PENDUGAAN POTENSI TINGKAT KOROSIFITAS LAPISAN BAWAH PERMUKAAN MENGGUNAKAN TEKNIK VERTICAL ELECTRICAL SOUNDING (Studi Kasus: Kabupaten Penajam, Kalimantan)

Emir Dzakwan Kamal Zein¹, Sandrila Marshela²

¹Geophysicist, Engineering Analysis, PT Soilens, Bandung, Indonesia. ²Geotechnical Engineer, Engineering Analysis, PT Soilens, Bandung, Indonesia. e-mail : <u>emirdzakwan@soilens.com</u>

Abstrak. Instalasi jaringan di bawah permukaan adalah hal yang sangat penting dan bermanfaat bagi suatu wilayah untuk mendistribusikan kebutuhan air, listrik, minyak, dan gas alam melalui pipa. Bahan logam biasanya dipilih karena memiliki kelebihan salah satunya dari segi kekuatan. Namun, kekurangan dari bahan logam adalah rentan mengalami korosi bila diinstalasi pada kondisi bawah permukaan yang kurang mendukung salah satunya akibat korosif tanah. Hal tersebut berbahaya bagi keselamatan dan keamanan lingkungan karena dapat menimbulkan terjadinya kebocoran pipa atau hal lainnya. Laju korosifitas tanah dipengaruhi oleh sifat fisik, listrik, kimia dari tanah, batuan, dan kandungan fluida di dalamnya. Resistivitas adalah salah satu variabel dari sifat listrik tanah yang berpengaruh besar terhadap laju korosifitas tanah. Solusi untuk mengestimasi nilai resistivitas tanah atau batuan yakni menggunakan metode geofisika geolistrik. Pengukuran 5 titik resistivitas dilakukan di wilayah Penajam, Kalimantan dengan menggunakan teknik Vertical Electrical Sounding (VES). Prosedur pengukuran resisitivitas berdasarkan American Standart Testing and Materials (ASTM) memakai Konfigurasi Wenner dengan 4 pin elektroda. Pengolahan data mengasilkan kurva resistivity sounding, model cross section, dan model konseptual geologi bawah permukaan. Perolehan galat hasil inversi dari kelima titik VES <10% sehingga interpretasi mengenai ketebalan, kedalaman, dan nilai resistivitas batuan mendekati kondisi aslinya. Litologi dari kelima titik VES pada kedalaman 0-40 meter diduga sebagai batu lempung yang mengandung mineral konduktif lebih banyak dengan nilai resistivitas 4.88-14.29 Ωm, batu lempung yang mengandung mineral konduktif lebih sedikit dengan nilai resistivitas 70.21-158 Ω m, dan batu pasir dengan nilai resistivitas 14.3-70.20 Ωm. Interpretasi tingkat korosifitas tanah berdasarkan National Association of Corrosion Engineers (NACE) dan ASTM menghasilkan pendugaan bahwa data VES 1, VES 2, VES 3, VES 4, dan VES 5 terdiri dari enam kelompok tingkat korosifitas tanah diantaranya sangat sedikit korosif/dapat diabaikan, sedikit korosif, cukup korosif, korosif, sangat korosif, dan paling korosif. Kata Kunci: Korosifitas tanah, resistivitas, sounding Wenner

Abstract. Subsurface network installation is very important and beneficial for an area to distribute water, electricity, oil, and natural gas needs through pipes. Metal materials are usually chosen because they have advantages, one of which is strength. However, the disadvantage of metal materials is that they are susceptible to corrosion if installed in subsurface conditions that are less favorable, one of which is due to corrosive soil. This is dangerous for environmental safety and security because it can cause pipe leaks or other things. The rate of soil corrosiveness is influenced by the physical, electrical, and chemical properties of the soil, rocks, and fluid content in them. Resistivity is one of the variables in the electrical properties of soil which has a major influence on the rate of soil corrosivity. The solution to estimate the resistivity value of soil or rock is to use the geoelectric geophysics method. Measurements of 5 resistivity points were carried out in the Penajam region, Kalimantan using the Vertical Electrical Sounding (VES) technique. The resistivity measurement procedure is based on the American Standard Testing and Materials (ASTM) using the Wenner Configuration with 4 electrode pins. Data processing produce resistivity sounding curves, cross section models, and conceptual models of subsurface geology. The error obtained from the inversion results from the five VES points is <10% so the interpretation of the thickness, depth, and resistivity values of the rock is close to the original condition. The lithology of the five VES points at a depth of 0-40 meters is thought to be claystone containing more conductive minerals with a resistivity value of 4.88-14.29 Ωm , claystone containing less conductive minerals with a resistivity value of 70.21-158 Ω m, and sandstone with resistivity value 14.3-70.20 Ω m. Interpretation of the level of soil corrosivity based on the National Association of Corrosion Engineers (NACE) and ASTM resulted in the estimation that the data VES 1, VES 2, VES 3, VES 4, and VES 5 consist of six groups of soil corrosivity levels including very mildly corrosive/negligible, mildly corrosive, moderately corrosive, corrosive, severely corrosive, and very corrosive.

