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Optimal Feeding Strategy on Microalgae Growth in
Fed-Batch Bioreactor Model

Nailul Izzati and Mardlijah

Abstract—Some countries in the world turn to alternative
energy source to fulfill their necessity of fuel. One of the
alternative fuels is biodiesel. Raw material of biodiesel can be
produced by microalgae cultivation in fed-batch bioreactor. To
improve the productivity of microalgae cultivation, we need to
determine the optimal control of microalgae growth. This paper
discusses mathematical model of microalgae growth in fed-batch
bioreactor, and solves the optimal feeding strategy problem by
using Pontryagin Minimum Principle. Then we compare the
controlled microalgae growth model with the uncontrolled one.
Numerical simulation with DOTcvpSB shows that the controlled
microalgae growth model yields more harvest and less cost
function than the uncontrolled one.

Index Terms—Bioreactor model, optimal control.

I. I NTRODUCTION

B IODESEL is one of the alternative energy sources that
becomes popular in recent decades. Biodesel can be pro-

duced from microalgae biomass. Microalgae as one of biomass
sources, has many advantages, such as can be cultivated
throughout the year, need less water and field. Microalgae
can grow fast in rich oil content. Oil content of microalgae
can reach 80% of its dry biomass weight. Oil content that
produced from microalgae cultivation depends on microalgae
growth rate and oil content in its biomass [1].

De la Hoz Siegler et al. [2] constructed a mathematical
model to describe microalgae growth in fed-batch bioreactor.
Then the optimization of the model to find the optimal feeding
strategy is solved by using adaptive model predictive control
[3]. The optimal control problem of the model is also discussed
by Abdollahi and Dubljevic [4]. They solved the optimal
control problem to optimize biomass and lipid productivityby
using Interior Point Optimization (IPOPT), Model Predictive
Control (MPC), and Moving Horizon Estimation (MHE).

The model constructed in [2] assumes glycine, glucose,
biomass, lipid, nitrogen concentration, and bioreactor volume
as state variables. In this paper, we discuss a modification
of the model and then solve the optimal control problem
to optimize biomass and lipid productivity and microalgae
feeding cost by using Pontryagin Minimum Principle.

II. M ATHEMATICAL MODEL OF M ICROALGAE GROWTH IN

FED-BATCH BIOREACTOR

The dynamic of microalgae growth in fed-batch bioreactor
is modeled by De la Hoz Siegler et al. [2] by (1)-(6).
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System (1)-(6) describes biomass and lipid production of mi-
croalgae Auxenochlorella protothecoides. Microalgae growth
in bioreactor needs some substrates as nutrition sources. In
this model, De la Hoz Siegler et al. use two substrates, i.e.
glycine as nitrogen source, and glucose as carbon source.
The model assumes that the microalgae cell contains three
components, i.e. active biomass, lipid, and nitrogen. These
three components can convert from one component to another
component with constant yieldsYi/j .
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The model consider six state variables, they areS1, S2, x,
p, q, V that represent glycine, glucose, biomass, lipid, and
nitrogen concentration in fed-batch bioreactor, and volume of
the bioreactor, respectively.ρ is the nitrogen source uptake
rate,π is the lipid production rate, andµ is the microalgae
growth rate. si1 and si2 are the concentration of feeding
nutrition. f i

1 and f i
2 are the feeding nutrition rate.fo is the

outflow, km is the maintenance factor, andD = (f i
1 + f i

2)/V
is the dilution rate.

III. M ETHODS

This section discusses the methods used in this study.
Firstly, we modify the model by using different assumption
of variable state and parameter. Then we discuss the optimal
control problem and solve it by using Pontryagin Minimum
Principle and DOTcvpSB.

A. Modification of The Mathematical Model

In this study, the volume of fed-batch bioreactor is assumed
as a constant parameter. So, we only considerS1, S2, x, p,
q as the state variables of the model. We also assume the
nitrogen source uptake rate, the lipid production rate, and
the microalgae growth rate as (7)-(9). Whereρmax is the
maximal nitrogen source uptake rate,πmax is the maximal
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lipid production rate,µmax is the maximal microalgae growth
rate, and

µ = µmax
S2

KS2
+ S2

q

Kq + q
(7)

π = πmax
S2

KS2
+ S2

(8)

ρ = ρmax
S1

KS1
+ S1

(9)

KS1
, KS2

, Kq are the half saturation constant of glycine,
glucose, and nitrogen concentration, respectively.

B. Pontryagin Minimum Principle

Optimal control problem consists of three main components,
i.e. mathematical model, objective function, and boundary
conditions and physical constrains of state/control variables.
Let the mathematical model be given by

ẋ(t) = f(x(t),u(t), t),

and objective function

J = S(x(tf ), tf ) +

∫ tf

t0

φ(x(t),u(t), t)dt,

with boundary conditions

x(t0 = 0) = x0 and x(tf ) = xf ,

and physical constraints

U− ≤ u(t) ≤ U+ and X− ≤ x(t) ≤ X+.

To solve the optimal control problem with Pontryagin Mini-
mum Principle, we need to do the steps as follows [5]:

1) Form the Hamiltonian function.

H(x,u, λ(t), t) = φ(x(t),u(t), t)+λ′(t)f(x(t),u(t), t)

2) Find the optimal controlu∗(t) = h(x∗(t), λ∗(t), t) by
minimizing H w.r.t. u(t).

(

∂H
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)

∗

= 0

3) Substitute the optimal control to Hamiltonian function.

