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Convergence and Completeness in L2(P) with
respect to a Partial Metric

Annisa R. Soemarsono, Mahmud Yunus, Erna Apriliani, Adam Adam

Abstract—Metric spaces can be generalized to partial metric
spaces. Partial metric spaces have a unique concept related to
a distance. In usual case, there is no distance from two same
points. But, we can obtain the distance from two same points in
partial metric spaces. It means that the distance is not absolutely
zero. Using the basic concept of partial metric spaces, we find
analogy between metric spaces and partial metric spaces. We
define a metric dp formed by a partial metric p, with applying
characteristics of metric and partial metric. At the beginning,
we implement the metric dp to determine sequences in L2(P ).
We then ensure the convergence and completeness in L2[a, b]
can be established in L2(P ). In this study, we conclude that the
convergence and completeness in L2[a, b] can be established in
L2(P ) by constructing a partial metric p2 induced by a metric
dp.

Index Terms—Completeness, Convergence, Partial Metric.

I. INTRODUCTION

METRIC spaces can be generalized to some spaces.
Partial metric space is one such form of the gener-

alization with implementing properties of metric spaces. A
concept of partial metric space was first demonstrated by
Matthews in 1994 [1]. Matthews described that the distance
of two same points is not absolutely zero. By constructing the
characteristics of metric and partial metric, Matthews found
that a partial metric can generate a metric. Matthews defined
a function composed by a partial metric and proved that the
function satisfying all properties as a metric. It is an analogy
between metric spaces and partial metric spaces. The results
of Matthews’s research motivated Heckmann [2] to extend the
concepts of partial metric. In a partial metric space, Heckmann
constructed some sequences. Then, Heckmann add a set P
presenting a partially ordered set to establish sequences in
a partial metric space. Waszkiewicz [3] later continues the
study about partial metric space especially regarding the role
of partially ordered set. The concept of partially ordered set
is also used by Han, et al [4] to construct partially metrizable
spaces. In the other hand, Wu and Yue [5] explore partially
ordered set of formal balls in fuzzy partial metric spaces.

In 2013, Kadak, et al [6] determine some sequences accord-
ing to the concept of partial metric related to partial ordering.
Their research is based on recent studies given by [1], [2]
and [7]. The results of Kadak, et al’s research represented that
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convergence in metric space needed to guarantee convergence
in partial metric space. Hereafter, Esi, et al [8] investigate
the properties of metric and partial metric spaces to develop
convergence concept on partial metric spaces. We use a
common metric dp to ensure convergence in a metric space.
We initially define a partial metric, called p, to induce a metric
dp. Therefore, we get to maintain the convergence based on
partial metric space concept.

There are some complete metric spaces. One of them is
space L2[a, b]. Sequences in the space is assured to converge
[9]. In this study, we identify that convergence in space L2[a, b]
can guarantee convergence in space L2(P ) regarding to a
partial metric induced by a metric dp. Furthermore, we ensure
that space L2(P ) is a complete partial metric space.

II. PRELIMINARIES
A. Partial Metric Space

A concept of partial metric spaces first introduced by
Matthews [1]. In a partial metric, a distance from a point
to itself need not be zero. Concepts of partial metric spaces
are derived from concepts of metric spaces. There is a bit
difference between metric and partial metric spaces. Given
two points, x and y, which x = y. The distance d(x, y)
is absolutely zero in the case of metric space. This term is
not necessarily hold in the case of partial metric space. A
principle of partial metric can be constructed using that term.
The principle states that the distance of two points, p(x, y), is
not absolutely zero although the two points are same, notated
by x = y. Matthews [1] then extended metric axioms to
determine partial metrics.

Definition 1. Given a function named p on a nonempty set
X . The function p defined by p : X×X → R+∪{0} is called
a partial metric if for x, y, z ∈ X ,
(P1) x = y if and only if p(x, x) = p(x, y) = p(y, y);
(P2) p(x, x) ≤ p(x, y);
(P3) p(x, y) = p(y, x); and
(P4) p(x, z) ≤ p(x, y) + p(y, z)− p(y, y).