Keywords: Soil corrosivity, resistivity, Wenner sounding

Artikel diterima 06 Nopember 2023, Revisi 28 Nopember 2023 *Online* 28 Desember 2023 <u>http://dx.doi.org/10.12962/j25023659.v9i3.19247</u>

PENDAHULUAN

Instalasi utilitas jaringan di bawah permukaan merupakan hal umum bagi suatu wilayah yang sedang berkembang dan ciri suatu wilayah sedang dalam proses pembangunan. Kebutuhan air, listrik, minyak, dan gas alam dapat didistribusikan melalui pipa yang ditanam di bawah permukaan. Umumnya pemanfaatan pipa minyak bumi dan gas alam serta pipa air menggunakan bahan logam. Bahan tersebut dipilih karena memiliki kelebihan yakni dari segi kekuatan dan daya tahan yang baik dibandingkan pipa yang terbuat dari bahan PVC dan PE. Terjadinya korosi adalah salah satu bentuk kekurangan pada pipa berbahan logam (Wirama dkk., 2021). Kasus dampak korosi pipa berbahan logam sudah banyak dijumpai dan dilaporkan di seluruh dunia (Wahyuningsih dkk., 2017; Li dkk., 2019; Chen dkk., 2016).

Rusaknya jaringan pipa bawah tanah terjadi karena korosi tanah yang disebabkan oleh kelembaban, pH, potensial redoks, mikroba dalam tanah dan jenis tanah. Korosi adalah peristiwa pengubahan bahan logam menjadi oksida, garam, atau senyawa lainnya karena adanya reaksi kimia secara bertahap. Korosi dapat menyebabkan logam kehilangan kekuatan, kekakuan, dan sifat mekanik lainnya (Ekine dan Emujakporue, 2010). Resiko kegagalan, kebocoran, dan lainnya pada instalasi pipa berbahan logam di bawah permukaan dapat berdampak buruk pada keselamatan dan keamanan lingkungan serta manusia, juga dari segi ekonomi (Elarabi dan Elkhawad, 2014). Cara meminimalisir dan mencegah risiko yang ada salah satunya dengan melakukan survei geofisika.

Survei geofisika di permukaan dapat dimanfaatkan dalam berbagai bidang yakni diantaranya geologi, hidrogeologi, lingkungan, dan utilitas. Salah satu metode survei geofisika permukaan yang lebih disukai dalam studi air tanah dan lingkungan yakni metode geolistrik. Beberapa contoh pengaplikasian metode geolistrik yakni penentuan properti tanah (Jusoh dan Osman, 2017), pendugaan intrusi air laut (Cong-Thi dkk., 2021), dan pemeetan lindi Tempat Pembuangan Akhir (TPA) (Maurya dkk., 2017). Terdapat dua teknik yang biasa digunakan pada metode geolistrik yakni vertical electrical sounding dan horizontal profiling yang masing-masing memiliki kelebihan dan kekurangan dalam pengaplikasian di berbagai bidang (Olawuyi dan Abolarin, 2013).

Teknik resistivitas listrik mengirimkan arus searah ke dalam tanah/batuan melalui elektroda (elektroda arus) dan mengukur perbedaan potensial yang dihasilkan melalui elektroda potensial. Properti batuan yang bervariasi terhadap ruang dan waktu mineralisasi seperti permeabilitas, lempung, porositas, kandungan ionik dalam cairan pori mempengaruhi nilai resistivitas bawah permukaan (Adeniji dkk., 2014). Metode resistivitas dengan teknik Vertical Electrical Sounding (VES) dipilih dalam penentuan tingkat korosifitas tanah karena dapat mengestimasi nilai tahanan jenis sebenarnya, kedalaman, dan ketebalan dari lapisan bawah permukaan (Zainal dan Marwan, 2019). Hubungan nilai tahanan jenis tanah secara umum berbanding terbalik dengan tingkat korosifitas tanah, yaitu nilai tahanan jenis yang rendah berpeluang lebih besar dalam meningkatkan terjadinya korosi pada pipa berbahan logam yang ditanam di bawah permukaan (Elarabi dan Elkhawad, 2014).

Penelitian ini akan menjelaskan penggunaan metode resistivitas dengan Teknik vertical electrical sounding dalam pengaplikasiannya untuk rencana instalasi pipa berbahan logam di bawah permukaan. Pembahasan mengenai kedalaman, ketebalan, dan nilai resistivitas pada setiap titik vertical electrical sounding pada penelitian ini penting dibahas dalam sebagai dasar menentukan potensi korosifitas tanah yang akan sangat berpengaruh terhadap daya tahan pipa berbahan logam. Dalam penelitian ini beberapa data VES akan dikorelasikan untuk mendapatkan profil cross section dari nilai resistivitas bawah permukaan.

