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Abstract—This paper investigates the application of a three-
dimensional Bloom Filter (3DBF) to accomplish a secure and ef-
ficient accounts storage system by exploiting hashes of usernames
and their corresponding passwords. We conducted numerical
experiments and mathematical analysis to study the efficiency
level of several 3DBF schemes. Our experimental results and
analysis show that the level of occupancy for 3DBF is positively
correlated to the value of its false positive rate, viz., if the
occupancy level increases then so does the value of the false
positive rate. Moreover, we also derive a formula for determining
the minimum number of bits for storing some data in a 3DBF
scheme given the value of its acceptable false positive rate and
its occupancy level. We infer that the product of the dimensional
parameter of a 3DBF scheme is inversely proportional to the
false positive rate and occupancy level used in the scheme.

Index Terms—Accounts storage system, False positive rate,
Three-dimensional Bloom Filter.

I. INTRODUCTION

THE number of websites that limit their access only to
registered users is increasing. These types of websites

require every user to create a membership account, i.e., a
username and its corresponding password that is used for
accessing the contents. As a consequence, the amount of
storage required for securely storing usernames and their
respective passwords is also increasing. These usernames and
passwords must be kept in the protected format most of the
time. One possible way to achieve this protection is by using
a hash function to determine the digest of each username
and its corresponding password. These digests have a fixed
and identical length which depends on the choice of the hash
function [1]. The utilization of the hash function also provides
protection (although it is not always sufficient) to the website
members in case the account information is compromised,
such as in the case of e-commerce data leaks (see, e.g., [2],
[3]).

As the number of users grows, a straightforward method
of storing the hash values of all account information (such
as the concatenation of username and password) is inefficient
in terms of the required storage space. Bloom Filter (BF)
is a data structure that can be employed to reduce storage
consumption and thus can improve the performance of a data
storing system. Instead of storing particular messages directly,
we store the keys associated with this information. This data
structure has been deployed in several systems, such as in
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big data storage [4], in data collection on wireless network
communication [5], and in caching or analyzing data in the
Internet of things [6]. There are five major classifications of
BF and one of them is the r-dimensional BF which is an
example of the multidimensional BF [7]. This r-dimensional
BF, or rDBF for short, does not yield a false negative match—
an error in which a key of an element is considered as a non-
member of a particular set despite such an element is, in fact,
a member of such a set. The absence of such an error also
makes rDBF outperforms other probabilistic data structures
in terms of accuracy, such as the Cuckoo Filter, which also
offers storage reduction [7]. These conditions also cause rDBF
to be preferred to Cuckoo Filter for reducing the memory
consumption in an account storage system. Nevertheless, rDBF
also has a drawback that makes its utilization limited, namely
the false positive error—which happens when a particular
element is considered as a member of a set while in reality,
this condition is not true. If the false positive error rate of an
rDBF scheme can be reduced, then this scheme can be used
as a solution for reducing the storage consumption [4].

This paper investigates some preliminary experimental and
theoretical aspects of three-dimensional BF or 3DBF for
storing account information. The investigation of 3DBF is
interesting—since theoretically the false positive rate of 3DBF
is lower than that of 2DBF [8], yet the average time for insert
and search operations of 3DBF is faster than that of 4DBF and
5DBF with relatively comparable false positive rates. In rDBF,
the value r signifies the value of dimension in the BF used in
the system, which also affects the data processing speed [7].

In our investigation, 3DBF schemes work by converting a
digest value h of an input to a triple (i, j, k) by using the
equations i = hmodx, j = hmod y, and k = hmod z, for
some positive integers x, y, and z. Here, the triple (x, y, z) is
called the dimensional parameter of a 3DBF scheme. In this
paper, we investigate the influence of the value of (x, y, z)
on the false positive rate of a particular 3DBF with several
items as inputs. In our experiments, we randomly generated
pairs of usernames and passwords as inputs and we computed
their hash values using SHA256 algorithm. Our investigation
is restricted only to insert and search (query) operations and
we do not consider the delete operation. We perform empirical
analysis from our experiments and we supplement these results
with theoretical analysis.

II. RELATED WORKS AND PRELIMINARIES

A. State of the Art

Bloom Filter (BF) is a probabilistic data structure that was
first proposed by B. H. Bloom in 1970 [9]. This data structure
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is used to check whether an element is a member of a set
by using a probabilistic approach. Instead of storing an item
directly, BF stores a key associated with that item in a bit
array. A one-dimensional BF is represented using a bit array
of non-zero length. To store an element in a one-dimensional
BF, we need k ∈ N hash functions, which can be denoted
by hash1, hash2, . . . , hashk. The value of k affects the false
positive error rate in the BF.

In 2019, Patgiri et al. proposes a multidimensional BF called
rDBF [7]. This scheme generalizes the one-dimensional BF
by considering an r-dimensional bit array of a particular size
(dimension). As in the one-dimensional BF, rDBF utilizes k
hash functions to compute the digest of an input. However,
unlike the one-dimensional BF, the digests are stored in an r-
dimensional bit array using an r-tuple dimensional parameter
(x1, x2, . . . , xr) such that xi are distinct prime numbers for all
1 ≤ i ≤ r. For a digest value h of an input, an rDBF computes
the value of hmodxi for each 1 ≤ i ≤ r. The prime numbers
are used as the dimensional parameter to avoid collision—
a condition in which different inputs are associated with an
identical key in an r-dimensional bit array.

