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Stability Analysis of Traveling Waves to
Advection-Diffusion Equation Involving Square-root

Mohammad Ghani, Wahyuni Ningsih, and Nailul Izzati

Abstract—In this paper, we study the existence and stability
of advection-diffusion equation involving square-root. We first
change the original equation into the traveling wave by using
ansatz transformation. Then, we apply the appropriate pertur-
bation to establish the energy estimate under small perturbation
and large wave amplitude. These results of energy estimates are
used to prove the stability of traveling wave solutions.

Index Terms—Stability, large wave amplitude, small perturba-
tions.

I. INTRODUCTION

WE consider the following advection-diffusion equation,

mt + (
√
m)x = mxx, (1)

where m = m(x, t) and the initial state

m(x, 0) = m0(x) → m± as x → ±∞. (2)

The equation (1) is the special case of the following equation,

mt + (g(m))x = αmxx, (3)

where this equation was studied by Il’in and Oleinik [1] and
Sattinger [2] for the maximum principle and spectral analysis
respectively of shock waves, for α > 0 and a smooth function
g(m). Mickens and Oyedeji [3] studied the traveling waves
to Burger’s and non-diffusion Fisher equation. These two
equations involving square-root were also the the special case
of (3).

ut + a1
√
uux = D1uxx

ut + a2
√
uux = λ1

√
u− λ2u

(4)

where a1, a2 > 0, D1 > 0, λ1, λ2 > 0.
Other studies related to square-root

√
u were established

by Buckmire et. al [4], Jordan [5], and Mickens [6], [7].
This current paper, we focus on the existence and stability of
traveling waves to advection-diffusion equation (1). Moreover,
we employ the energy estimates under small perturbation and
arbitrary wave amplitude. This technique was also studied in
[8], [9] for chemotaxis model. Hu [10] employed the energy
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method to deal with the stability of traveling waves to coupled
Burger’s equation,

ut +

(
1

2
u2 +

1

2
b2
)

x

= µuxx,

bt + (ub)x = νbxx,

(5)

where the small coefficient was not required.
A similar problem to (5) was studied by Li and Wang [8]

as shown the following system of equation,

ut − (uv)x = Duxx,

vt + (εv2 − u)x = εvxx,
(6)

where the smallness of wave amplitude and coefficients were
required in (6). The main problem of this paper is the square
root which is a challenge to study. We also state the proof of
existence and stability for traveling wave solutions of (1) with
m+ > 0. Then this paper is organized as follows. In Section
II, we transform the original equation (1) into the traveling
waves by applying the ansatz transformation, and derive the
appropriate perturbations which implies L2 distance between
the solution m and M of the equation (1). Section III presents
the energy estimate of transformed problem. In Section IV, we
finally prove the stability of traveling waves to equation (1).

II. TRANSFORMATION OF THE PROBLEM

We first substitute the following ansatz transformation

m(x, t) = M(ζ), ζ = x− st (7)

into (1). Moreover, ζ and s denote moving frame variable and
wave speed respectively. Then, the traveling waves M satisfy

−sMζ + (
√
M)ζ = Mζζ (8)

with the following boundary conditions

M(ζ) → m± as ζ → ±∞. (9)

We further integrate (8) with respect to ζ

−sM + sm± +
√
M −√

m± = Mζ , (10)

and apply the fact Mζ → 0 as ζ → ±∞, then one has the
following Rankine-Hugoniot condition

s(m− −m+) =
√
m− −√

m+ (11)

which gives the wave speed

s =

√
m− −√

m+

m− −m+
> 0. (12)
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We further, present the following proposition to deal with
the existence of traveling wave (1).

Lemma 1: Assume that m± satisfy (11). Then a monotone
traveling wave M(x − st) to (8) exists, which is unique up
to a translation and holds Mζ < 0. Moreover, M decays
exponentially fast with rates

M −m± ∼ eσ±z as z → ±∞,

where

σ± =
1− 2s

√
m±

2
√
m±

,

and the wave speed s is given in (12).
We define the following perturbation for the transformed
equation (1).

φ0(ζ) =

∫ ζ

−∞
(m0 −M)(y)dy,

which is the zero mass perturbation (see [11], [12]). Then we
have the following stability results.

Theorem 1: Consider the traveling wave solution M(x−st)
given in Lemma 1. If ∥m0−M∥1+ ∥ϕ0∥ ≤ ε0 for a constant
ε0 > 0, then there exists unique global solution m(x, t) to
(1)-(2), satisfying

m−M ∈ C([0,∞);H1) ∩ L2([0,∞);H1),

and

sup
x∈R

|m(x, t)−M(x− st)| → 0 as t → +∞.