METODOLOGI

Data resistivitas pada penelitian ini merupakan hasil pengukuran selama 4 hari pada bulan Juli 2022 di Penajam, Kalimantan Timur. Pengukuran resistivitas dilakukan oleh PT Soilens yang merupakan perusahaan konsultan geoteknik pertama di Indonesia didirikan tahun 1971 dengan menawarkan jasa investigasi tanah dan pelayanan keteknikan lainnya. Terdapat 5 titik VES seperti yang ditunjukkan pada Gambar 1. Jarak antar setiap titik VES kurang lebih berkisar 500-600 meter dan elevasinya berbeda sehingga profil elevasi dapat ditunjukkan pada Gambar 2.

Gambar 1. Plot titik pengukuran resistivitas pada Google Earth

Gambar 2. Profil elevasi dari titik VES 1 sampai titik VES 5

Standar prosedur pengukuran yang sudah dilakukan oleh PT Soilens merujuk pada American Standart Testing and Materials (ASTM) D6431 dan ASTM G57. Pengukuran resistivitas menggunakan alat resistivty meter bertipe NeoResist. Alat tersebut mampu mengukur resistivitas lapisan bawah permukaan dengan teknik sounding. Secara umum terdapat beberapa konfigurasi pengukuran yang biasa dipakai dengan Teknik sounding diantaranya Schlumberger, Wenner, dan dipole-dipole (Oldenburg dkk., 2022). Dalam penelitian ini pilihan konfigurasi Wenner dengan menggunakan 4 pin elektroda yang paling optimal dilakukan. Target kedalaman dari jenis konfigurasi Wenner dapat diperkirakan dari 1/3 panjang lintasan pengukuran (Vasantrao dkk., 2017).

Konfigurasi *Wenner* memiliki kelebihan yakni menghasilkan rasio sinyal terhadap *noise* yang tinggi karena nilai beda potensial yang terukur lebih besar untuk arus tertentu dibandingkan jenis konfigurasi yang lain. Hal tersebut tidak terlepas dari jarak yang sama antara elektroda potensial (P1 dan P2) maupun elektroda arus (C1 dan C2) seperti yang terlihat pada **Gambar 3** disimbolkan dengan huruf a. Selain itu, jenis konfigurasi ini sangat optimal diapakai pada daerah perkotaan dengan *noise* yang tinggi. *Noise* dalam metode gelositrik bisa berasal dari permukaan maupun dari bawah permukaan seperti tiang listrik, pagar, saluran pipa dan bahan lainnya yang mudah mengalirkan listrik serta mempengaruhi nilai bacaan yang terukur. *Noise* dapat dihilangkan atau direduksi dengan proses pengolahan data menggunakan *software*.

Gambar 3. Susunan elektroda konfigurasi wenner

Larik Wenner terdiri dari elektroda-elektroda yang disusun dalam satu garis lurus. Nilai resistivitas semu dengan satuan Ω m dari pengukuran menggunakan konfigurasi Wenner dapat dihitung dengan rumus:

$$R = 2\pi a \left(\frac{\Delta V}{I}\right) \tag{1}$$

Dimana $2\pi a$ merupakan faktor geometri, ΔV merupakan beda potensial dengan satuan miliVolt (mV), dan I merupakan arus listrik dengan satuan miliAmpere (mA). Alur pada penelitian ini ditunjukkan pada **Gambar 4**.

Gambar 4. Tahap pengaplikasian metode resistivitas *sounding*

Pengolahan data yang dilakukan pertama kali hasil menggunakan software IP2Win. Data pengukuran dimasukkan dan dilakukan koreksi error Hasil pengolahan data IP2Win yakni data. diantaranya data resistivity layer, kurva log resistivitas terhadap spasi elektroda, dan pseudo cross section. Tahap pengolahan yang kedua yakni mengkorelasikan setiap data pengukuran menggunakan software Surfer dengan menggunakan data cross section. Korelasi dilakukan dengan membuat profil elevasi. Selanjutnya dilakukan dengan membuat plot batas-batas lapisan di setiap titik VES. Setelah itu, menghubungkan lapisan yang memiliki litologi yang sama dari setiap VES. Pengolahan data diakhiri dengan memberi simbol dan juga warna yang mewakili setiap litologi lapisan bawah permukaan sehingga didapatkan model penampang geologi dan cross section resistivitas.

Metode interpretasi litologi lapisan bawah permukaan menggunakan acuan hasil pengukuran dan interpretasi nilai resistivitas yang sudah pernah dilakukan oleh Alzahra dan lainnya (2021) pada wilayah Desa Suko Mulyo, Kabupaten Penajam Paser Utara. Tabel 1 menyajikan interpretasi litologi batuan sedimen dan batuan yang mengandung tanah atau air berdasarkan nilai resistivitas. Jenis batuan beku dan malihan tidak dimasukkan dalam tabel karena umumnya memiliki nilai resitivitas yang sangat tinggi yakni >500 Ωm. Berbagai jenis batuan sedimen dijadikan sebagai acuan interpretasi karena nilai tahanan jenis yang rendah serta dominasi litologi batuan yang ditemukan oleh Susiati dan lainnya (2018) pada wilayah Penajam Paser Utara yakni batupasir dan lempung.