Further improvement of BF was made by constructing a
multilevel BF from rDBF. The resulting data structure is called
a high accuracy BF or HFil [10]. HFil is used to construct a
password database system called PassDB [11], which employs
a 12-level HFil on a 3DBF. Notwithstanding, BF not only can
be used to store passwords and usernames. Recently, Berardi
et al. employed BF for determining the similarity among
passwords [12].

Other recent developments related to BF were conducted
by Zhong et al. who implemented a novel adaptive BF to
decrease source-route length in the packet header facing frame
size limitation in the resource-constraint environment [13] and
An et al. who used the acquisition of BF to detect missing
RFID tag in an efficient way [14]. Furthermore, integration
between attribute BF and improvement of the ciphertext-policy
attribute-based encryption (CP-ABE) is proposed by Ramu to
guarantee confidentiality in the cloud framework [15]. BF is
also used in another cloud system that supports an e-health
environment to filter, classify, and guarantee data integrity
[16].

B. Measuring the Performance of a BF

BF can be viewed as a membership filtering algorithm
that returns either true (also denoted by 1) or false (also
denoted by 0) [4]. Suppose x ∈ S is an element to be
inserted into a conventional (one-dimensional) BF where S
is a finite set. In practice, S may be the set of strings obtained
from the concatenation of usernames and their corresponding
passwords. Initially, BF works by applying one or more hash
functions to x to get the associated hash value of x. Let us
denote this value by h(x). The value of h(x) is associated
with one or more elements of a one-dimensional bit array B,
called a key. Suppose for an element x ∈ S, we denote its
associated key by k(x). Given an element y, BF can be used
to check whether y ∈ S by determining if k(y) ∈ B. The
correctness performance of a filtering algorithm is typically

measured using a true positive, false positive, true negative,
or false negative match as in Definition 1.

Definition 1 ([4]): Let x ∈ U be an element of a (finite)
universal set U and k(x) be its associated key obtained from
its hash value h(x). Suppose S ⊂ U is a finite set and B is a
bit array used in a BF scheme. Then:

1) if k(x) ∈ B and x ∈ S, then the result of BF is called
a true positive match,

2) if k(x) ∈ B and x ̸∈ S, then the result of BF is called
a false positive match,

3) if k(x) ̸∈ B and x ∈ S, then the result of BF is called
a false negative match, and

4) if k(x) ̸∈ B and x ̸∈ S, then the result of BF is called
a true negative match.

For an rDBF, we consider B as an r-dimensional bit
array. An example of a three-dimensional bit array is
[[[10, 11], [01, 00]], [[00, 11], [01, 10]]]. For r ≥ 2, we notice
that an r-dimensional bit array contains one or more (r− 1)-
dimensional bit array.

In a perfect filtering algorithm, we have x ∈ S if and only
if k(x) ∈ B. However, this is impossible if the filtering al-
gorithm is probabilistic. We typically measure the correctness
performance of filtering algorithms through false positive rate
and false negative rate. A false positive rate (or false positive
error rate) of a filtering algorithm measures the probability
of an element x ∈ U such that k(x) ̸∈ B and x ∈ S where
S ⊂ U , whereas a false negative rate is defined analogously. A
functioning filtering algorithm is expected to have sufficiently
low false positive and false negative rates. According to Patgiri
et al., rDBF (including 3DBF) does not produce false negative
matches and thus its false negative rate is zero [7, Theorem
4]. As a consequence, the correctness performance of a 3DBF
is typically measured from its false positive rate.

C. Hash Functions in BF

Hash functions are used in BF to transform the inputs of
various sizes into values of uniform and fixed lengths using
a key [17]. These functions typically convert a string (also
referred to as a message) of any length into its digest or hash
value using mathematical operations. For a secure BF, the hash
function should be irreversible, that is, given the output of a
hash function, it is computationally infeasible to determine its
corresponding input. In addition, a hash function in BF needs
to satisfy weak and strong collision properties, namely, it is
computationally infeasible to find different messages whose
hash values are identical [17]. We refer the reader to [18] for
a more comprehensive discussion regarding the hash function
we use in this paper.

