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Abstract: The urban built-up land indicates the physical changes of the city that represent the development indicator 

in the city of Surabaya. The expansion of urban built-up land needs to be monitored to control and direct urban areas 

development. In this study, the identification of urban built-up land was conducted by applying a combination of 

algorithm-based spectral indices consisting of combination A (UI – NDVI – MNDWI) and combination B (NDBI – 

NDVI – MNDWI) with the spatial expansion analysis that focused on the speed of the urban built-up land expansion 

and the direction of change of the urban built-up object. Based on the results, the proposed spectral indices combination 

able to identify the urban built-up land pixels including bare land that free of vegetation and water body object. The 

pattern of the urban built-up land direction shows a tilt toward the west and east side of the city of Surabaya, while the 

speed of change shows that combination A and combination B have the same trend, there are a decreasing number of 

built-up land from 2015 to 2017 and an increasing number of built-up land from 2017 to 2019. 
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Introduction 
 

The development indicator on the urban area can be seen from the physical changes, particularly marked by 

the increase in built-up land. The increase of built-up land is caused by the population and the city center’s 

concentration (Indriastuti et al., 2018). The expansion of built-up land in a city, if not balanced with sufficient 

land, increases the building density. The continuing density of buildings can cause negative impacts such as a 

decrease in the quality of settlements and inconsistencies with regional spatial plans (Puspitasari & Suharyadi, 

2016; Izza et al., 2020). The city of Surabaya is the center of trade, government, social, economic, historical, 

and health activities in East Java Province in Indonesia and its surroundings. The rapid development of the 

city of Surabaya, triggered by the very high dynamics and activities of the city, demands policies to control 

and direct urban areas to be more sustainable (KPUPR, 2017). In determining the city’s policy, the availability 

of the data for planning, management, and evaluation is indispensable. Geospatial data as a type of data that 

capable of informing location, quantity, density, and showing changes, is considered important data in 

determining urban policy in the city of Surabaya. To analysis, the urban expansion of built-up land, one method 

that can be used is using multitemporal remote sensing. The multitemporal remote sensing method could see 

the city’s condition based on the parameter and certain focused objects (Prasomsup et al., 2020). 

 

This study aimed to analyze the expansion of the urban built-up land based on the combination of spectral 

indices. The algorithms of spectral indices that be combined are Urban Index (UI), Normalized Difference 

Built-up Index (NDBI), Normalized Difference Vegetation Index (NDVI), and Modified Normalized 

Difference Water Index (MNDWI) that produces pixels only for built-up land that free of vegetation and water 

body object. The thresholding of every object of the spectral indices is conducted using the Otsu Thresholding  

method that could separate imagery into binary values that consist of two classes. This method was adapted to 

simplify the interpretation of the objects based on the spectral indices (built-up, vegetation, and water body) 
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(XI et al., 2019). In this study, the expansion’s spatial pattern focused on the speed of urban built-up expansion 

and the direction of the built-up land based on the Standard Deviational Ellipse (Bashit et al., 2020). 

 

Data and Method 
 

The study area is Surabaya City that located in 7° 9' ─ 7° 21' S and 112° 36' ─ 112° 54' E. Administratively, 

the city of Surabaya is bordered by the Madura Strait to the north and east, Sidoarjo regency in the south and 

Gresik regency in the west. The map of the study area is shown in Figure 1. In this study, Sentinel-2 Level-1C 

imagery that consists of six scenes were used in the year 2015, 2017, and 2019. The validation data that consist 

of 238 points through Google Earth Imagery was used to perform an accuracy assessment. The software is 

used includes SNAP, ArcMap 10.8, Microsoft Word, and Microsoft Excel. The dataset of the Sentinel-2 Level-

1C imagery is shown in Table 1. 