A partial metric space (X, p) is a pair in which X is a
nonempty set and p is a partial metric on X .

An example of partial metric commonly used is a function
p(x, y) = max{x, y}, for all x, y ∈ R+ ∪ {0} with p : R+ ∪
{0}×R+∪{0} → R+∪{0}. We use the common partial metric
to enquire that generalization of metric can be presented into
a partial metric.

B. Metric and Partial Metric
An analogy between metrics and partial metrics can be

constructed. Partial metric spaces are generalization of metric
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spaces. In order to guarantee that some metric’s characteristics
are still valid in partial metric space, an analogy between
metric and partial metric is needed. A partial metric p(x, y) =
max{x, y} forming a function, called dp, describes an analogy
of metric and partial metric as presented on Definition 2.

Definition 2. A function dp is defined on a nonempty set X
with dp : X ×X → R for all x, y ∈ X

dp (x, y) = 2p (x, y)− p (x, x)− p (y, y) ,

which p is a partial metric.
A proof that the function dp is a metric on a nonempty set

X is given by [1].
Theorem 1. A function dp is defined on a nonempty set X

with dp : X ×X → R for all x, y ∈ X ,

dp (x, y) = 2p (x, y)− p (x, x)− p (y, y) . (1)

If p is a partial metric on X , then the function dp is a metric
on X .

A distance of two points can be presented as a function
dp(x, y) = |x−y|. Convergence and completeness in a partial
metric space can be assured using an analogy of metric and
partial metric.

C. Partially Ordered Set

A partially ordered set is defined by Matthews [1] consid-
ering the principles of partial metric spaces.

Definition 3. A pair (X,⊑) is noted as partially ordered set
(poset). Set X is a nonempty set and notation ⊑ is represented
as a partial ordering on X . In partial metric spaces with each
partial metric p : X ×X → R+ ∪ {0}, a binary relation ⊑p

is defined over X . For all x, y ∈ X , a relation x ⊑p y is
satisfied if and only if p(x, x) = p(x, y).

Based on Definition 3, Matthews [1] proves that a binary
relation ⊑p is a partial ordering in the case of partial metric
spaces with each partial metric p. It is shown by Theorem 2.

Theorem 2. If ⊑p is a binary relation in partial metric space
(X, p), then the binary relation ⊑p is a partial ordering for
each partial metric p.

Proof: It can be shown using the three properties below
that binary relation ⊑p for all partial metric p forms a partial
ordering:

(i) Reflexivity: x ⊑p y for x, y ∈ X;
(ii) Antisymmetry: Equation x = y is satisfied for x, y ∈ X

when x ⊑p y and y ⊑p x;
(iii) Transitivity: Relation x ⊑p z is satisfied for x, y, z ∈ X

when x ⊑p y and y ⊑p z.

Matthews [1] also defines max{a, b} (or min{a, b}) as a
partial metric over the nonnegative reals. A partial ordering
for the partial metric is notated as ⊑max (or ⊑min). A relation
[a, b] ⊑p [c, d] is satisfied in the concept of intervals if and
only if [c, d] is a subset of [a, b].

D. Space L2[a, b]

Space L2[a, b] is a complete metric space. In the space, for
all f, g ∈ L2[a, b], the metric d : L2[a, b] × L2[a, b] → R
defined as follow [9]:

d (f, g) =

(∫ b

a

|f (x)− g (x)|2 dx

)1

2
. (2)

Space L2[a, b] is the completion of metric space C[a, b]. From
(2), we have that the metric d in space L2[a, b] represents the
distance of two functions in the usual case.

E. Space (C [a, b] , p1)

Kadak, et al [6] define a partial metric in the space C[a, b].
The partial metric is induced by metric dp.