III. PROPOSED 3DBF FOR ACCOUNTS STORING SYSTEM

Our proposed 3DBF uses a three-dimensional bit array in
its filtering algorithm and it is adapted from the description
of rDBF in [7, Section 3]. A two-dimensional bit array of
dimension (x, y) can be viewed as an x × y matrix whose
entries are bit strings of a fixed length. This matrix can be
represented in a nested array notation [r0, r1, · · · , rx−1] such
that ri = [ri,0, ri,1, . . . , ri,y−1] and ri,j are bit strings of a
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fixed size for all 0 ≤ i ≤ x − 1 and 0 ≤ j ≤ y − 1. Notice
that, for algorithmic purposes, we use a 0-based indexing in
our matrices and array. As a consequence, we refer to the first
entry of an array as the 0-th component of such an array. We
can generalize the notion of a two-dimensional bit array to a
three-dimensional bit array as in Definition 2

Definition 2: A three-dimensional bit array B of di-
mension (x, y, z) is an array B = [B0, B1, . . . , Bx−1]
such that Bi = [Bi,0, Bi,1, . . . , Bi,y−1] and Bi,j =
[Bi,j,0, Bi,j,1, . . . , Bi,j,z−1] where Bi,j,k are bit strings of a
fixed size for all 0 ≤ i ≤ x − 1, 0 ≤ j ≤ y − 1, and
0 ≤ k ≤ z − 1. The location (i, j, k) in the bit array B,
namely the location of Bi,j,k, is called as the (i, j, k)-th cell,
where 0 ≤ i < x, 0 ≤ j < y, and 0 ≤ k < z.

Example 1: The array [[[01, 11], [10, 00]], [[11, 11], [00, 10]]]
is an example of a three-dimensional bit array of dimension
(2, 2, 2) whose entries are bit strings of size 2. For example,
the (0, 1, 1)-th entry of this array is 00.

Observe that, if each bit string Bi,j,k is of size β, then
the total bits available in a three-dimensional bit array of
dimension (x, y, z) is β · x · y · z. A 3DBF uses a three-
dimensional bit array as in Definition 2 whose dimensional
parameter (x, y, z) is chosen to be a triple of distinct prime
numbers [7]. Suppose m ∈ S is a message we want to input
to a 3DBF scheme. In our proposed system, we first need to
find (at least) one hash value of m.

Assume that we use one hash function hash to compute
the hash value of m and we define hash(m) = h. We then
represent h as a decimal number and compute i = hmodx,
j = hmod y, and k = hmod z. The last operations yield a
triple (i, j, k) such that 0 ≤ i < x, 0 ≤ j < y, and 0 ≤ k < z.
This triple also signifies a particular (i, j, k)-th cell in the bit
array B. Observe that the value of (i, j, k) is unique for all h
such that 0 ≤ h < xyz. The values in the three-dimensional
bit array are constructed by changing the value of Bi,j,k in
B according to the hash value of m. We further explain this
process in our data insertion algorithm.

A. Insertion Algorithm

Our proposed 3DBF scheme uses a hash function hash to
compute the hash value hash(m) for any input m. Here, m is a
concatenation of a username and its corresponding password.
This scheme also employs a three-dimensional bit array B of
dimension (x, y, z) such that all x, y, and z are distinct prime
numbers. Each cell value Bi,j,k in B stores a bit string of size
β where typically β is either 32 or 64. Initially, the array B is
set to zero, i.e., Bi,j,k is set to be a string of zeros of length
β for every 0 ≤ i < x, 0 ≤ j < y, and 0 ≤ k < z.

Suppose we want to insert a message m into the three-
dimensional bit array B. As in the one-dimensional BF, we
associate the hash value of m, namely hash(m), instead of m
itself in the array B. We first need to compute the hash value
of m and convert this value into a decimal number, let us
denote this number by d(m). We use d(m) to indicate that a
key associated with m exists in our filter using the following
steps. First, we need to determine the (i, j, k)-th cell in B
using the equations i = d(m)modx, j = d(m)mod y, and

k = d(m)mod z. This (i, j, k) indicates the cell position in
our bit array which initially is filled with a string of zeros of
length β. Next, we compute ρ = d(m)modβ. Observe that
ρ satisfies 0 ≤ ρ ≤ β − 1. To indicate that we store m in
our filter, we set the (ρ + 1)-th rightmost digit of Bi,j,k to
1. This operation can also be expressed using the left-shift
operator, that is, Bi,j,k ← Bi,j,k | (1 << ρ) where | denotes
the bit-wise or operation. If this position has been previously
set to 1, our 3DBF generates a notification that m has been
stored in our filter. In other words, we use a non-blind insertion
technique, i.e., we check the existence of a key of an element
before we add it to our filter (see [7, Section 3.1.] for more
explanations about non-blind and blind insertion method). A
false positive match occurs when this digit has been set to 1
but d(m) has not been associated with any entry in our filter
using the aforementioned process.

To explain our insertion process in detail, we first describe
the procedure SETBIT(B, i, j, k, ρ) in Algorithm 1 which is
adapted from [7, Algorithm 2]. This procedure requires a
three-dimensional bit array B of dimension (x, y, z), the cell
position (i, j, k), and the value ρ indicating the bit position
within Bi,j,k. The output is an updated value of Bi,j,k such
that its (ρ+ 1)-th rightmost bit is set to 1.

Algorithm 1 SETBIT(B, i, j, k, ρ) sets the (ρ+1)-th rightmost
bit of Bi,j,k to 1.
Input: A three-dimensional bit array B, a cell position

(i, j, k), and a value ρ indicating the bit position within
Bi,j,k.

