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Further Results on Ph-supermagic Trees
Tita Khalis Maryati, Otong Suhyanto, and Fawwaz Fakhrurrozi Hadiputra

Abstract—Let G be a simple, finite, and undirected graph.
An H-supermagic labeling is a bijective map f : V (G) ∪
E(G) → {1, 2, · · · , |V (G)| + |E(G)|} in which f(V ) =
{1, 2, · · · , |V (G)|} and there exists an integer m such that
w(H ′) =

∑
v∈V (H′) f(v) +

∑
e∈E(H′) f(e) = m, for every

subgraph H ′ ∼= H in G. In this paper, we determine some classes
of trees which have Ph-supermagic labeling.

Index Terms—Magic labeling, subgraph covering, trees.

I. INTRODUCTION

LET G be a simple, finite, and undirected graph. Let two
isomorphic graphs G and G′ are denoted by G ∼= G′.

A graph G is called a tree if it does not contain any cycles.
An amalgamation of a collection of graphs {Gi} is obtained
by picking a vertex to be a terminal in each of Gi, and
identifying the graphs by their terminals [1]. We use the nota-
tion Amal{(Gi), c} for an amalgamation which is obtained
from identifying all c from each Gi. For convenience, let
[a, b] = {i | i ∈ N, a ≤ i ≤ b}.
Let H be a subgraph of G. If the graph G has a property
that each edges of G belongs to at least one subgraph
isomorphic to H in G, we say G admits H-covering. A
bijection f : V (G) ∪ E(G) → [1, |V (G) + E(G)|] is
called H-magic labeling if there exists an integer m such
that w(H ′) =

∑
v∈V (H′) f(v) +

∑
e∈E(H′) f(e) = m, for

every subgraph H ′ ∼= H of G. If for every vertex v ∈ V ,
f(v) ∈ [1, |V (G)|], then f may also be called H-supermagic.
The problem is to determine whether a certain graph admits
H-magic or H-supermagic labeling.

Some known results are found for the subgraph H is isomor-
phic to either a star K1,n, a cycle Cn, and a path Pn. Gutiérrez
and Lladó [2] have found that K1,n is K1,h-supermagic if
h ∈ [1, n] and Kn,n is K1,n-magic. Roswitha and Baskoro [3]
have determined some double stars, caterpillars, fire crackers,
and banana trees to be K1,h-magic for some h. Moreover,
some known graphs which are Ch-magic (or supermagic) for
some h are found which include wheels, windmills [4], fans,
books, ladders [5], and jahangirs [6].

Furthermore, some results of Ph-magic (or supermagic)
graphs are also determined. Gutiérrez and Lladó [2] found
that paths are Ph-supermagic as follows.

Theorem 1: Let n ≥ 3 be an integer. The path Pn is Ph-
supermagic for any h ∈ [2, n].

Next, let h ≥ 3 be an integer. We define grass graph to be
the class graph of trees that admits Ph-covering such that all
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subgraphs Ph in the graph contain identical vertex, denoted
by Rb(h). A center of grass graph is the identical vertex of
every subgraph Ph. We may write an equivalent theorem by
[7] as follows.

Theorem 2: Let h ≥ 2 be an integer. Any graph belongs to
Rb(h) is Ph-supermagic.

The definition of Rb(h) may be used to find a radius of a
tree graph. A radius of a tree graph r(G) may be defined as
r(G) = m − 1 where m is the least number h such that the
graph admits Ph-covering.

Known results are discussing not only sufficient conditions
of Ph-magic graphs but also necessary conditions of Ph-magic
graphs. One of the results is determined by Maryati et al. [8]
stating that Ph-magic graphs cannot contain a subgraph Hn

constructed as follows. Let n ≥ 1 be an integer. Obtain two
disjoint odd paths P2n+1 and add one more edge such that the
center of those two graphs are adjacent.

Theorem 3: Let n be a positive integer and h ∈ [1, n]. If G
is a Ph+2-magic graph, then G is Hn-free.

Some other Ph-magic (or supermagic) graphs are shackles
and amalgamations [1], disjoint union of graphs and amalga-
mations [9], and cycles with some pendants [8]. Variants for
this problem can be seen in [10], [11] and for more information
of H-magic (or supermagic) labeling, please consult to [12].
In this paper, we would like to investigate more about Ph-
supermagic tree graphs.

II. MAIN RESULTS

Denote ecv to be an edge which belongs to a path from v
to c and incident to v. We start this section by introducing an
useful lemma.