 

 
Figure 1. Map of the study area 

 

Table 1. Imagery dataset 

Satellite Cloud cover (%) Date of acquisition Bands used 

Sentinel-2A 0.1109 7 October 2015 B2 (Blue) 

B3 (Green) 

B4 (Red) 

B8 (NIR) 

B11 (SWIR-1) 

B12 (SWIR-2) 

Sentinel-2A 7.1382 24 October 2015 

Sentinel-2A 0.0798 7 August 2017 

Sentinel-2B 0.9043 29 August 2017 

Sentinel-2B 0.0114 13 July 2019 

Sentinel-2A 1.2783 25 July 2019 

 

 

The data processing of this study is explained based on Figure 2. For the beginning, the preprocessing has been 

done that consist of atmospheric correction using Sen2Cor 280 plugin that resulted in Sentinel-2 Level-2A 

with surface reflectance or the bottom of atmosphere (BOA) value for each pixel, and then resampling that 

resulted in 20-meter spatial resolution for selected bands, mosaicking that resulted in full scene of imagery that 

covers all the study area, reprojecting that resulted in imagery that has coordinate projection system in WGS 

85 UTM Zone 49S with the unit in meter and lastly subsetting that resulted in imagery that only covers the 

study area. 
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Figure 2. Data processing diagram 
 

The mapping for original-derived built-up land has been conducted based on two spectral indices, namely 

Urban Index (UI) and Normalized Difference Built-up Index (NDBI). The Urban Index (UI) shows the urban 

area with higher reflectance in the shortwave infrared spectral range (SWIR-2), while the Normalized 

Difference Built-up Index (NDBI) highlights the urban area with higher reflectance in the shortwave infrared 

spectral range (SWIR-1). Both UI and NDBI have a value that varies from -1.0 to +1.0. Based on XI et al. 

(2019), the equation for determining UI and NDBI in Sentinel-2 is shown in Equation 1 and Equation 2, 

respectively. 

 

𝑈𝐼(𝑥, 𝑦) =
(𝜌𝑆𝑊𝐼𝑅−2(𝑥,𝑦)−𝜌𝑁𝐼𝑅(𝑥,𝑦))

(𝜌𝑆𝑊𝐼𝑅−2(𝑥,𝑦)+𝜌𝑁𝐼𝑅(𝑥,𝑦))
      (XI et al., 2019)     (1) 

where, 

UI = Urban Index 

𝜌𝑆𝑊𝐼𝑅−2 = Surface reflectance of SWIR-2 band 

𝜌𝑁𝐼𝑅  = Surface reflectance of NIR band 

 

𝑁𝐷𝐵𝐼(𝑥, 𝑦) =
(𝜌𝑆𝑊𝐼𝑅−1(𝑥,𝑦)−𝜌𝑁𝐼𝑅(𝑥,𝑦))

(𝜌𝑆𝑊𝐼𝑅−1(𝑥,𝑦)+𝜌𝑁𝐼𝑅(𝑥,𝑦))
         (XI et al., 2019)     (2) 

where, 

NDBI  = Normalized Difference Built-up Index 

𝜌𝑆𝑊𝐼𝑅−1  = Surface reflectance of SWIR-1 band 

𝜌𝑁𝐼𝑅  = Surface reflectance of NIR band 
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The Normalized Difference Vegetation Index (NDVI) has been used to determine the vegetation object as the 

vegetation’s greenish level. It can calculate based on the B4 (Red) and B8 (NIR) values in the conventional 

method. Hereinafter, for mapping the water bodies, this study used the Modified Normalized Difference Water 

Index (MNDWI), which can extract water bodies from satellite imagery. The MNDWI maximizes the water 

reflectance by using green band wavelength and minimizes the low reflectance of SWIR-1 by absorbing a 

maximum of wavelength. Both NDVI and MNDWI also have a value ranging from -1.0 to +1.0. According to 

XI et al. (2019), the equation for calculating NDVI and MNDWI is shown in Equation 3 and Equation 4, 

respectively. 