Output: The (ρ+ 1)-th rightmost bit of Bi,j,k is set to 1.
1: v ← Bi,j,k

2: w ← (1 << ρ)
3: Bi,j,k ← v | w ▷ bit-wise or operation between v and w
4: return Bi,j,k

In Algorithm 1, line 1 takes a bit string Bi,j,k, line 2
constructs a bit string whose values are 0 except at the (ρ+1)-
th rightmost bit, and line 3 updates the value of Bi,j,k with a
new one such that the (ρ+1)-th rightmost bit of Bi,j,k is set to
1. Notice that the value Bi,j,k remains unchanged if initially
the rightmost (ρ+1)-th position of Bi,j,k has been already set
to 1. Assuming that the bit-wise operation takes O(1) time,
then it is obvious that Algorithm 1 takes O(1) time.

Next, we explain the function CHECKBIT(B, i, j, k, ρ) in
Algorithm 2 that is adapted from [7, Algorithm 3]. This
function checks whether the (ρ+1)-th rightmost bit of Bi,j,k

has been set to 1. The function returns true if such a condition
happens and false otherwise. In Algorithm 2, line 3 computes
the bit-wise xor between the bit string Bi,j,k and a bit-string w
that contains 0 except at the (ρ+1)-th rightmost position and
stores its result in a variable s. Line 4 computes the bit-wise
and between s and the previous bit string w and stores its result
in a variable t. The bit string Bi,j,k contains 1 at its (ρ+1)-th
rightmost bit if the decimal representation of t is zero but the
decimal representation of v is non-zero. By abuse of notation,
Algorithm 2 uses the formula (Bi,j,k

∧(1 << ρ))&(1 << ρ)
where ∧ denotes the bit-wise xor operation and & denotes the
bit-wise and operation, and checks whether the result of this
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formula is non-zero. If the result is zero but Bi,j,k is non-zero,
then we infer that the (ρ + 1)-th rightmost bit of Bi,j,k is 1.
Assuming that all bit-wise operations require O(1) time, we
infer that Algorithm 2 takes O(1) time as well.

Algorithm 2 CHECKBIT(B, i, j, k, ρ) checks whether the (ρ+
1)-th rightmost bit of Bi,j,k is 1.
Input: A three-dimensional bit array B, a cell position

(i, j, k), and a value ρ indicating the bit 1 position within
Bi,j,k.

Output: The function returns true if the (ρ+1)-th rightmost
bit of Bi,j,k is 1 and false otherwise.

1: v ← Bi,j,k

2: w ← (1 << ρ)
3: s← v ∧ w ▷ bit-wise xor operation
4: t← s& w ▷ bit-wise and operation
5: td = d(t) ▷ converting t to decimal value
6: vd = d(v) ▷ converting v to decimal value
7: return (td = 0 and vd ̸= 0)

As in [7], we also use the function SETCOUNT(B) to
compute the total number of unique input counts. Here, our
SETCOUNT(B) definition is identical to that in [7, Algorithm
4]. This SETCOUNT(B) function is important if we use a
non-blind insertion method. We also use SETCOUNT(B) for
another algorithm as a subroutine to determine whether the
three-dimensional bit array B is full.

If we consider a three-dimensional bit array B of dimension
(x, y, z) such that each Bi,j,k stores β bits, then the maximum
number of bits that can be stored in this array is β · x · y · z.
However, as in [7], we can choose not to use all available bits
for storing the data. We define the threshold τ as (β/α) · xyz
where α is an integer between 1 and β (inclusive). Observe
that τ satisfies xyz ≤ τ ≤ β · xyz. If τ = β · xyz, then
theoretically all bits in B can be used.

The value β/α is between 1 and β and it is called as the
criticality factor, while the value α itself is referred to as the
false positive intolerance factor [7]. If the criticality factor of
a BF scheme is β, then all bits in B can be used and the
system can tolerate a higher false positive rate. In addition, if
the criticality factor is 1, then the false positive rate is zero, but
only xyz bits in the array can be used. According to Patgiri
et al., there is a trade-off between the false positive rate and
the number of bits that can be used in the system, namely, the
more bits are used, the higher the false positive rate is [7].

Furthermore, observe that the higher the intolerance factor
used in the system, the fewer bits can be used to store the data.
For example, if we consider a three-dimensional bit array B of
dimension (x, y, z) with β = 64 and intolerance factor α = 8,
then only (64/8) · xyz = 8xyz bits of B can be used, which
is one-eighth of the original size. Nevertheless, theoretically,
this scheme has a lower false positive rate than the system that
uses all available bits.

We describe the function ISFULL(B, τ ) that examines
whether a three-dimensional bit array B of dimension (x, y, z)
is full if the threshold of the array is τ = (β/α) · xyz
in Function 1. Each cell value Bi,j,k in B holds β bits.
This method is adapted from [7, Algorithm 5] and uses the

aforementioned SETCOUNT(B) function and runs in O(1)
time.

Input: A three-dimensional bit array B of dimension (x, y, z)
and a threshold value τ = (β/α) · xyz.

Output: The function returns true if the three-dimensional
bit array B is full with the threshold value τ and false
otherwise.

1: if SETCOUNT(B) = τ then
2: return true
3: else
4: return false
5: end if

Function 1: ISFULL(B, τ ) examines whether a three-
dimensional bit array B of dimension (x, y, z) is full if the
threshold value is τ where τ = (β/α) · xyz.