Lemma 1: Let h ≥ 2 be an integer, and G be a Ph-magic
tree with a magic labeling f where t = |V (G)|. If there exists
a subgraph H which belongs to Rb(h) with c as a center,
such that every pair vi ∈ H and its incident edge ecvi satisfy
f(vi)+f(ecvi) = 2t+1 then for arbitrary H ′ which belongs to
Rb(h) with a center c′, G′ ∼= Amal{(G,H ′), c′} is Ph-magic.
Also, if G is Ph-supermagic, then G′ is Ph-supermagic.

Proof: Denote n = |V (H ′)| − 1, or equivalent of total
vertices in H ′ without its center. Let f ′ be a labeling of G′.
Then, for every v ∈ V (G) and e ∈ E(G), label as follows

f ′(v) = f(v), f ′(e) = f(e) + 2n.

Take all the unused labels {t+1, t+2, ..., t+2n} and create
a partition into 2-sets, sets consists of two elements, such that
the sum of the elements of each 2-set is 2t + 2n + 1. Then,
use all these 2-sets to label all {vi, ecvi

} in any order so that

f ′(vi) + f ′(ecvi) = 2t+ 2n+ 1.

with f ′(vi) < f ′(ecvi).
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By evaluating, for every subgraph Ph we got w(Ph) = (h−
1)(2t+ 2n+ 1) + f ′(c).

This lemma enable us to identify the center of any Rb(h) to
a terminal vertex of Ph-magic graph in order to produce other
Ph-magic (or supermagic) graph. The terminal vertex chosen
for this study is mostly a pendant.

Theorem 4: Let h ≥ 3 be an integer and let H belongs to
Rb(h). The graph G ∼= Amal{(H,Ph+1, Ph+1), c} with c is
a center of H and a pendant of each Ph+1 is Ph-supermagic.

Proof: Denote V (G) = V (H) ∪ {ui, vi | i ∈ [1, h + 1]}
with u1 = v1 = c and E(G) = E(H) ∪ {uiui+1, vivi+1 | i ∈
[1, h]}. Let t = |V (G)|. Define a labeling f as follows

f(u2) = 5, f(cu2) = 2t− 4,

f(uh+1) = 1, f(uhuh+1) = 2t− 1,

f(v2) = 6, f(cv2) = 2t− 5,

f(vh+1) = 2, f(vhvh+1) = 2t− 3,

f(c) = 4.

Compile the unused labels {3}∪ {7, ..., t}∪ {t+1, ..., 2t−
6} ∪ {2t − 2} and create a partition of 2-sets such that the
sum of the elements of each 2-sets is 2t + 1. Then, use all
these 2-sets to label all unlabeled pairs {vi, ecvi}, {ui, e

c
ui
} and

{q, ecq} for q ∈ H in any order such that

f(vi) + f(ecvi) = f(ui) + f(ecui
) = f(q) + f(ecq) = 2t+ 1.

with f(vi) < f(ecvi), f(ui) < f(ecui
), and f(q) < f(ecq). By

Lemma 1, G is Ph-supermagic.
An example of a tree for Theorem 4 can be seen in Figure

1.

Fig. 1. A P5-supermagic tree.

Theorem 5: Let h ≥ 3 be an integer and let H belongs
to Rb(h). The graph G ∼= Amal{(H,Ph+1, Ph+1, Ph+1), c}
with c is a center of H and a pendant of each Ph+1 is Ph-
supermagic.

Proof: Denote V (G) = V (H) ∪ {ui, vi, xi | i ∈ [1, h +
1]} with u1 = v1 = x1 = c and E(G) = E(H) ∪
{uiui+1, vivi+1, xixi+1 | i ∈ [1, h]}. Let t = |V (G)|. Define
a labeling f as follows

f(u2) = 2, f(cu2) = 2t− 1,

f(uh+1) = 7, f(uhuh+1) = 2t− 6,

f(v2) = 4, f(cv2) = 2t− 3,

f(vh+1) = 6, f(vhvh+1) = 2t− 5,

f(x2) = 5, f(cx2) = 2t− 4,

f(xh+1) = 1, f(xhxh+1) = 2t− 2,

f(c) = 3.

Compile the unused labels and create a partition of 2-
sets such that the sum of the elements of each 2-sets is
2t + 1. Then, use all these 2-sets to label all unlabeled pairs

{ui, e
c
ui
}, {vi, ecvi}, {xi, e

c
xi
} and {q, ecq} for q ∈ H in any

order such that

f(vi) + f(ecvi) = f(ui) + f(ecui
)

=f(xi) + f(ecxi
) = f(q) + f(ecq) = 2t+ 1.

with f(vi) < f(ecvi), f(ui) < f(ecui
), f(xi) < f(ecxi

) and
f(q) < f(ecq). By Lemma 1, G is Ph-supermagic.