 

𝑁𝐷𝑉𝐼(𝑥, 𝑦) =
(𝜌𝑁𝐼𝑅(𝑥,𝑦)−𝜌𝑅𝑒𝑑(𝑥,𝑦))

(𝜌𝑁𝐼𝑅(𝑥,𝑦)+𝜌𝑅𝑒𝑑(𝑥,𝑦))
    (XI et al., 2019)     (3) 

where, 

NDVI = Normalized Difference Vegetation Index 

𝜌𝑁𝐼𝑅 = Surface reflectance of NIR band 

𝜌𝑅𝑒𝑑  = Surface reflectance of Red band 

 

𝑀𝑁𝐷𝑊𝐼(𝑥, 𝑦) =
(𝜌𝐺𝑟𝑒𝑒𝑛(x,y)−𝜌𝑆𝑊𝐼𝑅−1(x,y))

(𝜌𝐺𝑟𝑒𝑒𝑛(x,y)+𝜌𝑆𝑊𝐼𝑅−1(x,y))
          (XI et al., 2019)     (4) 

where, 

MNDWI = Modified Normalized Difference Water Index 

𝜌𝐺𝑟𝑒𝑒𝑛    = Surface reflectance of Green band 

𝜌𝑆𝑊𝐼𝑅−1)   = Surface reflectance of SWIR-1 band 

 

The binary thresholding function in ArcMap 10.8 is used to perform the segmentation method, which creates 

a raster output that divides the raster into two distinct classes. The algorithm behind the Binary Thresholding 

function, the Otsu method, was developed to distinguish between the background and foreground in imagery 

by splitting the imagery into two classes with a limited intraclass variance as shown in Figure 3 (Otsu, 1979). 

 

 
Figure 3. Binary thresholding (Otsu method) (Greensted, 2010) 

 

This study aims to compare the capability of UI and NDBI to extract built-up land which is free of vegetation 

and water bodies objects using a combination of spectral indices. The calculation has been done by subtracting 

built-up land indices with vegetation indices and water bodies indices. The combination proposed in this study 

is shown in Equation 5 and Equation 6, respectively. This combination was adopted from Prasomsup et al. 

(2020) with modification, which has successfully implemented spectral indices combination with considering 

vegetation and water bodies parameters.  

 

𝐶𝑜𝑚𝐴 = 𝑈𝐼𝑂𝑡𝑠𝑢 − 𝑁𝐷𝑉𝐼𝑂𝑡𝑠𝑢 − 𝑀𝑁𝐷𝑊𝐼𝑂𝑡𝑠𝑢  (Prasomsup et al., 2020)   (5) 

 

 𝐶𝑜𝑚𝐵 = 𝑁𝐷𝐵𝐼𝑂𝑡𝑠𝑢 − 𝑁𝐷𝑉𝐼𝑂𝑡𝑠𝑢 − 𝑀𝑁𝐷𝑊𝐼𝑂𝑡𝑠𝑢    (Prasomsup et al., 2020)   (6) 

 

where, 

𝐶𝑜𝑚𝐴  = Built-up land combination A result 
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𝐶𝑜𝑚𝐵 = Built-up land combination B result 

𝑈𝐼𝑂𝑡𝑠𝑢  = UI Otsu Thresholding result 

𝑁𝐷𝐵𝐼𝑂𝑡𝑠𝑢  = NDBI Otsu Thresholding result 

𝑁𝐷𝑉𝐼𝑂𝑡𝑠𝑢   = NDVI Otsu Thresholding result 

𝑀𝑁𝐷𝑊𝐼𝑂𝑡𝑠𝑢  = MNDWI Otsu Thresholding result 

 

For the spatial expansion analysis, the speed of the built-up expansion method was used to determine the speed 

change of the built-up in 2015, 2017, and 2019. According to Bashit et al. (2020), the speed of change in built-

up land can be formulated based on the average value of built-up land growth as in Equation 7. 

 

𝑃𝐿𝑇 =
𝑠𝑡(𝑇2) − 𝑠𝑡(𝑇1) 

𝑇
     (Bashit et al., 2020)     (7) 

where, 

PLT = Speed of built-up expansion in average (unit area/year) 

T1 & T2 = The initial year and the end of the observation 

T = difference in years of observation (T2 ─ T1). 

St = Settlement (unit area) 

 

Moreover, to know the direction of change of the built-up object. This study used the standard deviational 

ellipse method that was calculated using ArcMap 10.8. The Standard Deviational Ellipse is a tool for 

examining spatial characteristics of geographical features like the inclination center, distribution, and pattern 

orientation. To evaluate the orientation of the elliptical axis on the function distribution, Standard Deviational 

Ellipse measures the standard distance in the x and y directions. Standard Deviational Ellipse will generate 

ellipse polygons as new features. The average x and y coordinates, two standard distances (long axis and short 

axis), and ellipse orientation are the ellipse polygon attribute results. The ellipse polygon portrays the 

difference in direction. 