We are now ready to describe our non-blind data insertion
procedure in our 3DBF scheme which is adapted from [7,
Algorithm 6]. This process is described in Algorithm 3 using
the procedure INSERT(B,m) that executes a non-blind inser-
tion of a message m into a three-dimensional bit array B of
dimension (x, y, z) such that each Bi,j,k stores a bit string of
length β. We also assume that the threshold for B is τ .

Algorithm 3 initially computes the hash value of m and
converts its value into a decimal number denoted by d(m).
Here, we use the cryptographically secure SHA256 algorithm
to determine hash(m). Subsequently, line 2 of Algorithm 3
determines the triple (i, j, k) such that i = d(m)modx,
j = d(m)mod y, and k = d(m)mod z. The triple (i, j, k)
indicates the (i, j, k)-th cell in the three-dimensional bit array
B that contains a bit string Bi,j,k of size β. In line 3 of
Algorithm 3 we compute the value ρ to determine the bit
position of Bi,j,k that is associated to the message m.

Line 4 of Algorithm 3 is performed to check whether the
three-dimensional bit array B is not full and the (ρ + 1)-
th rightmost bit of Bi,j,k is 0. If both conditions are satis-
fied, then we increment the number of unique inputs using
SETCOUNT(B) function and subsequently set the (ρ + 1)-th
rightmost bit of Bi,j,k to 1 to indicate that m has been inserted
in our filter. If at least one of the conditions is not satisfied,
then either the three-dimensional bit array B is full or the
(ρ + 1)-th rightmost bit of Bi,j,k has been set to 1. In either
case, Algorithm 3 provides a pertinent notification as in line
9 or line 11. Assuming that all modulo operations in lines 1,
2 , and 3 take O(1) time each and every aforesaid subroutine
runs in O(1) time, then we infer that Algorithm 3 requires
O(1) time.

B. Search (Query) Algorithm

Suppose we consider a message m and a three-dimensional
bit array B of dimension (x, y, z) such that each cell (i, j, k)
stores a bit string of length β for every 0 ≤ i < x, 0 ≤
j < y, and 0 ≤ k < z. The objective of the search (query)
algorithm in our 3DBF scheme is to determine whether the
key associated with the message m exists in B. If such a key
occurs, then we infer that m has been stored in our filter. Our
proposed search algorithm is adapted from [7, Algorithm 7]
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Algorithm 3 INSERT(B,m) performs a non-blind insertion of a message m to a three-dimensional bit array B used in 3DBF
scheme.
Input: A message m, a three-dimensional bit array B of dimension (x, y, z) such that each cell consists of β bits, and a

threshold value τ of the 3DBF scheme.
Output: Modified three-dimensional bit array B or a relevant information about B.

1: h← hash(m); d(m)← decimal value of h
2: i← d(m)modx; j ← d(m)mod y; k ← d(m)mod z
3: ρ← d(m)modβ
4: if ISFULL(B, τ) = false and CHECKBIT(B, i, j, k, ρ) = false then
5: SETCOUNT(B) ▷ increment the number of unique inputs
6: SETBIT(B, i, j, k, ρ) ▷ the (ρ+ 1)-rightmost bit of Bi,j,k is set to 1
7: else
8: if ISFULL(B, τ) = true then
9: “The three-dimensional bit array B is full.”

10: else
11: “The element m has been added to B.”
12: end if
13: end if

and uses the function CHECKBIT explained in Algorithm 2 as
a subroutine.

We explain this process using the function SEARCH(B,m)
in Algorithm 4 that takes a three-dimensional bit array B and
a message m as inputs. Observe that lines 1, 2, and 3 of
Algorithm 4 are respectively identical to the corresponding
lines of Algorithm 3. This function subsequently determines
whether the (ρ + 1)-th bit of Bi,j,k is 1 using the function
CHECKBIT(B, i, j, k, ρ) and stores its value in a Boolean
variable found as explained in line 4. Notice that, if found
is true, then we infer that the key associated with m exists
in B, and thus the algorithm returns true. Analogously, if
found is false, then we infer that the key associated with
m does not exist in B, and hence the algorithm returns
false. Since CHECKBIT function runs in O(1) time and using
the assumption that all modulo operations in lines 1, 2, and
3 require O(1) time each, then we infer that Algorithm 4
requires O(1) time.

Algorithm 4 SEARCH(B,m) determines whether a key asso-
ciated to a message m exists in B.
Input: A three-dimensional bit array B of dimension (x, y, z)

and a message m.
Output: The function returns true if the bit associated with

m in B is set to 1 and false otherwise.
1: h← hash(m); d(m)← decimal value of h
2: i← d(m)modx; j ← d(m)mod y; k ← d(m)mod z
3: ρ← d(m)modβ
4: found← CHECKBIT(B, i, j, k, ρ)
5: return found

C. Correctness Performance Indicator

Our 3DBF uses a three-dimensional bit array B with
dimensional parameter (x, y, z) where each cell value Bi,j,k

stores β bits of information. Consequently, the total number
of bits available is β ·xyz. However, as previously mentioned

in Section III-A, we can choose not to use all bits in B by
considering an intolerance factor α ∈ {1, 2, · · · , β}. If we
consider a 3DBF scheme with an intolerance factor α, then
the total number of usable bits in this scheme is β/α · xyz.