Tabel 1. Informasi nilai resistivitas

Material	Resistivitas ($oldsymbol{\Omega}oldsymbol{m}$)
Air laut	0.2
Air tanah tawar	10-100
Alluvium	10-800
Lempung	1-100
Batu gamping	50-400
Batu serpih	20-2000
Batu pasir	8-4000

Sumber: (Loke, 1999 dalam Santosa& Adji, 2014)

Penentuan tingkat korosi tanah berdasarkan nilai resistivitas terlihat pada Tabel 2 yang diambil berdasarkan acuan dari National Association of Corrosion Engineers (NACE) dan ASTM G187-12a mengenai pengukuran resisitivitas tanah dengan soil box menggunakan dua elektroda. Sudah banyak penelitian yang mengaitkan nilai resistivitas dari NACE dan ASTM G187-12a dengan korosifitas tanah (Bhandari dkk., 2013; Dhakal dkk., 2014; Ekhasomhi dkk., 2017; Arriba-Rodriguez dkk., 2018). Pada 5 diperlihatkan Gambar bahwa resistivitas merupakan salah satu variabel paling berpengaruh dalam menentukan tingkat laju korosi tanah.

Tabel 2. Rating korosifitas berdasarkan ASTM (G187-12a) dan NACE

Soil Resistivity Ω m	NACE	ASTM	
>100.00	Negligible	Very Mildly Corrosive	
50.01 - 100.00	Mildly	Mildly Corrosive	
20.01 - 50.00	Corrosive	Moderately Corrosive	
10 01 - 20 00	Moderately	Severely Corrosive	
10.01 20.00	Corrosive	severely contosive	
5.01 - 10.00	Corrosive	- Extramaly Corrective	
0-5.00	Very Corrosive	Extremely Corrosive	

Gambar 5. Hubungan variabel yang mempengaruhi laju korosi pada tanah (Arriba-Rodriguez dkk., 2018)

HASIL DAN PEMBAHASAN

Nilai-nilai yang tertera pada **Tabel 3** sampai dengan **Tabel 7** merupakan data primer hasil pengukuran resistivitas dengan konfigurasi *Wenner*. Pengukuran resistivitas dilakukan pada saat kondisi cuaca cerah sehingga kondisi lapangan ideal untuk dilakukan pengujian. Nilai-nilai yang ada kemudian diolah menggunakan *software* IP2Win. Gambar 6 menunjukkan kurva resistivitas sounding dari 5 titik VES hasil *forward modelling* dan *inverse modelling*.

Arus	Potensial	Spasi elektroda	Faktor Geometri	Nilai Arus	Nilai Beda Potensial	Resistansi	Resistivitas Semu
C1C2	P1P2/2	c (m)	ĸ	1	V	R	R _a
(m)	(m)	""	ĸ	(mA)	(mV)	(Ohm)	(Ohm.m)
3	0.5	1	6.29	67	3980.0	59.403	373.39
6	1	2	12.57	40	1009.0	25.225	317.11
12	2	4	25.14	58	305.4	5.266	132.39
24	4	8	50.29	30	8.0	0.267	13.41
36	6	12	75.43	55	9.4	0.171	12.89
48	8	16	100.57	25	2.9	0.116	11.67
60	10	20	125.71	43	4.4	0.102	12.86
78	13	26	163.43	99	7.0	0.071	11.56
90	15	30	188.57	59	3.5	0.059	11.19
120	20	40	251.43	48	1.8	0.038	9.43

Tabel 3. Hasil pengukuran survei resistivitas di titik VES 1

Tabel 4. Hasil	pengukuran	survei resistivitas	di titik VES 2
----------------	------------	---------------------	----------------

Arus	Potensial	Spasi elektroda	Faktor Geometri	Nilai Arus	Nilai Beda Potensial	Resistansi	Resistivitas Semu
<mark>C1C2</mark> (m)	P1P2/2 (m)	a (m)	к	ן (mA)	₩ (mV)	R (Ohm)	R _a (Ohm.m)
3	0.5	1	6.29	36	2046.0	56.833	357.24
6	1	2	12.57	38	1255.0	33.026	415.19
12	2	4	25.14	48	212.8	4.433	111.47
24	4	8	50.29	57	34.2	0.600	30.17
36	6	12	75.43	21	4.2	0.200	15.09
48	8	16	100.57	105	15.8	0.150	15.13
60	10	20	125.71	149	17.2	0.115	14.51
78	13	26	163.43	302	28.7	0.095	15.53
90	15	30	188.57	292	25.7	0.088	16.60
120	20	40	251.43	343	31.9	0.093	23.38

