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Abstract. Multiphase flow analysis is essential for resolving subsurface flow issues in CO2 capture and 

storage (CCS) systems. Predicting the distribution of CO2 gas saturation is one example that is quite useful 
for evaluating multiphase flow. Multiphase flow simulation is typically performed using numerical 
simulations, such as the TOUGH2 simulator. Ordinary numerical simulations, on the other hand, have some 
limitations, such as high grid spatial resolution and significant processing costs. One option for estimating 
the distribution of CO2 gas saturation is to employ deep learning with specific algorithms. A deep neural 
network (DNN) is a highly effective deep learning approach. A deep neural network is a network structure 
made up of three interconnected layers: input, hidden, and output. DNN learns from the input data about 
the previously constructed architecture. As input, DNN requires a significant amount of data train. The 
trained DNN model is then used to automatically estimate the distribution of CO2 gas saturation. This 
algorithm is capable of dealing with complex data patterns, particularly gas saturation in multiphase flow 
issues. The reconstruction loss results revealed that the loss value lowers as the number of epochs grows. 
Furthermore, the model with 5 epochs and 0.001 regularization weight had the least error value 0.43. As a 
result, while this model is adequate for predicting the distribution of CO2 gas saturation, additional research 
is required to achieve more ideal outcomes. 
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INTRODUCTION 

Multiphase flow in porous media is an important 

consideration in Carbon Capture and Storage (CCS) 

systems. This is because multiphase flows can be 

employed to solve transportation and subsurface 

flow problems (Pachauri et al, 2014). Variations in 

permeability and capillary pressure can be caused by 

subsurface geological heterogeneity (Pini et al, 

2012). 

Effective permeability is vital in multiphase 

systems for accurate modeling and predicting fluid 

flow by assessing the fluid’s ability to flow (Yang et 

al, 2023). The presence of a low gas saturation value 

causes the low permeability value. Low saturation, 

on the other hand, can diminish the effect of 

gravitational  forces on high permeability layers 

(Wen and Benson, 2019). 

Numerical simulations are typically used to 

simulate multiphase flows (Pruess, 2005). The 

TOUGH2 simulator is the most often utilized 

numerical simulation. Ordinary numerical 

simulations, on the other hand, have various 

limitations, including high grid spatial resolution 

(Doughty, 2010; Wen and Benson, 2019) and 

significant processing costs (Khebzegga et al, 2020). 

The application of the Deep Neural Network 

(DNN) algorithm is one way devised to overcome the 

shortcomings of numerical simulation. DNN is a type 

of artificial neural network with three layers: an input 

layer, a hidden layer, and an output layer (Addo et al, 

2018). According to Wen et al (2021), one of the 

benefits of utilizing the DNN technique is that the 

results of the DNN model may produce CO2 

migration forecasts with the same level of accuracy 

as traditional numerical simulations. 

The loss reconstruction function must be used 

while creating the DNN model to indicate the extent 

to which the model can accurately rebuild data. The 

Mean Square Error (MSE) is a popular loss function. 

This function calculates the difference between the 

expected and actual values. The lower the values, the 

higher the model’s ability to reconstruct the input 

data. Given a batch of train data, the parameters are 

updated to minimize the loss function, and the 

method is essentially similar to utilizing the objective 

function in the inverse problem. This function was 
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choosen because increased CO2 gas saturation in 

multiphase flows is frequently associated with higher 

mobility, which necessitates high precision in plume 

prediction (Wen et al, 2021). 

DNN modeling, on the other hand, employs a 3D 

temporal architecture that is intended to extract 

temporal information from the model to be 

forecasted. This architecture includes a temporal 

layer that can simulate the depth of the temporal 

convolution kernel, making it effective for acquiring 

temporal information in both the short and long 

term (Diba et al, 2017). 

Thus, the objective of this research is to use th 

Deep Neural Network (DNN) algorithm approach to 

predict the distribution of CO2 gas saturation. So it is 

envisaged that our method would be able to meet 

the growing demand for analyzing CO2 storage. 

 

METHODOLOGY 

This research uses several software, such as 

Anaconda (with Python 3.6 environment), Jupyter 

Notebook, Microsoft Word, and Microsoft Excel. In 

addition, numerous libraries are used in this study to 

create the needed DNN architecture. The libraries 

utilized, as well as their applications, are listed in 

Table 3.1 below. 