The correctness performance of an rDBF scheme is mea-
sured using the false positive rate. In a conventional one-
dimensional BF, this quantity, denoted by FPR, is defined
as

FPR = 1−
(
1− 1

m

)nk

, (1)

where m is the total number of bits usable in BF (total
bits that can be used in the bit array), n is the number of
elements inserted into the BF, and k is the total number of hash
functions used [4]. In a 3DBF scheme of dimension (x, y, z),
we have m = β/α · xyz, and thus (1) becomes

FPR = 1−
(
1− 1

β/α · xyz

)nk

. (2)

Eq. (2) is a special case of the more general formula in
rDBF (see [7, p. 112]). Since our proposed 3DBF scheme
uses one hash function in its insert and search procedures, the
false positive rate is measured using the following formula

FPR = 1−
(
1− 1

β/α · xyz

)n

. (3)

The value β/α is referred to as the criticality factor of a
3DBF scheme. This value is related to the occupancy level of
the scheme that quantifies the number of bits that can be used
in the bit array. Formally, we define the occupancy level as a
rational number within the interval (0, 1]. Notice that if α = 1,
then the occupancy level of the scheme is 100%, meaning that
all bits in the associated three-dimensional bit array B can be
used. Similarly, if α = 2, then the occupancy level of the
scheme is 50%, indicating that only half of all bits in the
associated three-dimensional bit array B is usable.

Observe that the original definition of criticality factor in
[7] is somewhat restricted since one must be able to express
its value as β/α where α is an integer between 1 and β
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(inclusive). For example, this definition does not allow an
occupancy level of 0.1 in a 3DBF that uses 64 bit in each
cell of its three-dimensional bit array, since 64/α = 0.1
implies α = 640, which is not an integer between 1 and 64.
However, it is possible to use around 10% of all available
bits in a three-dimensional bit array B if the dimension
(x, y, z) is sufficiently large. As an illustration, in a 3DBF
scheme that uses a three-dimensional bit array B of dimension
(2, 3, 5) whose each cell contains 64 bit string, then 10% of
all available bits is 192 bits. In other words, our definition
of occupancy level is more general than the criticality factor
proposed by Patgiri et al. in [7], since it is not always necessary
for the occupancy level to be expressed as a ratio between β
and α, so long as its value is a rational number in the interval
(0, 1]. In this paper, we use this notion of occupancy level
instead of the criticality factor to evaluate the performance
of a 3DBF scheme. As a consequence, we measure the false
positive rate of 3DBF of dimension (x, y, z) and an occupancy
level C as

FPR = 1−
(
1− 1

C · β · xyz

)n

. (4)

IV. EXPERIMENTAL RESULTS AND MATHEMATICAL
ANALYSIS

Our computational experiments were mainly carried out to
investigate the false positive rates of several 3DBF schemes
of various dimensional parameters for various values of oc-
cupancy levels and the number of inputs. In other words, we
investigated the effect of the values of (x, y, z), C, and n,
to the value of FPR according to (4). We initially generated
1000 000 random pairs of strings of usernames and passwords.
Each username contains between 7 to 10 alphanumeric charac-
ters, while its corresponding password is constructed of more
random ASCII characters of length 7 to 11 (including some
non-alphanumeric characters). Thus, a message is a string of
ASCII characters of length 14 to 21. To associate a message
in a 3DBF scheme, we used the SHA256 algorithm as our
hash function and compute one hash value of such a message.
This hash value is later converted to a decimal number.

Notice that a 3DBF dimensional parameter is defined as
a triple (x, y, z) such that x, y, and z are distinct prime
numbers. Suppose we consider a three-dimensional bit array
B of dimension (p, q, r) whose each cell stores β bits. The
total number of bits in this array is identical to the number
of bits in the arrays whose dimensions are obtained from the
permutations of (p, q, r), e.g., three-dimensional bit arrays
of dimensions (p, r, q), (q, p, r), and (q, r, p). All of these
arrays accommodate β · pqr bits in total if each cell stores
β bits. Using this argument, we restrict our investigation
to the 3DBF whose dimensional parameter is (x, y, z) such
that x < y < z. Moreover, due to some limitations of our
computational environment, we only consider the prime
numbers between 2 and 47 (inclusive). In addition, we also
define β = 64 in all of our three-dimensional bit arrays.
As a result, the smallest three-dimensional bit array in
our experiments stores 64 · 2 · 3 · 5 = 1920 bits whereas
the largest one holds 64 · 41 · 43 · 47 = 5 303 104 bits. Our

experiments are performed using Python 3 language in Google
Colaboratory using its default specification. We put our source
code, datasets, and other pertinent experimental materials
related to our research for interested readers at https:
//github.com/csmarz/SecureSpaceEfficient3DBF.