Arus	Potensial	Spasi elektroda	Faktor Geometri	Nilai Arus	Nilai Beda Potensial	Resistansi	Resistivitas Semu
<mark>C1C2</mark> (m)	P1P2/2 (m)	a (m)	к	ן (mA)	₽ (mV)	R (Ohm)	R _a (Ohm.m)
3	0.5	1	6.29	11	999.0	90.818	570.86
6	1	2	12.57	9	294.8	32.756	411.78
12	2	4	25.14	15	57.8	3.853	96.88
24	4	8	50.29	47	42.8	0.911	45.79
36	6	12	75.43	50	24.7	0.494	37.26
48	8	16	100.57	32	9.0	0.281	28.29
60	10	20	125.71	37	7.5	0.203	25.48

Artikel diterima 06 Nopember 2023, Revisi 28 Nopember 2023 *Online* 28 Desember 2023 <u>http://dx.doi.org/10.12962/j25023659.v9i3.19247</u>

Arus	Potensial	Spasi elektroda	Faktor Geometri	Nilai Arus	Nilai Beda Potensial	Resistansi	Resistivitas Semu
78	13	26	163.43	18	2.5	0.139	22.70
90	15	30	188.57	114	12.3	0.108	20.35
120	20	40	251.43	62	3.8	0.061	15.41

Arus	Potensial	Spasi elektroda	Faktor Geometri	Nilai Arus	Nilai Beda Potensial	Resistansi	Resistivitas Semu
<mark>C1C2</mark> (m)	<i>P1P2/2</i> (m)	a (m)	к	ן (mA)	₽ (mV)	R (Ohm)	R _a (Ohm.m)
3	0.5	1	6.29	100	624.0	6.240	39.22
6	1	2	12.57	67	129.5	1.933	24.30
12	2	4	25.14	58	39.1	0.674	16.95
24	4	8	50.29	53	13.2	0.249	12.52
36	6	12	75.43	50	9.8	0.196	14.78
48	8	16	100.57	63	8.4	0.133	13.41
60	10	20	125.71	58	6.6	0.114	14.31
78	13	26	163.43	50	5.8	0.116	18.96
90	15	30	188.57	35	2.3	0.066	12.39
120	20	40	251.43	35	2.1	0.060	15.09

Tabel 6. Hasil pengukuran survei resistivitas di titik VES 4

Tabel 7. Hasil pengukuran survei resistivitas di titik VES 5

Arus	Potensial	Spasi elektroda	Faktor Geometri	Nilai Arus	Nilai Beda Potensial	Resistansi	Resistivitas Semu
<mark>C1C2</mark> (m)	P1P2/2 (m)	a (m)	к	<mark>ا</mark> (mA)	₽ (mV)	R (Ohm)	R _a (Ohm.m)
3	0.5	1	6.29	45	393.7	8.749	54.99
6	1	2	12.57	43	79.4	1.847	23.21
12	2	4	25.14	45	26.9	0.598	15.03
24	4	8	50.29	87	20.8	0.239	12.02
36	6	12	75.43	78	11.3	0.145	10.93
48	8	16	100.57	60	6.8	0.113	11.40
60	10	20	125.71	59	5.6	0.095	11.93
78	13	26	163.43	85	6.0	0.071	11.54
90	15	30	188.57	42	3.0	0.071	13.47
120	20	40	251.43	35	2.0	0.057	14.37

Kurva inversi VES 1 memiliki nilai galat sebesar 9.24% yang menghasilkan nilai resistivitas mulai dari 0.527-183 Ωm. Kurva inversi VES 2 menghasilkan nilai resistivitas mulai dari 1.98 -1254 Ωm dengan nilai galat 8.92%. Kurva inversi VES 3 mempunyai nilai galat sebesar 5.26% dengan nilai resistivitas mulai dari 6.1-739 Ωm. Rentang nilai resistivitas pada kurva inversi VES 4 adalah 4.19-93.1 Ωm dengan perolehan nilai galat sebesar 4.49%. Kurva inversi VES 5 menghasilkan nilai resistivitas mulai dari 4.202 -120.6 Ωm dengan nilai galat 1.53%. Kurva resistivitas hasil inversi pada titik VES 1 hingga VES 5 ditunjukkan pada **Gambar 6**.