 

This study’s accuracy assessment was conducted using validation data through Google Earth Imagery by 

creating 238 sample points in the objects that represent the data from Sentinel-2 imagery. The confusion matrix 

method was adopted to perform accuracy assessments in Microsoft Excel. The result of this assessment was 

OA (Overall Accuracy) which shows the total calculation of accuracy and Kappa coefficient which explains 

the simple percentage of agreement calculation. 

 

Results and Discussion 
 

Based on the result of built-up land mapping using UI and NDBI can be informed in Figure 4 and Figure 5, 

respectively. Then, the reflectance value of UI and NDBI is shown in Figure 6 and Figure 7, respectively. 

 

Based on Figure 4, it can be informed that by applying Urban Index (UI) calculation using NIR and SWIR-2 

bands, the darker brown of the pixel indicates that the more likely it is to be identified as a built-up land, 

conversely, the lighter brown of the pixel indicates that the more likely it is to be identified as non-built-up 

land. Furthermore, as seen in Figure 5, by using the NIR and SWIR-1 bands to calculate the Normalized 

Difference Built-up Index (NDBI), the darker red of the pixel indicates that it is more likely to be classified as 

a built-up land, while the lighter red of the pixel indicates that it is more likely to be identified as non-built-up 

land. For UI results, the darker brown pixel means that it has a greater reflectance value than the lighter brown 

pixel, the same thing for NDBI results, the darker red pixel means that it has a greater reflectance value than 

the lighter red pixel. Built-up land pixels can be seen in both UI and NDBI in areas that seem to be roofs of 

buildings, settlements, and housing. While objects included in non-built-up land pixels are seen to be 

vegetation, parks, water bodies, rice fields, rivers, and ponds. 
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Figure 4. Map of Urban Index (UI) 

in 2015, 2017, and 2019 based on clockwise order 
 

     

 
Figure 5. Map of Normalized Difference Built-up Index (NDBI) 

in 2015, 2017, and 2019 based on clockwise order 
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Figure 6. UI reflectance value graph                Figure 7. NDBI reflectance value graph 

 

 

It can be described from Figure 6 that, UI results have the highest (maximum) reflectance value was in 2017 

at 0.881 and the lowest (minimum) reflectance value was in 2019 at   ̶ 0.996. Then, based on Figure 7, NDBI 

results have the highest (maximum) reflectance value was in 2017 at 0.821, and the lowest (minimum) 

reflectance value was in 2017 at  ̶  0.904. Since the spectral reflectance value for each band used varies and 

differs in each pixel, the amount of reflectance value generated by the UI and NDBI will be varied throughout 

the year. 

 

The result of mapping vegetation using NDVI and water bodies using MNDWI can be seen in Figure 8 and 

Figure 9, respectively. Then, the reflectance value of NDVI and MNDWI are shown in Figure 10 and Figure 

11, respectively 

 

      

 
 

Figure 8. Map of Normalized Difference Vegetation Index (NDVI) 

in 2015, 2017, and 2019 based on clockwise order 
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Based on Figure 8, it can be informed that by applying Normalized Difference Vegetation Index (NDVI) 

calculation using NIR and Red bands, the darker green of the pixel indicates that the more likely it is to be 

identified as vegetation, conversely, the lighter green of the pixel indicates that the more likely it is to be 

identified as non-vegetation. Furthermore, as seen in Figure 9, by using the Green and SWIR-1 bands to 

calculate the Modified Normalized Difference Water Index (MNDWI), the darker blue of the pixel indicates 

that it is more likely to be classified as water bodies, while the lighter blue of the pixel indicates that it is more 

likely to be identified as non-water bodies. Same as UI dan NDBI, for NDVI results, the darker green pixel 

means that it has a greater reflectance value than the lighter green pixel, while for MNDWI results, the darker 

blue pixel means that it has a greater reflectance value than the lighter blue pixel. 