Theorem 6: Let h ≥ 3 be an integer and let H belongs
to Rb(h). The graph G ∼= Amal{(H,Ph+1, Ph+2), c} with c
is a center of H and a pendant both of Ph+1 and Ph+2 is
Ph-supermagic.

Proof: Denote V (G) = V (H) ∪ {ui, vi | i ∈ [1, h +
1]} ∪ {vh+2} with u1 = v1 = c and E(G) = E(H) ∪
{uiui+1, vivi+1 | i ∈ [1, h]} ∪ {vh+1vh+2}. Let t = |V (G)|.
Define a labeling f as follows

f(u2) = 6, f(cu2) = 2t− 5,

f(uh+1) = 1, f(uhuh+1) = 2t− 2,

f(v2) = 8, f(cv2) = 2t− 7,

f(v3) = 5, f(v2v3) = 2t− 4,

f(vh+1) = 3, f(vhvh+1) = 2t− 6,

f(vh+2) = 7, f(vh+1vh+2) = 2t− 3,

f(c) = 4.

Compile the unused labels and create a partition of 2-
sets such that the sum of the elements of each 2-sets is
2t + 1. Then, use all these 2-sets to label all unlabeled pairs
{vi, ecvi}, {ui, e

c
ui
} and {q, ecq} for q ∈ H in any order such

that

f(vi) + f(ecvi) = f(ui) + f(ecui
) = f(q) + f(ecq) = 2t+ 1.

with f(vi) < f(ecvi), f(ui) < f(ecui
), and f(q) < f(ecq). By

Lemma 1, G is Ph-supermagic.
Before we continue to the next theorem, we need define to

define P+
n . Let y be one of a vertices in a path Ph which is

adjacent to a pendant. For n ≥ 4, a graph P+
n is obtained

from a path Pn which the vertex y is attached with one more
pendant. A pendant z of P+

n is called a furthest pendant if it
is not adjacent to y.

Theorem 7: Let h ≥ 3 be an integer and let H of
order at least two belongs to Rb(h). The graph G ∼=
Amal{(H,P+

n , Pn), c} with c is a center of H , and a (furthest)
pendant of both Ph and P+

h is Ph-supermagic.
Proof: Since the order of H is at least two, there exists

a subgraph K2 in H such that V (H) = V (H ′) ∪ {x} and
E(H) = E(H ′) ∪ {cx} for some other H ′ which belongs to
Rb(h). Denote V (G) = V (H)∪{ui, vi | i ∈ [1, h+1]}∪{u+

h }
with u1 = v1 = c and E(G) = E(H) ∪ {uiui+1, vivi+1 | i ∈
[1, h]}∪{uhu

+
h }. Let t = |V (G)| and r = |V (H)|−2. Define

a labeling f as follows

f(ui) = h− i+ 2, i ∈ [1, h],

f(uiui+1) = 2t− h+ i, i ∈ [1, h− 1],

f(uh+1) = h+ 2, f(uhuh+1) = 2t− h,

f(u+
h ) = h+ 3, f(uhu

+
h ) = 2t− h− 1,

f(v2) = t− r, f(cv2) = t+ r + 1,
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f(vh+1) = 1, f(vhvh+1) = t+ h+ r + 1.

Compile the unused labels and create a partition of 2-sets
such that the sum of the elements of each 2-sets is 2t + 1.
Then, use all these 2-sets to label all unlabeled pairs {vi, ecvi},
{ui, e

c
ui
}, and {q, ecq} for q ∈ H in any order such that

f(vi) + f(ecvi) = f(ui) + f(ecui
) = f(q) + f(ecq) = 2t+ 1

with f(vi) < f(ecvi), f(ui) < f(ecui
), and f(q) < f(ecq). By

Lemma 1, G is Ph-supermagic.
An example of a tree in Theorem 7 is illustrated in Figure

2.

Fig. 2. A P4-supermagic tree.

Theorem 8: Let h ≥ 2 be an integer and let H,H ′

belongs to Rb(h). If G′ ∼= Amal{(H,Ph), c}, where c is
a center of H and a pendant of Ph, then the amalgamation
G ∼= Amal{(G′, H ′), c′} where c′ is a center of H ′ and the
other pendant of Ph is Ph-supermagic.

Proof: First, we need to prove G′ ∼= Amal{(H,Ph), c} is
Ph-supermagic with a magic labeling satisfying the condition
of the lemma. Denote V (G′) = V (H)∪{ui|i ∈ [1, h]} where
c = u1, p = uh and E(G′) = E(H)∪{uiui+1|i ∈ [1, h−1]}.
Let t = |V (G′)|. Label the vertices and edges as follows

f(ui) = t− i+ 1, f(uiui+1) = t+ i.