A. Empirical Relationship Between Occupancy Level and the
False Positive Rate

In our first experiment, we determined the false positive
rates of several 3DBF schemes whose occupancy levels are
between 0.10 to 0.95 with 0.05 increment. We computed the
maximum, minimum, and average values of FPR in sev-
eral 3DBF schemes whose dimensions vary from (2, 3, 5) to
(41, 43, 47). The number of data to be inserted varies between
192 and 530 311 items from 1000 000 available records.

Notice that 192 is 10% of the available total bits of a three-
dimensional bit array of dimension (2, 3, 5) whose each cell
contains 64 bits, while 530 311 is 10% of the available total
bits in a three-dimensional bit array of dimension (41, 43, 47)
whose each cell stores 64 bits. The relationship between the
occupancy levels with the maximum and minimum FPR
values is described in Fig. 1. The average FPR values are
not plotted in this graph since it is obvious that these values
are located between the minimum and maximum FPR values.
Here, we see that the values of FPR are directly proportional
to the values of occupancy levels. That is, the more bits are
used, the higher the value of FPR. In our first experiment,
the smallest value of FPR = 0.095386 occurs when the
occupancy level is 0.1.

We conducted a further experiment to see the relation-
ship between FPR values of several 3DBF schemes whose
occupancy levels are between 0.010 and 0.095 with 0.005
increment. The objective of this experiment is to see the
FPR values of 3DBF schemes if the number of bits used
is between 1% and 9.5% from the total available bits. We use
the same parameters as in the first experiment. The relationship
of occupancy levels with the maximum and minimum value
of FPR is depicted in Fig. 2

B. Mathematical Relationship Between Occupancy Level and
the False Positive Rate

Suppose we consider a 3DBF scheme of dimension (x, y, z)
whose three-dimensional bit array B holds β bits in each of
its cells. Suppose we denote A as the total number of available
bits in this scheme, that is, A = β ·xyz. If the occupancy level
of this scheme is C ∈ (0, 1], then the total usable bits in this
scheme is C · β · xyz = C ·A.

From the experimental results in Section IV-A, we see
that the false positive rate of a 3DBF scheme is directly
proportional to its occupancy level. Now we are interested to
determine the minimum number of bits required for storing n
items of data in a 3DBF scheme of dimension (x, y, z) given
an acceptable value FPR of false positive rate and the value
C of occupancy level. In other words, we want to determine
the value A = β ·xyz if the values FPR of false positive rate
and C of occupancy level are known. This result can be used
to further determine the dimensional parameter of the 3DBF

https://github.com/csmarz/SecureSpaceEfficient3DBF
https://github.com/csmarz/SecureSpaceEfficient3DBF
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Fig. 1. The relationship between occupancy levels with the maximum and minimum FPR values. Here, the occupancy levels are observed for any value
between 0.10 and 0.95 (inclusive) with 0.05 increment.

Fig. 2. The relationship between occupancy levels with the maximum and minimum FPR values. Here, the occupancy levels are observed for any value
between 0.010 and 0.095 (inclusive) with 0.005 increment.

needed to store the data given the description of its acceptable
false positive rate, occupancy level, and the number of bits
in each cell of the three-dimensional bit array. We state these
important relationships in Theorem 1 and Corollary 1.

Theorem 1: The minimum number of bits for storing n items
of data in a 3DBF scheme of dimension (x, y, z) given the
value of the acceptable false positive rate of FPR and the
value of occupancy level C is A where

A =

⌈
1[

1− (1− FPR)1/n
]
· C

⌉
, (5)

where ⌈. . . ⌉ denotes the ceiling function, i.e., a function that
returns an integer greater than or equal to the input.

Proof: From (4), we have

FPR = 1−
(
1− 1

C · β · xyz

)n

, thus

1− FPR =

(
1− 1

C · β · xyz

)n

(1− FPR)1/n = 1− 1

C · β · xyz
1

C · β · xyz
= 1− (1− FPR)1/n, consequently

C · β · xyz =
1

1− (1− FPR)1/n

β · xyz =
1[

1− (1− FPR)1/n
]
· C

.

Since A = β · xyz and the number of bits must be an integer,
then the result follows.

The result in Theorem 1 also tells us that the product of the
dimensional parameter (xyz) is inversely proportional to the
value of the false positive rate (FPR) and occupancy level
(C). The following corollary is an immediate consequence of
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Theorem 1.
Corollary 1: Suppose we consider a 3DBF of dimension

(x, y, z) that is used to store n items of data using an
acceptable positive rate of FPR and occupancy level of C. If
each cell in the three-dimensional array used in this scheme
stores β bits, then (x, y, z) satisfies

xyz ≥ 1[
1− (1− FPR)1/n

]
· C · β

(6)

We illustrate the application of Theorem 1 and Corollary 1
in the following example.