Proposition 1. Let f, g ∈ C[a, b]. If the distance of two
functions in space C[a, b] represented as the distance function
p1 : C[a, b]× C[a, b] → R+ ∪ {0} defined by

p1 (f, g) =

∫ b

a

dp (f (x) , g (x)) dx, (3)

then the distance function p1 is a partial metric in the space
C[a, b].

Space (C[a, b], p1) is an incomplete partial metric space.
From Part D, we know that space L2[a, b] is the completion
of space C[a, b] refers to a metric d. Furthermore, space L2(P )
is the completion of space C[a, b] refers to a partial metric.
Notice that a metric dp induce the partial metric.

III. RESULTS AND DISCUSSION
We describe some steps and theorems to identify the conver-

gence and completeness in L2 (P ) regarding a partial metric.
In this case, we define partially ordered set P with Lebesgue
measure of P , µ (P ) > 0. Convergence in L2 (P ) can be
ensured using the metric dp. The same way is also used to
ensure completeness of L2 (P ). Let p be a partial metric
inducing metric dp. We need to construct the sequences in
L2 (P ) before ensuring the convergence and completeness in
L2 (P ).

A. Space L2(P )

Based on the research of Kadak, et al [6], we can construct
the function space L2 (P ) using the metric dp. From Theorem
1, we get dp(x, y) = 2p(x, y) − p(x, x) − p(y, y). We then
define the metric dp in L2 (P ) using the same concept for
constructing the metric dp in Theorem 1. Therefore, we obtain
that metric dp in L2 (P ) denoted as dp(f, g) = 2p(f, g) −
p(f, f) − p(g, g). After that, we construct the sequences in
L2 (P ). The sequences are defined as the sequences of F with
F is a set of all function sequences. It is shown by:

L2 (P ) :=

{
f = fi ∈ F :

∫
P

[dp(fi, 0)]
2 dx < ∞

}
. (4)

From (4), we can see how the form of sequences in L2 (P ).
It is a reference to construct a partial metric in L2 (P ). The
partial metric can be useful for investigating the convergence
and completeness in L2 (P ).
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B. Partial Metric in L2 (P )

We define a function in L2 (P ). A metric dp induces
the function. In Theorem 3, we prove that a partial metric
constructed in L2 (P ) can be yield by the function. Moreover,
metric in L2 (P ) can be presented as the function

Theorem 3. Let P be a partially ordered set. If for all
f, g ∈ L2(P ), the function p2 : L2 (P )×L2 (P ) → R+∪{0}
defined as

p2(f, g) =

(∫
P

[dp(f, g)]2 dx

)1

2
. (5)

then the function p2 is a partial metric as well as a metric in
L2(P ).

Proof: We prove the theorem using the partial metric
axioms shown by Definition 1 and metric axioms presented by
Teschl [9]. At the beginning of this paper, we know that partial
metrics are generalization of metrics. Consequently, some of
partial metric axioms are generalization of metric axioms. It is
shown by the axiom (P1) which is generalization of the axiom
(D2). Moreover, the axiom (P2) is generalization of the axiom
(D1), whereas the axiom (P4) is generalization of the axiom
(D4). Furthermore, there is an axiom of partial metric which
has the same description with an axiom of metric. The partial
metric axiom is (P3) and the metric axiom is (D3).

Therefore, we prove the theorem as follow:

• It is shown that the function p2 satisfies the axiom (P1)
and (D2).
(⇒)
If f = g, then p2 (f, f) = p2 (f, g) = p2(g, g) = 0.
(⇐)
Since Lebesgue measure of P , µ (P ) > 0, therefore if
p2 (f, f) = p2 (f, g) = p2(g, g), then f = g.

• It is described that the function p2 satisfies the axiom (P2)
and (D1). In the other word, it is proved that p2(f, f) =
0 ≤ p2(f, g).

• It is explained that the function p2 satisfies the axiom
(P3) and (D3).