Kelima data nilai resistivitas hasil inversi dikorelasikan anatara satu dengan yang lain. Terlihat dari *cross section* pada **Gambar 7** terdapat beberapa warna yang mengindikasikan perbedaan nilai resistivitas. Warna merah hingga merah muda dengan nilai resistivitas 70.21-158 Ωm ditemukan pada titik VES 1, VES 2, dan VES 3 pada kedalaman 0-5 meter diindikasikan sebagai satu jenis litologi yakni batuan lempung yang mengandung mineral konduktif yang lebih sedikit. Warna jingga hingga hijau tua dengan nilai resistivitas 14.3-70.2 Ωm diindikasikan sebagai satu jenis litologi yakni batupasir ditemukan di titik VES 1 pada kedalaman 5-7.74 meter, di titik VES 2 pada kedalaman 5-10 meter, di titik VES 3 pada kedalaman 5-36 meter, di titik VES 4 dan VES 5 pada kedalaman 1-5 meter. Warna biru muda hingga hitam dengan nilai resistivitas 4.88-14.29 Ω m diindikasikan sebagai satu jenis litologi yakni batu lempung dengan kandungan mineral konduktif yang lebih dominan ditemukan di titik VES 1 pada kedalaman 7.74-40 meter, di titik VES 2 pada kedalaman 10-40 meter, di titik VES 3 pada kedalaman 36-40 meter, di titik VES 4 dan VES 5 pada kedalaman 5-40 meter.

Hasil *pseudo cross* section pada **Gambar 7** belum dilakukan koreksi elevasi. Koreksi tersebut diperlukan untuk melihat korelasi antar litologi dari nilai resistivitas sehingga dapat menghasilkan model konseptual geologi seperti pada **Gambar 8.** Terdapat dua jenis litologi yang ditemukan yakni batu lempung dan batu pasir. Perbedaan nilai resistivitas dari jenis litologi sangat mungkin disebabkan karena adanya perbedaan kandungan air maupun jumlah mineral konduktif dalam lapisan bawah permukaan. Semakin banyak kandungan air maupun mineral konduktif, maka nilai resistivitas akan semakin rendah (Azmi dkk., 2021).

Dapat dilihat pada **Tabel 8**, bahwa hasil nilai resistivitas dari VES 1 sampai dengan VES 5 secara umum adalah cukup korosif sampai dengan sangat korosif berdasarkan ASTM. Namun, dapat dilihat dari interval >100 Ω m memiliki tingkat korosifitas yang dapat diabaikan berdasarkan NACE. Berdasarkan ASTM nilai resistivitas dari VES 1 sampai dengan VES 5 ini paling korosif pada

kedalaman 1.5 s/d kedalaman 40 meter, dengan nilai resitivitas 0 sampai dengan 10.00 Ω m. Sedangkan menurut NACE sifat korosifitas tanah di area tersebut termasuk kepada area yang sangat korosif dengan nilai resitivitas 0 sampai dengan 5.00 Ω m.

Uji	Kadalaman	Katabalan	Posistivitos	Keterangan				
Nomor	(m) (m) (îm)		NACE	ASTM				
	0.312	0.312	183	Dapat diabaikan	Sangat sedikit korosif			
	1.11	0.793	954	Dapat diabaikan	Sangat sedikit korosif			
	3.09	1.98	2.1	Sangat korosif	Paling korosif			
	10.3	7.19	49.9	Sedikit korosif	Cukup korosif			
VES 1	13.1	2.84	7.21	Korosif	Paling korosif			
	17.7	4.55	2.75	Sangat korosif	Paling korosif			
	26.6	8.94	0.527	Sangat korosif	Paling korosif			
	32	5.36	5.42	Korosif	Paling korosif			
	35.2	3.22	14.3	Cukup korosif	Sangat korosif			
	40	4.83	10.1	Cukup korosif	Sangat korosif			
VES 2	0.248	0.248	157	Dapat diabaikan	Sangat sedikit korosif			
	0.871	0.623	1254	Dapat	Sangat sedikit			

Table 8. Hasil interpretasi tingka	t korosifitas tanah	di titik VES 1 hi	ngga VES 5
1 0			00

Artikel diterima 06 Nopember 2023, Revisi 28 Nopember 2023 Online 28 Desember 2023 http://dx.doi.org/10.12962/j25023659.v9i3.19247