Table 3.1. Libraries used in Python and their uses 

Libraries Utilities 

Numpy For processes that use numbers and 

arrays 

Tensorflow Assists all numerical computing 

processes associated with neural 

networks 

Keras Simplifies the implementation of deep 

learning algorithms 

Matplotlib Plotting 

H5py Supports readable .HDF5 format in 

Python 

There are various stages in this investigation that 

lead to the ultimate outcome of CO2 migration 

prediction. The workflow corresponds to the 

research steps depicted in Figures 3.1, 3.2, and 3.3 

below. 

 
Figure 3.1. Flowchart of overall research 

 
Figure 3.2. Flowchart of data training process 

 
Figure 3.3. Flowchart of data prediction and visualization 

 

Preliminary Studies 

This stage includes preliminary studies on CO2 

capture and storage systems (CCS), multiphase 

flows, gas saturation, as well as Deep Neural 

Network (DNN) architectures and their constituent 

components. In addition, at this stage a preliminary 

study of the application of DNN was also carried out 

to predict the distribution of CO2 gas saturation. This 

stage is useful as suporting data for data 

interpretation. 

 

Developing DNN Architecture 

This stage begins with importing the necessary 

libraries so that the script can run as needed. Then, 

define several values and layers that will be used, 

such as regularization weights, 3D convolution layers 

(convolution, reflection padding, batch 

normalization, and ReLU activation function), 

convolution residual layers (add layer), and non-

linear batch nordeconvolution layers 

(deconvolution, batch normalization, ReLU 

activation function). 

After that, the process of developing the 

architecture is continued by compiling 

predetermined layers to form the VAE (Variational 

Autoencoder) model. Then the step of developing 

this architecture ends with making the output model. 
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Figure 3.4. Schematic model of 3D temporal architecture 

 

Data Training Process 

The training data process begins by importing the 

appropriate library and inputting the shape based on 

the architecture model that was created previously. 

Then proceed with loading the train data and test 

data, as well as shuffle the data. In this study, X and 

Y data are included in each train and test data set. 

The reservoir conditions (initial pressure, 

temperature, and formation thickness), geological 

model (permeability), and injection design (injection 

rate, injection duration, and perforation thickness) 

data sets comprise the train_x and test_x data sets. 

Meanwhile, the data train_y and test_y are 

separating processing data from the Eclipse (e300) 

software in the form of CO2 gas saturation data with 

0 to 1 values. The data set is available 

at https://drive.google.com/drive/folders/1SVZFkax

kAIjcGKew3rzGTmKW5tSBUGf7?usp=sharing. 

After loading the data sets, the process is 

continued with the process of defining the loss 

function and determining the training specifications. 

The training process is continued by carrying out 

iterations for each epoch and batch, which ends with 

storing the model resulting the model resulting from 

the training data. 

 

Data Prediction and Visualization Process 

The initial stage in the data prediction and 

visualization process is to import the required library. 

Then the process is continued by loading test data to 

retrieve test data that will be predicted by the model. 

After that, load the trained model as a result of the 

previous training process. The prediction process is 

carried out by taking test data and data from the 

trained model. Finally, a plot of the predicted results 

is performed to display the visualization of the 

model. 

 

RESULT AND DISCUSSION 

The number of parameters obtained 

throughout the DNN model construction process can 

be utilized to analyze the model. The greater the 

number of parameters in a layer, the more complex 

the layer. When the model includes complicated 

layers, it can learn complex features from the data. 

Overfitting can also be caused by layers that are 

excessively complicated. Overfitting occurs when a 

model memorizes too much data and is unable to 

generalize to new data. The highest number of 

parameters that may be handled in this study is 

40,399,489, with a total number of parameters that 

can be trained of 40,386,817. Because the model 

includes numerous layers, it is more prone to 

overfitting, according to the data. 

Meanwhile, the ratio of train and test data used, 

and the number of epochs are among the 

hyperparameter values that may be studied using 

this DNN model. The ratio between train and test 

data used in this study is 70:30. This is due to the bulk 

of the train and test data being too enormous for the 

computer to load all of it. 