• It is proved that the function p2 satisfies the axiom (P4)
and (D4). It is enough to show that p2(f, h) ≤ p2(f, g)+
p2(g, h).

The function p2 defined by (5) satisfies partial metric axioms
and metric axioms. It means that the function is a partial metric
as well as a metric in L2 (P ).

Theorem 3 shows that the function p2 on (5) states a
partial metric induced by metric dp. Metric dp represents a
usual metric. If the distance function in the space L2[a, b]
is described as the quadratic integral from the distance of
two functions in usual case (the difference of two functions).
Then, the distance function in the space L2 (P ) is represented
as the quadratic integral of metric dp. In this paper, we
choose a metric dp in a function space C[a, b]. In the space
C[a, b], the distance function is defined as a metric d with
d(f, g) = max

x∈[a,b]
|f(x)− g(x)|. The metric d is a usual metric

described the distance between two functions in general.
Therefore, the metric d can be denoted as the metric dp.

From Theorem 1, a partial metric p can induce a metric dp.
In the proposition below, we define a partial metric p related
to a partially ordered set P . Any closed interval set can be
determined as partially ordered set in the space L2 (P ).

Proposition 2. Let P ⊆ R is any closed interval set. If the
function p : P × P → R+ ∪ {0} for all [s, t], [u, v] ∈ P , is
defined by

p ([s, t] , [u, v]) = max{|s− u|, |t− v|} (6)

then the function p denotes a partial metric on P ⊆ R.
Proof: We use partial metric axioms given by Definition

1 for proving the proposition

(P1) It is shown that
(⇒)
If [s, t] = [u, v], then
p ([s, t] , [s, t]) = p([s, t], [u, v]) = p([u, v], [u, v]).
(⇐)
If p ([s, t] , [s, t]) = p ([s, t] , [u, v]) = p([u, v], [u, v]),
then [s, t] = [u, v].

(P2) It is explained that p([s, t], [s, t]) ≤ p([s, t], [u, v]).
(P3) It is identified that p([s, t], [u, v]) = p([u, v], [s, t]).
(P4) It is proved that

p ([s, t] , [m,n]) ≤ p ([s, t] , [u, v]) + p([u, v], [m,n])−
p([u, v], [u, v]).
We consider some conditions for proving the inequality.
The conditions is presented as follow:

• For [s, t] and [m,n], we obtain four criteria:
a) [s, t] ∩ [m,n] = ∅
b) [s, t] ∩ [m,n] ̸= ∅, with [s, t] ̸⊆ [m,n] and

[m,n] ̸⊆ [s, t]
c) [s, t] ⊆ [m,n]
d) [m,n] ⊆ [s, t]

• For [s, t] and [u, v], we have four criteria:
a) [s, t] ∩ [u, v] = ∅
b) [s, t]∩[u, v] ̸= ∅, with [s, t] ̸⊆ [u, v] and [u, v] ̸⊆

[s, t]
c) [s, t] ⊆ [u, v]
d) [u, v] ⊆ [s, t]

• For [u, v] and [m,n], we get four criteria:
a) [u, v] ∩ [m,n] = ∅
b) [u, v] ∩ [m,n] ̸= ∅, with [u, v] ̸⊆ [m,n] and

[m,n] ̸⊆ [u, v]
c) [u, v] ⊆ [m,n]
d) [m,n] ⊆ [u, v]

We let x = [s, t], y = [u, v], and z = [m,n] for doing
an investigation in a closed interval set P ⊆ R.

The result is the function p on (6) represents a partial metric.