 

 

  

 
 

Figure 9. Map of Modified Normalized Difference Water Index (MNDWI) 

in 2015, 2017, and 2019 
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Figure 10. NDVI reflectance value graph            Figure 11. MNDWI reflectance value graph 

 

It can be informed from Figure 10 that, NDVI results have the highest (maximum) reflectance value was in 

2017 at 0.917 and the lowest (minimum) reflectance value was in 2019 at  ̶  0.917. Then, based on Figure 11, 

MNDWI results have the highest (maximum) reflectance value was in 2017 at 0.960, and the lowest 

(minimum) reflectance value was in 2017 at  ̶  0.866. Same as UI and NDBI, the amount of reflectance value 

generated by NDVI and MNDWI varies throughout the year, this occurs due to the spectral reflectance value 

for each band used is varies and differs for each pixel. 

 

The correlation between each index can be obtained and seen in Table 2 by extracting the reflectance value 

from each index using 238 points distributed randomly in the study area based on the Stratified Random 

Sampling method. 
Table 2. Correlation matrix between spectral indices 

2015 2017 2019 

 UI 
ND

BI 

ND

VI 

MND

WI 
 UI 

ND

BI 

ND

VI 

MND

WI 
 UI 

ND

BI 

ND

VI 

MND

WI 

UI 
1.00

0 

0.94

7 

-

0.53

6 

-

0.397 
UI 

1.00

0 

0.95

5 

-

0.42

6 

-

0.584 
UI 

1.00

0 

0.96

7 

-

0.47

3 

-

0.599 

NDBI 
0.94

7 

1.00

0 

-

0.43

4 

-

0.507 
NDBI 

0.95

5 

1.00

0 

-

0.30

4 

-

0.693 
NDBI 

0.96

7 

1.00

0 

-

0.37

4 

-

0.689 

NDVI 

-

0.53

6 

-

0.43

4 

1.00

0 

-

0.514 
NDVI 

-

0.42

6 

-

0.30

4 

1.00

0 

-

0.434 
NDVI 

-

0.47

3 

-

0.37

4 

1.00

0 

-

0.382 

MND

WI 

-

0.39

7 

-

0.50

7 

-

0.51

4 

1.000 
MND

WI 

-

0.58

4 

-

0.69

3 

-

0.43

4 

1.000 
MND

WI 

-

0.59

9 

-

0.68

9 

-

0.38

2 

1.000 

 

Based on Table 2, it can be seen that the UI and NDBI spectral indices have a positive relationship of 0.947 in 

2015, 0.955 in 2017, and 0.967 in 2019, so they can be categorized as having a very high correlation (a very 

reliable relationship). Each high UI reflectance value will be followed by the NDBI reflectance value. On the 

other hand, if the UI reflectance value is low, the NDBI reflectance value will also be followed, which means 

that UI and NDBI having linear spectral indices with the same pattern. The similarity of the identified objects, 

namely as a built-up land, explains the positive relationship between the UI and NDBI spectral indices. 

 

Whereas, the relationship is also formed with other spectral indices. According to Table 2, the UI and NDBI 

had a negative relationship with the NDVI and MNDWI in 2015, 2017, and 2019. This is quite understandable 

with the assumption that, if the reflectance value of UI and NDBI is high (indicating the built-up land), it 

means that the reflectance value of NDVI (indicating the vegetation object) and MNDWI (indicating water 

bodies object) will be low and even negative, which means that if an area is identified as a built-up land object 

(extracted by UI and NDBI), the area has little or no vegetation and water bodies object. Therefore, the 
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correlation between UI and NDBI to NDVI and MNDWI can be categorized as low to moderate negative 

correlation. 

 

This assumption may not be interpreted in general and it has to be assessed in the future because not all the 

study area has the same characteristic of reflectance value like in Surabaya. For example, if there is a green 

roof of the building, which can be interpreted as a vegetation object even it’s located in the built-up land, in 

this case, it is a building, it may confuse UI, NDBI, and NDVI algorithm. On the other hand, if there is no 

vegetation on the roof of the building, it ideally will interpret as built-up land. So, as the condition of Surabaya 

itself, it can be expected that if the low to moderate negative correlation between UI and NDBI to NDVI and 

MNDWI is caused by the reflectance process. 