Example 2: Suppose we want to store n = 1000 data using
a 3DBF whose value of false positive rate is no more than
FPR = 0.1 and its occupancy level is at most C = 0.2. Then,
using (5), the minimum number of bits required to store these
items, namely A, satisfies⌈

1[
1− (1− 0.1)1/1000

]
· 0.2

⌉
= 47 459 bits. (7)

If we consider a 64 bit scheme, i.e., a 3DBF scheme that em-
ploys a three-dimensional bit array whose every cell contains
64 bits, then the product of dimensional parameter (x, y, z)
satisfies

xyz ≥ 1[
1− (1− 0.1)1/1000

]
· 0.2 · 64

= 741.540749. (8)

This means we need to use a three-dimensional bit array of
dimension (x, y, z) such that x · y · z ≥ 741.540749. We can
choose a 3DBF scheme of dimension (x, y, z) = (7, 11, 13).
Observe that 7 · 11 · 13 = 1001. Furthermore, the FPR of
a 3DBF scheme of dimension (7, 11, 13) with C = 0.2 and
β = 64 is 0.075081 < 0.1.

C. Empirical Running Time for Insert and Search (Query)
Operations

In addition to the experiments related to the investigation
between the false positive rates and the occupancy levels
of the 3DBF scheme, we also performed an experiment to
determine the empirical running time for insert and search
(query) operations. As previously stated in Section III-A, the
insert operation is carried out using the procedure INSERT
explained in Algorithm 3 and it requires O(1) time for insert-
ing one element. This procedure calls the algorithms ISFULL,
CHECKBIT, SETCOUNT, and SETBIT as subroutines, each of
them also runs in O(1) time. On the other hand, the search
operation is performed using the function SEARCH described
in Algorithm 4 and it runs in O(1) time for searching one
element in a 3DBF scheme. As in the INSERT procedure, this
algorithm also uses the CHECKBIT function as a subroutine.

Although both INSERT and SEARCH algorithms run in O(1)
time, we notice that the INSERT procedure in Algorithm 3
involves more operations and uses more subroutines than the
SEARCH procedure in Algorithm 4. As a result, intuitively
inserting an element into a 3DBF scheme takes more time than
searching for such an element in an identical scheme, although
the difference is only up to a constant factor. We performed
an experiment to insert n items where 192 ≤ n ≤ 530 311

in a 3DBF scheme of false positive rate FPR = 0.1 and
occupancy level C = 0.1. In this experiment, the total bits
in the 3DBF schemes vary from 1920 to 5 303 104. For each
of these items, we also performed a search (query or look-
up) operation. We compared the empirical running time for
the insert and search operations and plot the result in Fig. 3.
From this result, we infer that the running time for inserting
or searching items is linearly proportional to the number of
items. Furthermore, the time required for inserting an item is
slower than that for searching for such an item in an identical
3DBF scheme by a constant factor.

Fig. 3. The processing time for inserting and searching n items where
192 ≤ n ≤ 530 311 in 3DBF scheme of false positive rate FPR = 0.1 and
occupancy level C = 0.1.

V. CONCLUDING REMARKS

From experimental results in Section IV-A, we conclude that
the value of the false positive rate is directly proportional to
the value of occupancy level in a 3DBF scheme. We describe
our mathematical analysis in Section IV-B. To begin with,
we provide a mathematical formulation for determining the
minimum number of bits required to store n items of data in a
3DBF scheme of false positive rate FPR and occupancy level
C in Theorem 1. The result in Theorem 1 also tells us that the
product of the dimensional parameter is inversely proportional
to the value of the false positive rate and occupancy level in the
3DBF scheme. This formulation is further refined in Corollary
1 to affirm a sufficient condition for the dimensional parameter
(x, y, z) in a 3DBF scheme to store n items given a false
positive rate of FPR and occupancy level C, assuming that
each cell of the three-dimensional bit array used in the 3DBF
holds β bits. We provide a relevant illustration of this corollary
in Example 2.

Our recommended scheme is adapted from the system
proposed by Patgiri et al. [7]. This scheme only uses one
hash function to determine the associated key of an item.
However, the optimal number of hash functions used in a
conventional one-dimensional BF of capacity m with n input
items satisfies m/n · ln 2 (see, e.g., [4], [12]). Nevertheless, to
our knowledge, investigations regarding the optimal number
of the hash function used in 3DBF (or rDBF in general) have
not been carried out rigorously.
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In our investigation, the dimensional parameter of a 3DBF
scheme is defined as a triple (x, y, z) such that x, y, and
z are distinct prime numbers. This criterion is taken from
the argument by Patgiri et al. to avoid collision and thus
keep the false positive rate sufficiently low [7]. Nevertheless,
there is no rigorous mathematical argument for this stipulation.
We conjecture that to keep the false positive rate sufficiently
low, we can use a dimensional parameter (x, y, z) such that
x, y, and z are pairwise relatively prime (i.e., the greatest
common divisors of every pair of distinct numbers are 1).
This conjecture needs further experimental and theoretical
explorations.

Finally, our experiments are somewhat limited since the
prime numbers used are no more than 47. The maximum
number of available bits in the 3DBF scheme is around five
million. We suggest further investigation by considering 3DBF
schemes whose dimensional parameters are (x, y, z) such that
x, y, and z are pairwise relatively prime numbers between 1
and 100. Notice that there are 47 086 of such triples and if
each cell of a three-dimensional bit array holds 64 bits, then
the maximum number of bits is 61 459 200 (around twelve
times larger than that in our experiments), which is obtained
when the dimension is (97, 99, 100).
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