In Proposition 1, we have that a metric on P can be
expressed as the function p given by (6). It is shown by Moore,
et al [10]. Consequently, the partial metric on Proposition 2
can be represented as the usual metric in space C[a, b]. It
presents that there is a partial metric as well as a metric. On
Proposition 3, we prove that the usual metric in space C[a, b]
is a partial metric.
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Proposition 3. In a partially ordered set P , a partial metric
p : P × P → R+ ∪ {0}, for all [s, t], [u, v] ∈ P , defined as

p ([s, t] , [u, v]) = max {|s− u| , |t− v|} (7)

is represented as a usual metric in space C[a, b] with
d : C[a, b]× C[a, b] → R, for all f, g ∈ C [a, b],

d (f, g) = max
x∈[a,b]

{|f(x)− g(x)|}, (8)

such that the metric d is a partial metric in space C[a, b].
Proof: From Proposition 2, we have proved that the

function p defined by (7) is a partial metric. Then, we show
that the partial metric can be represented as a usual metric in
space C[a, b]. First, we get two functions from the set of real
numbers R denoted as f(x) and g(x). For all x ∈ [a, b], the
function f(x) defined by f : [a, b] → R and the function g(x)
defined by g : [a, b] → R. On (7), we have that s, t, u, v ∈ R
present values. Therefore, they can represent the values of the
function f and g. Let s = f(a), t = f(b), u = g(a) and
v = g(b), such that (7) becomes

p ([f (a) , f (b)] , [g (a) , g (b)])

=max {|f (a)− g (a)| , |f (b)− g (b)|}. (9)

We can rewrite (9) as

p ([f (a) , f (b)] , [g (a) , g (b)])

= max
x∈[a,b]

{|f (x)− g (x)|}. (10)

From (10), we can identify that the function p given by (7)
is a usual metric in space C[a, b] described on (8). After that,
we investigate that the function p defined by (8) satisfies the
partial metric axioms.

In Proposition 4, we prove that the closed interval set P
with the partial ordering ⊑p is a partially ordered set
P = (P,⊑p) which p given by (7).

Proposition 4. A closed interval set P with the partial
ordering vp denoted as (P,⊑p), is a partially ordered set
for a partial metric p : P × P → R+ ∪ {0}, which for all
[s, t], [u, v] ∈ P defined by

p ([s, t] , [u, v]) = max {|s − u| , |t − v|}. (11)

Proof: We first show that p, the function on (11), is a
partial metric. On Proposition 2, we have proved that the
function denotes a partial metric. Next, we identify that the
closed interval set given by Proposition 4 is a partially ordered
set. We identify it using the three properties on the proof of
Theorem 2.

Proposition 4 describes that for any partial metric, both the
partial metric which is not a metric and the partial metric as
well as a metric, satisfies the partial ordering ⊑p.

In this part, we have explained about the partial metric in
space L2 (P ) in accordance with a partially ordered set. Then,
we examine the convergence in space L2 (P ) using the partial
metric on (5).

C. Convergence in Space L2 (P )

We first consider the convergence in space L2[a, b]. A
sequence {fn} in space L2[a, b] is said to converge if for all
ε > 0, there is n0 ∈ N such that for all n > n0, satisfies

dp (fn, f) =

(∫
P

[|fn(x)− f(x)|]2 dx

)1

2
< ε (12)

On (12), we denote fn = {fni
} and f = {fi} for all i ∈ N.

From the equation, the metric dp describes the distance of two
functions in usual case.

Next, we show that for every ε > 0, there is n0 ∈ N such
that p2(fn, f) < ε for all n > n0 with f ∈ L2 (P ) and P is
a partially ordered set. From (5), we get that a partial metric
p2 is a quadratic integral of the metric dp. In this paper, we
choose the metric dp induced by a partial metric p on (11).
The metric dp in this study has the same representation with
the metric dp in space L2[a, b]. Therefore, we obtain that

p2(fn, f) =

(∫
P

[dp(fn, f)]
2 dx

)1

2
< ε. (13)

Equation (13) explains that the sequence {fn} converges in
space L2 (P ). It is a consequence of the convergence in space
L2[a, b]. This is presented on Corollary 1.