Uji	Kedalaman Ketebalan Resist (m) (m) (îr	Katabalan	Posistivitas	Keterangan	
Nomor		(îm)	NACE	ASTM	
				diabaikan	korosif
	1.45	0.582	9.68	Korosif	Paling korosif
	4.77	3.32	44.6	Sedikit korosif	Cukup korosif
	5.96	1.19	1.98	Sangat korosif	Paling korosif
	9.79	3.83	7.4	Korosif	Paling korosif
	23.4	13.6	17	Cukup korosif	Sangat korosif
	26.9	3.51	34.6	Sedikit korosif	Cukup korosif
	32.1	5.21	51.4	Sedikit korosif	Sedikit korosif
	35.2	3.13	25.1	Sedikit korosif	Cukup korosif
	39.9	4.69	39.6	Sedikit korosif	Cukup korosif
	1.45	1.45	739	Dapat diabaikan	Sangat sedikit korosif
	2.4	0.955	13.8	Cukup korosif	Sangat korosif
	5.56	3.15	107	Dapat diabaikan	Sangat sedikit korosif
	8.52	2.96	6.1	Korosif	Paling korosif
VES 3	18	9.49	45	Sedikit korosif	Cukup korosif
	20.6	2.55	18	Cukup korosif	Sangat korosif
	26.1	5.56	4.56	Sangat korosif	Paling korosif
	31.7	5.56	6.93	Korosif	Paling korosif
	35	3.34	13.8	Cukup korosif	Sangat korosif
	40	5.01	12.6	Cukup korosif	Sangat korosif
	0.412	0.412	92.9	Sedikit korosif	Sedikit korosif
	2.83	2.42	25.1	Sedikit korosif	Cukup korosif
	4.76	1.93	5.33	Korosif	Paling korosif
	14.8	10	15.8	Sedikit korosif	Cukup korosif
	16.1	1.37	93.1	Sedikit korosif	Sedikit korosif
	23	6.86	36	Sedikit korosif	Cukup korosif
VES 4	27.6	4.57	8.61	Korosif	Paling korosif
	32.5	4.98	4.19	Sangat korosif	Paling korosif
	35.5	2.99	9.52	Korosif	Paling korosif
	40	4.48	6.71	Korosif	Paling korosif
	0.573	0.573	121	Dapat diabaikan	Sangat sedikit korosif
	3.55	2.98	17.3	Cukup korosif	Sangat korosif
	11.2	7.68	9.06	Korosif	Paling korosif
	13.1	1.82	33.5	Sedikit korosif	Cukup korosif
	17.6	4.57	10.8	Cukup korosif	Sangat korosif
VES 5	21.6	3.98	4.2	Sangat korosif	Paling korosif
	26.4	4.8	7.45	Korosif	Paling korosif
	32	5.559	12.7	Cukup korosif	Sangat korosif
	35.2	3.2	19.9	Cukup korosif	Sangat korosif
	40	4.81	27.6	Sedikit korosif	Cukup korosif

PENUTUP

Simpulan dan Saran

data Hasil inversi kelima resistivitas menghasilkan nilai galat <10% sehingga interpretasi bisa diterima. Litologi di daerah penelitian pada kedalaman 0-40 meter yakni batu lempung dengan kandungan mineral konduktif yang lebih dominan dengan nilai resistivitas 4.88-14.29 Ωm, batu lempung dengan kandungan mineral konduktif yang lebih sedikit dengan nilai resistivitas 70.21-158 Ωm, dan batu pasir dengan nilai resistivitas 14.3-70.20 Ωm. Berdasarkan National Association of Corrosion Engineers (NACE) dan American Standart Testing and Materials (ASTM), data VES 1, VES 2, VES 3, VES 4, dan VES 5 terdiri dari enam kelompok tingkat korosifitas tanah.

Saran dalam penelitian ini diperlukan pengujian *resisitivity* lebih lanjut pada sampel tanah terutama untuk lapisan yang diduga termasuk kelompok paling korosif.

Ucapan Terima Kasih

Ucapan terima kasih disampaikan kepada PT Soilens yang telah memberikan data dan izin berlangsungnya penelitian ini.

DAFTAR PUSTAKA

- Adeniji, A. E., Omonona, O. V., Obiora, D. N., & Chukudebelu, J. U. (2014), "Evaluation of soil corrosivity and aquifer protective capacity using geoelectrical investigation in Bwari basement complex area, Abuja", *Journal of Earth System Science*, 123, 491-502.
- Alzahra, S. R., Taryana, D., & Masitoh, F. (2021), " Identifikasi lapisan akuifer Kawasan Dataran Suko Mulyo, Desa Suko Mulyo, Kecamatan Sepaku, Kabupaten Penajam Paser Utara, Kalimantan Timur", Jurnal Integrasi dan Harmoni Inovatif Ilmu-Ilmu Sosial (JIHI3S), 1(11), 1239-1256.
- Arriba-Rodriguez, L. D., Villanueva-Balsera, J., Ortega-Fernandez, F., & Rodriguez-Perez, F. (2018), "Methods to evaluate corrosion in buried steel structures: a review", *Metals*, 8(5), 334.
- ASTM D 6431–18. (2018). Standard guide for using the direct current resistivity method for subsurface

investigation. ASTM International: West Conshohocken, PA.