The number of epochs used can also have an 

impact on the training process and outcomes. The 

more epochs employed, the more patterns in the 

training data set the model may learn through 

suitable repetition. As a result, in this study, epochs 

3 and 5 were utilized, considering the amount of 

data, period of research, and computer 

performance. 
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Figure 4.1. Comparison between numerical simulation 

output, prediction output by DNN, and error with epoch 

3 and regularization weight 0.00001 

 

 
Figure 4.2. Comparison between numerical simulation 

output, prediction output by DNN, and error with epoch 

5 and regularization weight 0.00001 

 

 
Figure 4.3. Comparison between numerical simulation 

output, prediction output by DNN, and error with epoch 

3 and regularization weight 0.001 

 

 
Figure 4.4. Comparison between numerical simulation 

output, prediction output by DNN, and error with epoch 

5 and regularization weight 0.001 

The script used in this investigation to forecast 

the distribution of CO2 gas saturation is a version of 

the script developed by Wen et al (2021) and can be 

downloaded at the following link 

(https://github.com/gegewen/ccsnet_v1.0). The 

distribution visualization findings in Figure 4.1 reveal 

that high saturation is marked in yellow on the left. 

The saturation distribution then expands to the right, 

with the lower saturation value moving to the right. 

Likewise, the saturation distribution 

visualization findings in Figure 4.2 reveal that the 

saturation distribution expands to the right, with 

high saturation values on the left. Because the 

number of epochs employed differs just slightly, the 

predicted model results in Figures 4.1 and 4.2 appear 

identical at first glance. Similarly, because the 

variation in the number of epochs is not too great, 

the visualization results of the distribution in Figures 

4.3 and 4.4 often look comparable. 

 
Figure 4.5. Visualization of prediction results in the 

research of Wen et al (2021) 

Figure 4.5 shows three groups of result images: 

the first is the projected result for 1.3 years, the 

second is the predicted result for 10.4 years, and the 

third is the predicted result for 30 years. There are 

three resulting images in each of these image groups: 

numerical simulation results (top), Convolutional 

Neural Network (CNN) prediction outcomes 

(middle), and errors (bottom). 

Figure 4.1 shows the results of this visualization 

when compared to the results in the manuscript 

produced by Wen et al (2021), there is a substantial 

difference. The manuscript’s representation of the 

distribution prediction findings looks exactly like 

numerical simulation results; hence the error is 

small. In this investigation, however, the prediction 

outcomes were very different from the initial input. 

The variation in results is due to differences in 

numerous parameters used. Differences in the 

number of epochs, regularization weight values, 
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batch sizes, and test numbers are examples of these 

differences. This demonstrates that adjusting the 

hyperparameter influences the prediction results. 

Quantitative analysis necessitates the usage of 
parameters often found in deep learning. The 
parameter employed in this study is the value of 
reconstruction loss. To estimate the value of train 
reconstruction loss and assess reconstruction loss, 
reconstruction loss is computed using Mean Square 
Error (MSE) methods. Tables 4.1 and 4.2 show the 
calculation results with the regularization of weight 
of 0.00001. 

Table 4.1. Train and eval reconstruction loss values in a 
model with 3 epochs and a regularization weight of 

0.00001 

Epoch Train Reconstruction 
Loss 

Eval Reconstruction 
Loss 

1 3418.031988 2184.481201 
2 2180.490850 1595.676147 
3 1923.211903 1344.174072 

The value of the reconstruction loss should ideally 
decrease as the epoch rises. A decent reconstruction 
loss value is also close to zero (0). In general, a model 
with three epochs has a lower train loss and eval loss 
value as the epoch number grows. According to 
trend of the value of the train rebuilding loss, the 
loss’s worth is diminishing. The trend in the value of 
the eval reconstruction loss is similar, with the loss 
value decreasing. Furthermore, Table 4.1 shows that 
the eval reconstruction loss value is less than the 
train reconstruction loss value. This means that the 
model performed better on the test data. 

Table 4.2. Train and eval reconstruction loss values in a 
model with 5 epochs and a regularization weight of 

0.00001 

Epoch Train Reconstruction 
Loss 

Eval Reconstruction 
Loss 

1 3709.065782 1923.692627 
2 1957.295876 1120.472412 
3 1632.884357 982.791260 
4 1183.218892 1053.554077 
5 1057.201247 1369.580933 

In general, a model with 5 epochs has a lower 

train loss and eval loss value as the epoch number 

grows. According to the trend of the value of the 

train reconstruction loss, the loss’s worth is 

diminishing. However, the value of the eval 

reconstruction loss declined until epoch 3 and then 

increased. This demonstrates that there are signs of 

overfitting in epochs 4 and 5. Nevertheless, a more 

thorough assessment of the models and data used is 

required to confirm that the data is actually 

overfitting. 