Corollary 1. A sequence {fn} in space L2 (P ) converges
to f ∈ L2 (P ) if for every ε > 0, there is n0 ∈ N such that
p2(fn, f) < ε for all n > n0.

After ensuring the convergence in space L2 (P ), we then
identify the completeness of space L2 (P ).

D. Completeness of Space L2 (P )

We consider the completeness of space L2[a, b] to investi-
gate the completeness of L2 (P ). Space L2[a, b] is a complete
metric space. It means that every Cauchy sequence converges
in the space. Let for each i ∈ N, {fn} = {fni} be any
Cauchy sequence in space L2[a, b]. Then, we obtain that for
every ε > 0, there is n0 ∈ N such that dp(fn, fm) < ε for
all n,m > n0. As consequence of the existence of sequence
{fn} in space L2[a, b], we get that the sequence converges to
f = {fi} ∈ L2[a, b]. In the other words, the sequence satisfies
(12).

We then ensure that space L2 (P ) is a complete space
with respect to a partial metric p2. Let {fn} be any Cauchy
sequence in space L2 (P ). Then, we obtain that for every
ε > 0, there is n0 ∈ N such that for all n,m > n0,

p2 (fn, fm) =

(∫
P

[dp (fni, fmi)]
2
dx

)1

2
< ε. (14)

On (14), we get for each fixed i ∈ N that for all n,m > n0,

dp (fni, fmi) < ε. (15)

From (15), we know that the sequence {fn} is also in space
L2[a, b]. By considering (14), we have for all n,m > n0 that∫

P

[dp (fni, fmi)]
2
dx < ε2. (16)
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If we take for any n > n0 from (16), then we obtain for
m → ∞ that ∫

P

[dp (fni, fi)]
2
dx < ε2. (17)

We rewrite (17) as

(∫
P

[dp (fni, fi)]
2
dx

)1

2
< ε. (18)

Equation (18) describes that for every ε > 0, there is n ∈ n0,
such that for n > n0 yields

p2(fn, f) =

(∫
P

[dp (fni, fi)]
2
dx

)1

2
< ε. (19)

From (19), we get that the Cauchy sequence {fn} converges
to f . After that, we identify that f ∈ L2 (P ).

We realize that the metric dp on (18) has the same repre-
sentation with the metric dp given by (12). Consequently, we
obtain that fn−f = {fni−fi} ∈ L2 (P ). By using Minkowski
inequality, we have

(∫
P

[dp (fi, 0)]
2
dx

)1

2

≤
(∫

P

[dp (fi, fni)]
2
dx

)1

2
+

(∫
P

[dp (fni, 0)]
2
dx

)1

2

< ∞. (20)

Equation (20) explains that f = {fi} ∈ L2 (P ). From the
investigation we have done, we obtain a corollary about the
completeness of space L2 (P ).

Corollary 2. Space L2 (P ) is a complete space with repect
to a partial metric p2 defined as

p2(f, g) =

(∫
P

[dp (f, g)]
2
dx

)1

2

for all f, g ∈ L2[a, b].

IV. CONCLUSION

We can construct sequences in space L2 (P ) using a metric
dp. We also have presented that sequences converge in space
L2 (P ) with respect to a partial metric p2 induced by a metric
dp. By considering the completeness of space L2[a, b], we
obtain that space L2 (P ) is a complete partial metric space.
It concludes that the convergence and completeness in space
L2[a, b] can be established in space L2 (P ).
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[8] A. Esi, E. Hanaç, and A. Esi, “Difference convergence on partial
metric space,” in AIP Conference Proceedings, vol. 2086, no. 1. AIP
Publishing LLC, 2019, p. 030016.

[9] G. Teschl, “Topics in real and functional analysis,” unpublished, avail-
able online at http://www. mat. univie. ac. at/˜ gerald, 1998.

[10] R. E. Moore, R. B. Kearfott, and M. J. Cloud, Introduction to interval
analysis. SIAM, 2009.