We change the variables (x, t) → (ζ = x − st, t) in (1) to
get

mt − smζ + (
√
m)ζ = (m)ζζ (13)

We decompose the solution of (13) as

m(ζ, t) = M(ζ) + φζ(ζ, t). (14)

Then

φ(ζ, t) =

∫ ζ

−∞
(m(y, t)−M(y))dy (15)

We substitute (14) into (13) and integrate the results in ζ to
get

φt = sφζ −
√
φζ +M + φζζ , (16)

where the initial data of φ is given

φ(ζ, 0) = φ0(ζ) =

∫ ζ

−∞
(m0 −M)dy, (17)

for φ0(±∞) = 0. We further find the solution of reformulated
problem (16)-(17) in the space

X(0, T ) :=
{
φ(ζ, t) ∈ C([0, T ), H2) : φζ ∈ L2((0, T );H2))

}
for 0 < T ≤ +∞. Let

N(t) := sup
0≤τ≤t

{∥φ(., τ)∥2} .

From the Sobolev inequality ∥f∥L∞ ≤
√
2∥f∥

1
2

L2∥fx∥
1
2

L2 , it
holds that

sup
τ∈[0,t]

{∥φ(·, τ)∥L∞ , ∥φζ(·, τ)∥L∞} ≤ N(t).

For (16)-(17), we have the following global well-posedness.
Theorem 2: Under the assumptions in Theorem 1. If N(0) ≤

δ1 for a constant δ1 > 0, then there exists a unique global
solution φ ∈ X(0,+∞)(16)-(17), satisfying

∥φ(., t)∥22 +
∫ t

0

∥φζ(., τ)∥22 dτ ≤ C∥φ0∥22. (18)

Moreover, it holds that

sup
ζ∈R

|φζ(ζ, t)| → 0 as t → +∞ (19)

We refer to [13] for the local existence proof, then we only
need to establish the following a priori estimate.

Proposition 1: Let φ ∈ X(0, T ) be solution of (16)-(17) for
particular time T > 0. If N(T ) < ε1 for a constant ε1 > 0
which is independent of T , then φ satisfies (18) for any 0 ≤
t ≤ T .

III. ENERGY ESTIMATES

Now, we are ready to establish the a priori estimates of φ
of (16)-(17), and hence prove Proposition 1. As the first step,
we prove L2 estimate.

Lemma 2: Under assumptions in Theorem 1. For a constant
C > 0, one has

∥φ(., t)∥2 +
∫ t

0

∥φζ(., τ)∥2dτ ≤ C∥φ0∥2 + C

∫ t

0

∫
φ2

(20)

Proof: Multiplying (16) by φ/M and integrating the
results to get

1

2

d

dt

∫
φ2

M
+

∫
φ2
ζ

M

=

∫
φφζMζ

M2
+

∫
sφφζ

M
−
∫

φ
√
φζ +M

M
.

(21)

By applying the following inequality√
φζ +M ≤

√
φ2
ζ + φζM +M2

=
√
(φζ +M)2 = φζ +M,

(22)

into (21), one has

1

2

d

dt

∫
φ2

M
+

∫
φ2
ζ

M

≤ −
∫

φφζ

(
1

M

)
ζ

+

∫
sφφζ

M
−
∫

φ(φζ +M)

M
.

(23)

Noting that∫ (
−φφζ

(
1

M

)
ζ

+
sφφζ

M
− φ(φζ +M)

M

)

=

∫
−φ2

2

(
−
(

1

M

)
ζζ

+

(
s

M
− 1

M

)
ζ

)
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From (10) and Mζ < 0, we get(
1

M

)
ζζ

−
(

s

M
− 1

M

)
ζ

=

((
1

M

)
ζ

−
(

s

M
− 1

M

))
ζ

=

(
1 +

3
√
M

2
+

2(sm+ −√
m+)

M

)
Mζ

< 0

(24)

Substituting (24) into (23), using the fact that M ≥ m+ >
0, then we complete the proof of Lemma 2.

By the similar way with L2 estimate, the second step is to
present H1 estimate of φ.

Lemma 3: Under assumptions in Theorem 1. For a constant
C > 0, one has

∥φ(., t)∥21 +
∫ t

0

∥φζ(., τ)∥21dτ ≤ C∥φ0∥21 + C

∫ t

0

∫
φ2

(25)

Proof: Differentiating (16) in z gives

φζt = sφζζ −
φζζ +Mζ

2
√
φζ +M

+ φζζζ

Since 1/
√

φζ +M =
√
φζ +M/(φζ+M) ≤ φζ+M/(φζ+

M) = 1, then the above equation becomes

φζt ≤ sφζζ +
φζζ +Mζ

2
+ φζζζ (26)

Multiplying (26) by φζ/M and integrating the results, one has

1

2

d

dt

∫
φ2
ζ

M
+

∫
φ2
ζζ

M

≤
∫

φζφζζMz

M2
+

∫
sφζφζζ

M
+

∫
φζφζζ + φζMζ

2M

(27)