 

Table 2 also indicates that the relationship between the NDVI and MNDWI had a negative correlation value 

in 2015, 2017, and 2019, which means that if the NDVI reflectance value is positive, the MNDWI reflectance 

value will be negative in this case, if an area is identified as a vegetation object, then the area is not water 

bodies object. Therefore, the correlation between NDVI and MNDWI can be categorized as a low to moderate 

negative correlation. 

 

The binary thresholding function in ArcMap 10.8, which is based on the otsu thresholding method, is used to 

process the object segmentation. At the end of the segmentation process, as seen in Figure 11, several raster 

imageries that have a binary value (0 and 1) are produced, so that only two classes of objects have resulted. 

The value 1 represents the object identified, and the value 0 represents not the object identified. It can be seen 

that the pixel of built-up land and non-built-up land can be identified from UI and NDBI, the pixel of vegetation 

and non-vegetation can be identified from NDVI, and the pixel of water bodies and non-water bodies can be 

identified from MNDWI. 

 

      
 

      
Figure 12. Map of otsu thresholding for each spectral indices 

(UI, NDBI, NDVI, and MNDWI) in 2019 based on clockwise order  
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As seen in Figure 13, two spectral indices combinations were produced in this study: Combination A (UI 

NDVI MNDWI) and combination B (NDBI NDVI MNDWI). The calculation is done by subtracting the pixel 

object from each spectral indices. 

 

Combination A assumes that the areas identified as the built-up land object from the UI index result are 

subtracted from the areas identified as vegetation object from the NDVI index result and the areas identified 

as water bodies object from the MNDWI index result. In comparison, combination B assumes that the area 

identified as a built-up land object from the NDBI index result is subtracted from the area identified as a 

vegetation object from the NDVI index result and the area identified as a water body object from the MNDWI 

index result. The results obtained from these two combinations are raster imageries in the form of built-up land 

pixels (UI and NDBI), which are free from vegetation object pixels (NDVI) and water bodies object pixels 

(MNDWI). The land cover class is divided into two, namely built-up land, which has a pixel value of 1, and 

non-built-up land, which has a pixel value of 0. 

 

  

  

  
Combination A (UI NDVI MNDWI)    Combination B (NDBI NDVI MNDWI) 

Figure 13. Map of built-up land combination A and combination B in 2015, 2017, and 2019 

 

2015 

2017 

2019 
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As the results from the calculation shown in Table 3 for combination A, the largest built-up land cover class 

was in 2015 at 245.3416 km2 (74.7%), while the lowest built-up land cover class was in 2017 at 215.5584 km2 

(65.6%). Meanwhile, as the results from the calculation shown in Table 4 for combination B, the largest built-

up land cover class was in 2015 at 252.7820 km2 (76.9%), while the lowest built-up land cover class was in 

2017 at 233.7552 km2 (71.1%). 

 
Table 3. Comparison of area and counts of land cover from Combination A result 

Land Cover 
Area (km2) and Percentage (%) Count and Percentage (%) 

2015 2017 2019 2015 2017 2019 

 Built-up 
245.3416 

(74.7%) 

215.5584 

(65.6%) 

217.4776 

(66.2%) 

613354 

(74.7%) 

538896 

(65.6%) 

543694 

(66.2%) 

Non-built-up 
83.2200 

(25.3%) 

113.0032 

(34.4%) 

111.084 

(33.8%) 

208050 

(25.3%) 

282508 

(34.4%) 

277710 

(33.8%) 

Total 
328.5616 

(100%) 

821404 

(100%) 

 

Table 4. Comparison of area and counts of land cover from Combination B result 

Land Cover 
Area (km2) and Percentage (%) Count and Percentage (%) 

2015 2017 2019 2015 2017 2019 

Built-up 
252.7820 

(76.9%) 

233.7552 

(71,1%) 

234.0156 

(71,2%) 

631955 

(76.9%) 

584388 

(71.1%) 

585039 

(71.2%) 

Non-built-up 
75.7796 

(23.1%) 

94.8064 

(28.9%) 

94.5460 

(28.8%) 

189449 

(23.1%) 

237016 

(28.9%) 

236365 

(28.8%) 

Total 
328.5616 

(100%) 

821404 

(100%) 

 

  

 
Figure 14. Map of natural color composite 

in 2015, 2017, and 2019 based on clockwise order 
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When viewed from the resulting area, it can be seen that both combinations A and B have a significant value 

in 2015, as compared to 2017 and 2019. In 2015, there are a few land covers in the city of Surabaya in the 

form of bare land, as shown in the natural color appearance of Sentinel-2 imagery in Figure 14. In this study, 

the results of combination A and combination B show that bare land objects are considered as built-up land 

objects, whereas water bodies and vegetation can be differentiated into non-built-up objects. This is clarified 

in the following Figure 15. 