H∗(x∗(t),h(x∗(t), λ∗(t), t), λ∗(t), t)

4) Solve the state and costate differential equations

ẋ
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)
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C. DOTcvpSB

DOTcvpSB is a toolbox of MATLAB that can be used to
solve an optimal control problem numerically. DOTcvpSB fo-
cuses on system biology problems. To solve an optimal control
problem with this toolbox, we need to define the ordinary
differential equations that describe the system, the objective
function, initial and terminal time problems, constraintsof the
variables, initial and terminal conditions. This toolbox also
allows us to check the simulation of the systems, which only
shows the dynamics of the systems without optimization [6].

IV. D ISCUSSION ANDRESULTS

A. Mathematical Model

Consider the assumption explanation in the method section,
we can express the mathematical model of microalgae growth
in fed-batch bioraector as (10)-(14).
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B. Optimal Control Problem

The mathematical model in this optimal control problem
is defined by (10)-(14), wheref i

1 and f i
2 are defined as

control variables. The aim of this optimal control problem
is to maximize biomass and lipid concentration and minimize
the feeding cost. Thus, the objective function of the problem
can be written as

J =
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The constraint of control variables are0 ≤ u1 ≤ 2 and 0 ≤

u2 ≤ 10. We have applied the Pontryagin Minimum Principle
to the above optimal control problem, as follows.
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2) Optimal control law
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where the initial condition isS1(0) = S10, S2(0) = S20,
x(0) = x0, p(0) = p0, q(0) = q0; and the final condition
is λ1(tf ) = 0, λ2(tf ) = 0, λ3(tf ) = 0, λ4(tf ) = 0,
λ5(tf ) = 0.

However, the solution of state and costate differential equa-
tions are hard to find analytically. Thus we use DOTcvpSB to
solve this numerically.

C. Numerical Simulation

In this section, we discuss the numerical simulations of the
model. First, we perform simulation for the model without
controlling the feeding strategy. Second, we perform simula-
tion with the optimal control of the model. Then, we compare
the results of those simulations. Initial conditions that are used
in this numerical simulations areS1(0) = 29.3, S2(0) = 0.57,
x(0) = 10, p(0) = 2 and q(0) = 2. These initial conditions
describe the concentration of the state variables at timet0 = 0.
Table I shows the values of parameters in the model [4].

TABLE I
PARAMETERS OFM ICROALGAE GROWTH IN FED-BATCH BIOREACTOR

MODEL.

Parameter Value Unit
Yx/s 0.55 –
Yp/s 0.34 –
Yx/q 56.67 –
Yx/p 11.84 –
km 0.19 L/day

µmax 14.18 L/day
πmax 0.50 L/day
ρmax 0.93 L/day
KS1

0.14 gr/L
KS2

8.45 gr/L
Kq 0.0041 gr/L
si
1

0.6 gr/L
si
2

40 gr/L
V 2.00 L

Figure 1 shows a simulation of the model without control-
ling the feeding strategy. In this case, the concentration of
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glycine, glucose, biomass, lipid, and nitrogen at the end of
cultivation, are 10.08 gr/L, -0.02 gr/L, 8.55 gr/L, 1.83 gr/L,
and 18.28 gr/L, respectively. Finally the value of objective
function is -22.59.

TABLE II
RESULTS OF THE CONTROLLED MICROALGAE GROWTH MODEL.

Weight
State variables

S1 S2 x p q J

C1 = 1, C2 = 1 0.100 0.10 11.49 0.81 17.18 -24.88
C1 = 1, C2 = 2 0.099 0.10 11.47 0.82 17.27 -24.61
C1 = 2, C2 = 2 0.100 0.10 11.49 0.81 17.18 -24.61
C1 = 2, C2 = 3 0.099 0.13 11.67 0.78 16.82 -24.20
C1 = 3, C2 = 2 0.099 0.10 11.49 0.81 17.18 -24.59

Figures 2 and 3 show a simulation of optimal control of
the model. By controlling the feeding strategy, we obtain the
concentration of glycine, glucose, biomass, lipid, and nitrogen
at the end of cultivation, which are 0.10 gr/L, 0.10 gr/L, 11.49
gr/L, 0.81 gr/L, and 17.18 gr/L, respectively. The value of
objective function is -24.88.

Fig. 1. Numerical solutions of the microalgae growth model without control-
ling the feeding strategy.

Figure 3 describes the optimal feeding strategy of the model.
The feeding rate is adjusted with respect to the problem
at hand. The optimal glycine feeding rate is constant 0.1
mL/day. The optimal glucose feeding rate is decreased from
0.81 mL/day, 0.71 mL/day, 0.63 mL/day, 0.56 mL/day, 0.50
mL/day, 0.43 mL/day, 0.34 mL/day, to 0.29 mL/day.

Figures 1-3 are obtained by choosingC1 = 1 andC2 = 1.
We present the results of the controlled model for some other
values ofC1 andC2 in Table II.

V. CONCLUSIONS

The solution of optimal control problem of microalgae
growth model can be formulated by Pontryagin Minimum
Principle, and simulated by DOTcvpSB. However, for some
values ofC1 and C2, the numerical simulation shows the
decrease of biomass concentration. It implies that the values
of control weight on objective function effect the optimization
result.

Fig. 2. Numerical solutions of the microalgae growth model with optimal
feeding strategy.

Fig. 3. Figure 3. Optimal feeding strategy of the microalgaegrowth model.
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