Noting that∫
φζφζζMζ

M2
= −

∫
φζφζζ

(
1

M

)
ζ

=

∫
φ2
ζ

2

(
1

M

)
ζζ∫

sφζφζζ

M
= −s

∫
φ2
ζ

2

(
1

M

)
ζ∫

φζφζζ

M
= −

∫
φ2
ζ

2

(
1

M

)
ζ

(28)

By employing (28) into (27), then we have

1

2

d

dt

∫
φ2
ζ

M
+

∫
φ2
ζζ

M

≤
∫

−
φ2
ζ

2

(
−
(

1

M

)
ζζ

+ s

(
1

M

)
ζ

−
(

1

M

)
ζ

)

−
∫

φζ

2
M

(
1

M

)
ζ

(29)

We combine (29) with the results in (20). Then, we apply
(10) and (24) to get∫

φ2
ζ

M
+

∫ t

0

∫
φ2
ζζ

M
≤
∫

φ0ζ

M
+ C

∫ t

0

∫
φ2

We use the fact M ≥ m+ > 0 to above inequality, then the
proof (25) is completed.

By the similar way with L2 and H1 estimates, the third step
is to present H2 estimate of φ.

Lemma 4: Under assumptions in Theorem 1. For a constant
C > 0, one has

∥φ(., t)∥22 +
∫ t

0

∥φζ(., τ)∥22 ≤ C∥φ0∥22 + C

∫ t

0

∫
φ2. (30)

Proof: Differentiating (26) with respect to z gives

φζζt ≤ sφζζζ +
φζζζ +Mζζ

2
+ φζζζζ (31)

Multiplying (31) by φζζ/M , we have

1

2

d

dt

∫
φ2
ζζ

M
+

∫
φ2
ζζζ

M
≤
∫

φζζφζζζMζ

M2
+

∫
sφζζφζζζ

M

+

∫
φζζφζζζ + φζζMζζ

2M
(32)

Noting that∫
φζζφζζζMζ

M2
= −

∫
φζζφζζζ

(
1

M

)
ζ

=

∫
φ2
ζζ

2

(
1

M

)
ζζ∫

sφζζφζζζ

M
= −s

∫
φ2
ζζ

2

(
1

M

)
ζ∫

φζζφζζζ

M
= −

∫
φ2
ζζ

2

(
1

M

)
ζ

(33)

Substituting (33) into (32), then we have

1

2

d

dt

∫
φ2
ζζ

M
+

∫
φ2
ζζζ

M

≤
∫

−
φ2
ζζ

2

(
−
(

1

M

)
ζζ

+ s

(
1

M

)
ζ

−
(

1

M

)
ζ

)

−
∫

φζζ

2
M

(
1

M

)
ζ

(34)

By employing (10), (24), and the fact M ≥ m+ > 0, then
Lemma 4 is proved.

IV. PROOF OF THEOREM 2

Proof: Proposition 1 follows from Lemma 2 to Lemma
4. Now, we are ready to prove the main results by the
transformation (14). Theorem 1 is a consequence of Theorem
2. The a priori estimate (18) guarantees that N(t) is small if
N(0) is small enough. Thus, applying the standard extension
procedure, we get the global well-posedness of (16)-(17) in
X(0,+∞).

We further prove the convergence (19). By the global
estimate (18), one has∫ t

0

∫ ∞

−∞
φ2
ζ(ζ, τ)dζdτ ≤ C∥φ0∥22 < ∞ (35)
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It follows from the first equation of (16) and Young’s
inequality,

d

dt

∫ ∞

−∞
φ2
ζ(ζ, t)dζ = −2

∫ ∞

−∞
φtφζζdζ

= −2

∫ ∞

−∞
φζζ(sφζ −

√
φζ +M + φζζ)

≤ C

∫ ∞

−∞
(φ2

ζζ + φ2
ζ).

Moreover, we have∫ ∞

0

∣∣∣∣ ddt
∫ ∞

−∞
φ2
ζ(ζ, t)dζ

∣∣∣∣
≤ C

∫ ∞

0

∫ ∞

−∞
(φ2

ζζ + φ2
ζ) ≤ C∥φ0∥22 < ∞.

(36)

From (35) and (36), obtained∫ ∞

−∞
φ2
ζ(ζ, t)dζ → 0 as t → +∞.

By Cauchy-Schwarz inequality, we further have

φ2
ζ(ζ, t) = 2

∫ ζ

−∞
φζφζζ(y, t)dy

≤ 2

(∫ +∞

−∞
φ2
ζ(y, t)dy

) 1
2
(∫ +∞

−∞
φ2
ζζ(y, t)dy

) 1
2

→ 0 as t → +∞
Hence (19) is established which implies that the Theorem

2 is finally proved.
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