 

 
Figure 15. Comparison of processing objects 

 

In this study, an accuracy assessment using a minimum of 238 test point samples is needed that is evenly 

distributed in the city of Surabaya and based on the Stratified Random Sampling method, which determines 

several sample points that are randomly distributed in each class, where each class has several points that are 

proportional to its relative area. The Kappa coefficient shows the level of agreement strength between the 

classified data and the referenced data from Google Earth Imagery. While overall accuracy (OA) is calculated 

as the total number of correctly classified pixels divided by the total number of test pixels (Congalton & Green, 

2009). 

 

Based on accuracy assessment results that have been carried out, it can be summarized that the values of Kappa 

coefficient and overall accuracy (OA) in the combination method of spectral indices are categorized into the 

medium to high level or have agreement strength at moderate to a high level. As shown in Table 5, the 

following shows a summary of the overall accuracy (OA) and Kappa coefficient values from all methods. 

 
Table 5. Overall accuracy (OA) and Kappa coefficient values results 

Methods 2015 2017 2019 Interpretation of 

Kappa value Parameter OA Kappa OA Kappa OA Kappa 

Combination A 87% 0.692 90% 0.778 92% 0.815 Medium - High 

Combination B 83% 0.605 87% 0.702 90% 0.771 Medium - High 

 

Because the two methods have a minimum Kappa coefficient value which is included in the medium category, 

it can be said that the processing results are acceptable and sufficient to represent the actual condition of the 

object. However, in this study, for further spatial expansion analysis, processing will only use the results of 
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the combination of the spectral index, namely combination A and combination B, because it uses parameters 

with Kappa interpretation values that are in the best category, namely moderate to a high level. 

 

The spatial expansion analysis consists of the calculation of the speed of the urban built-up land expansion and 

shown in Table 6, Table 7, and the directional pattern of the built-up land as seen in Figure 16. 

 

 

  

 
 

Figure 16. Map of built-up direction pattern 

based on clockwise order in 2015, 2017 and 2019 
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It can be seen from Figure 16 that the ellipse inclination is leaning northwest on the left ellipse and southeast 

on the right side of the ellipse. This explains that the changes in the direction pattern of built-up in 2015, 2017, 

and 2019 periods are towards the west and east sides of Surabaya City. This is acceptable because, on the north 

side, the city of Surabaya borders the Madura Strait. It is not possible to develop built-up land in the area, 

while on the south side bordering Sidoarjo Regency, the development of built-up land may also occur in that 

area. On the west side, the development of built-up land may occur up to the border with Gresik Regency, 

while the development of built-up land on the eastern side is limited to the Surabaya City coastline. 

 

Based on the calculation of the speed of area change, in Table 6 for combination A, it is found that from 2015 

to 2017, there was a decrease in the area of built-up land by 29.783 km2 with a change in area speed of 14.892 

km2/year, in 2017 to 2019 it occurred an increase in the area of built-up land by 1.919 km2 with a change in 

area speed of 0.960 km2/year. In accumulation from 2015 to 2019, there was a decrease in the area of built-up 

land by 27.864 km2 with a change in area speed of 6.966 km2/year. 

 

Meanwhile, based on Table 7 for combination B, it is found that in 2015 to 2017, there was a decrease in the 

area of built-up land by 19.027 km2 with a speed of change in the area of 9.513 km2/year, from 2017 to 2019 

there was an increase in the area of built-up land by 0.260 km2 with a change in area speed of 0.130 km2/year. 

In accumulation from 2015 to 2019, there has been a decrease in the area of built-up land by 18.766 km2 with 

a speed of change in the area of 4.692 km2/year. The calculation of the speed of change in the area of built-up 

land for both combination A and combination B is also affected by misidentification on the bare land area. 