- ASTM G 57–20. (2020). Standard test method for field measurement of soil resistivity using the Wenner four-electrode method. ASTM International: West Conshohocken, PA.
- ASTM G187-12a. (2013). Standard Test Method for Measurement of Soil Resistivity Using the Two-Electrode Soil Box Method. ASTM International: West Conshohocken, PA.
- Azmi, M. I. S., Madun, A., Malik, A. K. A., Sani, S., Dan, M. F. M., Tajudin, S. A. A., Talib, M. K. A., Pakir, F., & Sahdan, M. Z. (2021), "The effect of kaolinite and illite towards resistivity and chargeability value for groundwater survey", *In AIP Conference Proceedings*, Vol. 2355, No. 1.
- Bhandari, P. P., Dahal, K. P., & Bhattarai, J. (2013), "The corrosivity of soils collected from Araniko Highway and Sanothimi areas of Bhaktapur, Nepal", *Journal of Institute of Science and Technology*, 18(1), 71-77.
- Chen, C. H., Sheen, Y. N., & Wang, H. Y. (2016), "Case analysis of catastrophic underground pipeline gas explosion in Taiwan", *Engineering Failure Analysis*, 65, 39-47.
- Cong-Thi, D., Dieu, L. P., Thibaut, R., Paepen, M., Ho, H. H., Nguyen, F., & Hermans, T. (2021), "Imaging the structure and the saltwater intrusion extent of the Luy river Coastal Aquifer (Binh Thuan, Vietnam) using electrical resistivity tomography", *Water*, 13(13), 1743.
- Dhakal, Y. R., Dahal, K. P., & Bhattarai, J. (2014), "Investigation on the soil corrosivity towards the buried water supply pipelines in Kamerotar town planning area of Bhaktapur, Nepal", *Bibechana*, 10, 82-91.
- Ekhasomhi, A. G., Ehisuan, Y., & Ariavie, G. (2017), "Design of a cathodic protection system for 2,000 barrels crude oil surge tank using zinc anode", J Multidiscip Eng Sci Technol, 4(3), 6905-6908.
- Ekine, A., & Emujakporue, G. (2010), "Investigation of corrosion of buried oil pipeline by the electrical geophysical methods", *Journal of Applied Sciences and Environmental Management*, 14(1).
- Elarabi, H., & Elkhawad, T. (2014), "Evaluation of Subsoil Corrosivity Condition around Baracaia Area using the Electrical Resistivity Method, A Case Study from the Muglad Basin, Southwestern Sudan", *Journal of Earth Science and Engineering*, 4(5).
- Jusoh, H., & Osman, S. B. S. (2017), "The correlation between resistivity and soil properties as an

alternative to soil investigation", Indian Journal of Science and Technology, 10(6), 1-5.

- Li, J., Sun, C., Shuang, S., Roostaei, M., Fattahpour, V., Mahmoudi, M., & Luo, J. L. (2019), "Investigation on the flow-induced corrosion and degradation behavior of underground J55 pipe in a water production well in the Athabasca oil sands reservoir", *Journal of Petroleum Science and Engineering*, 182, 106325.
- Loke, M. H. (1999), *Electrical imaging surveys for environmental and engineering studies*, A practical guide to 2-D and 3-D surveys.
- Maurya, P. K., Rønde, V. K., Fiandaca, G., Balbarini, N., Auken, E., Bjerg, P. L., & Christiansen, A. V. (2017), "Detailed landfill leachate plume mapping using 2D and 3D electrical resistivity tomography-with correlation to ionic strength measured in screens", *Journal of Applied Geophysics*, 138, 1-8.
- Olawuyi, A. K., & Abolarin, S. B. (2013), "Evaluation of vertical electrical sounding method for groundwater development in basement complex terrain of westcentral Nigeria", *Nigerian Journal of Technological Development*, 10(2), 22-28.
- Oldenburg, D. W., Kang, S., Heagy, L. J., & Maxwell, M. (2022), Direct current resistivity methods, In Engineering Geophysics (pp. 67-75). CRC Press.
- Santosan, L. W., & Adji, T. N. (2018), *Karakteristik Akuifer dan Potensi Airtanah Graben Bantul*, UGM PRESS.
- Susiati, H., Kusuma, H. D., Hartono, H. G., & Sriyana, S. (2018), "Identifikasi Geologi Lingkungan Pada Evaluasi Tapak Fasilitas Nuklir BNI-STP, Penajam Paser Utara", Jurnal Pengembangan Energi Nuklir, 19(2), 69-79.
- Vasantrao, B. M., Bhaskarrao, P. J., Mukund, B. A., Baburao, G. R., & Narayan, P. S. (2017), "Comparative study of Wenner and Schlumberger electrical resistivity method for groundwater investigation: a case study from Dhule district (MS), India", Applied Water Science, 7, 4321-4340.
- Wahyuningsih, U., Rusjdi, H., dan Sulistiyo, E. (2017), "Penanggulangan Korosi Pada Pipa Gas dengan Metode Catodic Protection (Anoda Korban) PT PGN Solution Area Tangerang", Jurnal Powerplant, 5(1), 40-50.
- Wirama, I. W. P., Astika, I. M., & Subagia, I. A. (2021), "Uji kekuatan bending pipa komposit jute-epoxy pada perlakuan rendaman air panas", *Jurnal Energi dan Manufaktur* Vol, 14(2), 72-75.
- Zainal, M., & Marwan, M. (2019), "A Field Survey of Soil Corrosivity Based on Electrical Resistivity Method", Journal of Aceh Physics Society, 8(1), 16-21.