduga, besarnya nilai RMS berbanding lurus dengan nilai amplitudo [4]. Semakin besar nilai amplitudo, semakin besar nilai suatu nilai RMS pada konstanta. Nilai-nilai RMS konstanta pasang surut mulai dari yang terbesar yaitu pada konstanta P1 sebesar 0.176 meter, K2 sebesar 0.170 meter, M2 sebesar 0.059

meter, MS4 sebesar 0.059 meter, S2 sebesar 0.052 meter, K1 sebesar 0.040 meter, N2 sebesar 0.031 meter, O1 sebesar 0.028 meter, dan M4 sebesar 0.018 meter.

Kesimpulan

Kemajuan bidang teknologi dalam pengamatan pasang surut yaitu berkembangnya teknologi satelit altimetri, sehingga mempermudah dalam penentuan komponen pasang surut baik skala global maupun regional. Hasil penelitian ini, pada analisis harmonik Jason-2 dan Jason-3, lokasi pengamatan utara Jawa (titik 1-5) nilai amplitudo tertinggi yaitu konstanta K2 dan P1, untuk terendah pada konstanta M4 dan MS4. Untuk lokasi pengamatan selatan Jawa (titik 6-10) nilai amplitudo tertinggi yaitu K2, P1, S2 dan untuk yang terendah pada konstanta M4. Hasil analisis harmonik dari data pengamatan stasiun pasut, lokasi pengamatan utara Jawa (titik 1-5) nilai amplitudo tertinggi yaitu konstanta K1, untuk terendah pada konstanta M4 dan MS4. Sedangkan lokasi pengamatan selatan Jawa (titik 6-10) nilai amplitudo tertinggi yaitu M2 dan S2, untuk terendah pada konstanta M4. Koefisien korelasi untuk proses kontrol kualitas, mulai dari yang terkuat yaitu konstanta P1 sebesar -0.740 dengan rms yang paling besar pula yaitu 0.176 meter, dan koefisien terlemah yaitu konstanta K1 sebesar -0.100 dengan RMS sebesar 0.040 meter.

Ucapan Terimakasih

Penulis mengucapkan terima kasih kepada TU*Delft* selaku pihak pengelola RADS (*Radar Altimetry Database System*) sebagai sumber data yang digunakan dalam penelitian ini. Penulis juga mengucapkan terima kasih kepada instansi BIG yang bersedia membantu penulis dan menyediakan data.

Daftar Pustaka

- Andersen, O. B., & Scharroo, R. (2011). Range and Geophysical Corrections in Coastal Regions: And Implications for Mean Sea Surface Determination. In S. Vignudelli, A. G. Kostianoy, P. Cipollini, & J. Benveniste (Eds.), Coastal Altimetry (pp. 103-145). Berlin Heidelberg: SpringerVerlag.
- Azpurua, M., & Ramos, K. D. (2010). A comparison of Spatial Interpolation Methods for Estimation of Average Electromagnetic Field Magnitude. *Progress in*, Vol. 1, pp.135-145.
- Chambers, D. P. (2003). Calibration and verification of Jason-1 using global along-track residuals with TOPEX. In *Marine Geodesy* (pp. 305-318).
- Chelton, D., Riies, J., Haines, B., & Fu, L.-L. &. (2001). Satellite Altimetry. R. Dmowska, J.R. Holton & H.T. Rossby, (Eds.), Satellite Altimetry and Earth Sciences (pp. 145-146). San Diego: Academic Press.
- Church, J. A., Gregory, J. M., White, N. J., Platten, S. M., & Mitrovica, a. J. (2011). Understanding and Predicting Sea Level Rise. *Oceanography* 24(2):130–43.
- Emery, J., & Thomson, R. (1998). Data Analysis Methods in Phisical Oceanography. *Gray Publishing, Tunbridge, Kent, Great Britain, BPC Wheaton, Exeter.*
- Faridatunnisa, M., H., L. S., & Lestari, D. (2018). Utilization of Tide Observation and Satellite Altimetry Data for Detecting Land Vertical Movement. *Universitas Gadjah Mada*.
- Fenoglio-Marc, L., Groten, E., & Dietz, C. (2004). Vertical land motion in the Mediterranean Sea from altimetry and tide gauge stations. *Mar. Geod.*, 27(3–4):683–701.
- Fernandes, M., Lázaro, C., Nunes, A., & Scharroo, R. (2014). Atmospheric corrections for altimetry studies over inland. *Remote Sens*, 6, 4952–4997.
- Fu, L.-L., & Cazenave, A. (2001). Satellite Altimetry and Earth Sciences: A Handbook of Techniques and Application. San Diego: Academic Press.
- Handoko, E. Y., Fernandes, M. J., & Lazaro, C. (2017). Assessment of Altimetric Range and Geophysical Corrections and Mean Sea Surface Models-Impacts on Sea Level Variability around Indonesia Seas. *Remote Sensing*, 9, 102: 1 - 32.
- Hasan, M. I. (2013). Pokok-pokok Statistik 1. Bumi Aksara.
- Khusuma, F. H. (2008). Analisis Harmonik dengan Menggunakan Teknik Kuadrat Terkecil untuk Penentuan Komponenkomponen Pasut di Perairan Dangkal dari Data Topex/Poseidon. Bandung: Program Studi Teknik Geodesi dan Geomatika Fakultas Ilmu dan Teknologi Kebumian Institut Teknologi Bandung.

- Mardhiyah, N. (2017). *Pembuatan Model Pasang Surut Di Perairan Indonesia Berdasarkan Data Satelit Altimetri*. Bandung: Program Studi Teknik Geodesi dan Geomatika Fakultas Ilmu dan Teknologi Kebumian Institut Teknologi Bandung.
- Nerem, R. S. (2002). Estimates of vertical crustal motion derived from differences of TOPEX/POSEIDON and tide gauge sea level measurements. *Geophys. Res.*, 29(19):1934. doi:10.1029/2002GL015037

Ongkosongo. (1989). Pasang Surut. Jakarta: LIPI.

Poerbandono dan Djunarsjah, E. (2005). Survei Hidrografi. Bandung: PT. Refika Aditama.

Safi'i, A. N. (2018). Optimalisasi Data Satelit Altimetri untuk Menghitung Konstanta Harmonik Pasang Surut. Seminar Nasional Geomatika.

Scharro, R. (2018). RADS Data Manual. RADS, TUDelft, EUMETSAT, NOAA.

- Seifi, F., Xiaoli, D., & O.B., A. (2019). Assessment of the Accuracy of Recent Empirical and Assimilated Tidal Models for the Great Barrier Reef, Australia, Using Satellite and Coastal Data. *Journal MDPI*.
- Sella, L. N. (2008). Studi Awal Penentuan Model Pasut Dari Satelit Altimetri Topex dan Jason-1 (Studi Kasus: Wilayah Perairan Indonesia). Bandung: Progam Studi Teknik Geodesi dan Geomatika ITB.
- Victor., B., Bosco, R. A., Franca, G., & T, G. (2014). Extraction of Tide Constituents by Harmonic Analysis Using Altimetry Satellite Data in the Brazilian Coast. *Journal of Atmospheric and Oceanic Technology*.
- Yanagi, T., Morimoto, A., & Ichikawa, K. (1997). Co-tidal and Co-range Charts for the East China and the Yellow Sea Derived From Satellite Altimetric Data. *Journal of Oceanography, 53, pp. 303 to 309.*

This article is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.