This means that the bare land area is included as a built-up object. The sign (+) and (-) in Table 6 and Table 7 

indicates the increase and decrease in land cover area, respectively. 

 
Table 6. Comparison of area and speed of change in the area of the land cover result of Combination A 

Land Cover 
Area Change (km2) Speed of area change (km2/year) 

2015-2017 2017-2019 2015-2019 2015-2017 2017-2019 2015-2019 

Built-up -29.783 1.919 -27.864 -14.892 0.960 -6.966 

Non-built-up 29.783 -1.919 27.864 14.892 -0.960 6.966 

 

Table 7. Comparison of area and speed of change in the area of the land cover result of Combination B 

Land Cover 
Area Change (km2)  Speed of area change (km2/year) 

2015-2017 2017-2019 2015-2019 2015-2017 2017-2019 2015-2019 

Built-up -19.027 0.260 -18.766 -9.513 0.130 -4.692 

Non-built-up 19.027 -0.260 18.766 9.513 -0.130 4.692 

 

Based on the results for both combination A and combination B, there is a significant difference between the 

two. This difference is caused by the combination of the spectral index that has been applied to combination 

A and combination B, combination A (UI ̶ NDVI  ̶MNDWI) and combination B (NDBI ̶ NDVI ̶ MNDWI). In 

combination A by utilizing the UI index using band B12 (SWIR-2) and combination B by utilizing the NDBI 

index using band B11 (SWIR-1). The capabilities of these two bands, B11 (SWIR-1) and B12 (SWIR-2) can 

be used in extracting built-up land, but the processing results show that the ability of band B11 (SWIR-1) in 

combination B appears to produce a larger coverage area of built-up land than combination A. 

 

One of the causes of the difference in the area of built-up land for combination A and combination B is due to 

the weaknesses of the UI and NDBI spectral indices namely the inability of the UI and NDBI spectral indices 

to distinguish between built-up land and bare land so that most of the bare land in the surrounding study area 

is mixed with built-up land. Built-up land and bare land reflect more SWIR waves than NIR, whereas water 

bodies do not reflect the infrared spectrum. In the case of vegetation, the reflection of the NIR waves is higher 

than the SWIR spectrum (Sinha et al., 2016).  

 

The spectral indices combination processing using the SWIR-2 band in UI and SWIR-1 in NDBI has different 

spectral reflectance capabilities. This is the difference parameter from the use of each UI and NDBI in 

combination A and combination B. The difference in the spectral ability of the two bands to reflect reflectance 
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values to the Sentinel-2 image sensor is influenced by the characteristics of each band. The B11 (SWIR-1) 

band has a center wavelength of 1610 nm otherwise, the B12 (SWIR-2) band has a center wavelength of 2190 

nm. This means B12 (SWIR-2) band reflects more reflectance than B11 (SWIR-1) band so that on the Sentinel-

2 satellite image sensor, pixel data is identified as built-up land and bare land larger in the study area 

(Kawamura et al., 1996; Zha et al., 2003). However, the change in the area of built-up land in the two 

combinations shows the same pattern, namely a decrease in the area of built-up land in the 2015 to 2017 period 

and an increase in the built-up land area in the 2017 to 2019 period. 

 

Conclusions 
 

Based on the result of this study, it can be concluded that both combination A and combination B have OA 

(overall accuracy) values above 80% and the Kappa coefficient values are included in the medium to high 

category. The spectral indices combination shows bare land is identified as the built-up object and may 

differentiate vegetation and water bodies as non-built-up objects. The pattern of the urban built-up land 

direction shows a tilt toward the west and east side of the city of Surabaya with the most dominant built-up 

land concentration in the center of Surabaya City and extends to the outskirts of the city borders. The speed of 

change shows that there are a decreasing number of built-up land from 2015 to 2017 and an increasing number 

of built-up land from 2017 to 2019. Overall, combination A and combination B can identify built-up land in 

Surabaya, but it still has a lack that it can’t able to identified bare land properly as a different object. Further 

study needs to be accomplished to solve this problem in the future by combining more methods. 
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