Then, take {1, 2, 3, ..., t−h}∪{t+h, t+2, ..., 2t−1}, and
create a partition of 2-sets such that the sum of the elements
of each 2-set is 2t. Use all these 2-sets to label all {vi, ecvi}
in any order so that

f(vi) + f(ecvi) = 2t

where f(vi) < f(ecvi). By evaluating, for every Ph we got
w(Ph) = (h− 1)(2t) + f(c).

We have shown that G′ ∼= Amal{(H,Ph), c} is Ph-
supermagic with a magic labeling f . It can be seen that there
exists a subgraph H∗ of G′ which belongs to Rb(h) with
uh as a center. This subgraph and the magic labeling f are
satisfying Lemma 1, hence by applying the lemma, we have
Amal{(G′, H ′), c′} with c′ = uh is Ph-supermagic.

Furthermore, the next result is applicable for h = 3.
Theorem 9: Let H1, H2 be graphs which belongs to Rb(3).

Then, Amal{(H1, H2), p} where p is a pendant of both H
and H ′ is P3-supermagic.

Proof: Let |V (Hk)| = tk and ck are the centers of Hk

for k ∈ {1, 2}. The proof is divided into two cases based on
d(ci, p).
Case 1: d(c1, p) = d(c2, p)
Let

A = [1, t1 − 2] ∪ [t1 + 2t2, 2(t1 + t2)− 3],

B = [t1 + 2, t1 + 2t2 − 3]

Create a partition for A and B into 2-sets such that the sum
of the elements of each 2-set is 2(t1 + t2 − 1) for A and
2(t1 + t2)− 1 for B. Construct a f labeling as follows

f(p) = t1,

f(c1) = t1 + 1,

f(c2) = t1 − 1,

f(ec1p ) = t1 + 2t2 − 2,

f(ec2p ) = t1 + 2t2 − 1.

Use all 2-sets from A to label all {v, ec1v } for v ∈ H1 in any
order so that

f(v) + f(ec1v ) = 2(t1 + t2 − 1)

with f(v) < f(ec1v ). Again, use all 2-sets from B to label all
{u, ec2u } for u ∈ H2 in any order so that

f(u) + f(ec2u ) = 2(t1 + t2)− 1

where f(u) < f(ec2u ). Therefore, every vertices have smaller
labels from every edges. Furthermore, for every P3 we got
f(P3) = 4(t1 + t2) + 6.

Case 2: d(c1, p) ̸= d(c2, p)
Without loss of generality, d(c1, p) < d(c2, p). Let

A = [1, t1 − 3] ∪ [t1 + 2t2 + 1, 2(t1 + t2)− 3],

B = [t1 − 1, t1 + t2 − 4] ∪ [t1 + t2 + 1, t1 + 2t2 − 2]

Create a partition for each A and B into 2-sets such that the
sum of the elements of each 2-set is 2(t1 + t2 − 1) for A and
2(n1 + n2)− 3 for B. Construct a f labeling as follows

f(p) = t1 − 2,

f(c1) = t1 + t2 − 3,

f(c2) = t1 + t2 − 1,

f(ec1p ) = t1 + 2t2,

f(ec2p ) = t1 + 2t2 − 1

Choose v1 ∈ H1 other than c1 or p. Continue labels as follows

f(v1) = n1 + n2 − 2,

f(ec1v1) = t1 + t2.

Use all 2-sets from A to label all {v, ec1v } for v ∈ H1, v ̸= v1
in any order so that

f(v) + f(ec1v ) = 2(t1 + t2 − 1)

with f(v) < f(ec1v ). Again, use all 2-sets from B to label all
{u, ec2u } for u ∈ H2 in any order so that

f(u) + f(ec2u ) = 2(t1 + t2)− 3

with f(u) < f(ec2u ). Therefore, every vertices have smaller
labels from every edges. Furthermore, for every P3 we got
f(P3) = 5(t1 + t2)− 7.

Hence, the theorem holds.



INTERNATIONAL JOURNAL OF COMPUTING SCIENCE AND APPLIED MATHEMATICS, VOL. 9, NO. 2, NOVEMBER 2023 35

REFERENCES

[1] T. Maryati, A. Salman, E. Baskoro, J. Ryan, and M. Miller, “On
h-supermagic labelings for certain shackles and amalgamations of a
connected graph,” Utilitas Mathematica, vol. 83, p. 333, 2010.

[2] A. Gutiérrez and A. Lladó, “Magic coverings,” Journal of combinatorial
mathematics and combinatorial computing, vol. 55, p. 43, 2005.

[3] M. Roswitha and E. T. Baskoro, “H-magic covering on some classes of
graphs,” in AIP Conference Proceedings, vol. 1450, no. 1. American
Institute of Physics, 2012, pp. 135–138.
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