The reconstruction loss value derived from the 
loss values computation throughout the training and 
testing procedure with a regularization weight of 
0.001 is shown below. The loss values results are 
shown in Tables 4.3 and 4.4 below. 

Table 4.3. Train and eval reconstruction loss values in a 
model with 3 epochs and a regularization weight of 0.001 

Epoch Train Reconstruction 
Loss 

Eval Reconstruction 
Loss 

1 4002.747070 5528.802246 
2 2555.539062 1777.246582 
3 2211.471924 1751.809570 

In general, a model with three epochs has a lower 
train loss and eval loss value as the epoch number 
increases. According to the trend of the value of the 
train reconstruction loss, the loss’s worth is 
diminishing. The trend in the value of the eval 
reconstruction loss is similar, with the loss value 
decreasing. Furthermore, Table 4.3 shows that the 
value of the eval reconstruction loss is greater than 
the value of the train reconstruction loss in the first 
epoch. This demonstrates overfitting in the first 
epoch. 

Table 4.4. Train and eval reconstruction loss values in a 
model with 5 epochs and a regularization weight of 0.001 

Epoch Train Reconstruction 
Loss 

Eval Reconstruction 
Loss 

1 4122.240723 5819.709961 
2 2955.869141 2628.541016 
3 2000.375488 1719.439087 
4 1738.730957 1258.112061 
5 1695.363647 1176.779785 

In general, a model with 5 epochs has a lower 

train loss and eval loss value as the epoch number 

grows. According to the trend of the value of the 

train reconstruction loss, the loss’s worth is 

diminishing. The trend in the value of the eval 

reconstruction loss is similar, with the loss value 

decreasing. Furthermore, Table 4.4 shows that the 

value of the eval reconstruction loss is greater than 

the value of the train reconstruction loss in the first 

epoch. When the results in Table 4.4 are compared 

to the results in Table 4.2, there is no sign of 

overfitting in the 4th and 5th epochs. 

The error value is another metric that may be 

used to determine the amount of accuracy of a 
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model that has been created. In deep learning 

models, the Root Mean Square Error (RMSE) is a 

regularly used error value calculation. In simplicity, 

the RMSE value is calculated by taking the square 

root of the squared difference between the expected 

and actual values of the test data. The RMSE value is 

produced using these calculations, as demonstrated 

in Table 4.5 below: 

Table 4.5. RMSE calculation results of the model 

Model 
Regularization 

Weight 
Epoch RMSE 

1 
0.00001 

3 0.4530 
2 5 0.4566 
3 

0.001 
3 0.4449 

4 5 0.4386 

Depending on the RMSE calculation findings in 

Table 4.5 above, the model with a regularization 

weight of 0.00001, thus the model with epoch 3, has 

the minimum error value. This is consistent with the 

loss value results, which show that the model with 

epoch 5 has an indication of overfitting on the fourth 

and fifth repetitions. Consequently, the error value in 

the model with epoch 5 is larger than the error value 

in the model with epoch 3. Meanwhile, the model 

with a regularization weight of 0.001, thus the model 

with epoch 5 has the minimum error value. This is 

consistent with the loss value results, where the loss 

value trend in the model with epoch 5 is smaller than 

the loss value trend in the model with epoch 3. If the 

error value from all models is compared, the model 

with a regularization weight of 0.001 and epoch 5 has 

the lowest error value. When compared to the other 

three models, model 4 is the most similar to the 

numerical simulation findings. 

 

CONCLUSIONS AND RECOMMENDATIONS 

As a result of the research, it is possible to infer 

that the model is adequate for predicting the 

distribution of CO2 gas saturation. The resulting 

reconstruction loss value, which reduces as the 

number of epochs grows, demonstrates this. 

Furthermore, the obtained RMSE values ranged from 

0.43 to 0.45. However, additional refinement of this 

model is required to achieve more ideal results. 

Future work should consider using field data as 

input data to better represent the actual situation. 

The authors also expect future work to consider the 

use of more than 700 training data, 300 test data, 

and 5 epochs, as well as a regularization weight of 

0.001. 
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