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Further Results on FPj-supermagic Trees

Tita Khalis Maryati, Otong Suhyanto, and Fawwaz Fakhrurrozi Hadiputra

Abstract—Let G be a simple, finite, and undirected graph.
An H-supermagic labeling is a bijective map f : V(G) U
E(G) = {L,2,---,[V(G) + [E(G)]} in which f(V) =
{1,2,---,|V(G)|} and there exists an integer m such that
w(H') = X, ey f(0) + Xecpmn fe) = m, for every
subgraph H’' = H in G. In this paper, we determine some classes
of trees which have P} -supermagic labeling.

Index Terms—Magic labeling, subgraph covering, trees.

I. INTRODUCTION

ET G be a simple, finite, and undirected graph. Let two

isomorphic graphs G and G’ are denoted by G = G.
A graph G is called a tree if it does not contain any cycles.
An amalgamation of a collection of graphs {G;} is obtained
by picking a vertex to be a terminal in each of G;, and
identifying the graphs by their terminals [1]. We use the nota-
tion Amal{(G;),c} for an amalgamation which is obtained
from identifying all ¢ from each ;. For convenience, let
[a,b) ={i | i e N,a <i<b}.
Let H be a subgraph of G. If the graph G has a property
that each edges of G belongs to at least one subgraph
isomorphic to H in G, we say G admits H-covering. A
bijection f : V(G) U E(G) — [L,|V(G) + E(G)]] is
called H-magic labeling if there exists an integer m such
that w(H') = 3, cv ) f(V) + Xeepmr fe) = m, for
every subgraph H' = H of G. If for every vertex v € V,
f(v) € [1,|V(G)]], then f may also be called H-supermagic.
The problem is to determine whether a certain graph admits
H-magic or H-supermagic labeling.

Some known results are found for the subgraph H is isomor-
phic to either a star K ,,, a cycle C,,, and a path P,,. Gutiérrez
and Lladé [2] have found that K, is K j-supermagic if
h € [1,n] and K, ,, is K1 ,,-magic. Roswitha and Baskoro [3]
have determined some double stars, caterpillars, fire crackers,
and banana trees to be K ,-magic for some h. Moreover,
some known graphs which are C',-magic (or supermagic) for
some h are found which include wheels, windmills [4], fans,
books, ladders [5], and jahangirs [6].

Furthermore, some results of FPj-magic (or supermagic)
graphs are also determined. Gutiérrez and Llad6 [2] found
that paths are Pj-supermagic as follows.

Theorem 1: Let n > 3 be an integer. The path P, is Pj-
supermagic for any h € [2,n].

Next, let & > 3 be an integer. We define grass graph to be
the class graph of trees that admits Pj-covering such that all
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subgraphs P} in the graph contain identical vertex, denoted
by Rb(h). A center of grass graph is the identical vertex of
every subgraph P,. We may write an equivalent theorem by
[7] as follows.

Theorem 2: Let h > 2 be an integer. Any graph belongs to
Rb(h) is Pp-supermagic.

The definition of Rb(h) may be used to find a radius of a
tree graph. A radius of a tree graph 7(G) may be defined as
r(G) = m — 1 where m is the least number h such that the
graph admits P, -covering.

Known results are discussing not only sufficient conditions
of Ppn-magic graphs but also necessary conditions of P}-magic
graphs. One of the results is determined by Maryati et al. [§]
stating that Pj-magic graphs cannot contain a subgraph H,
constructed as follows. Let n > 1 be an integer. Obtain two
disjoint odd paths P51 and add one more edge such that the
center of those two graphs are adjacent.

Theorem 3: Let n be a positive integer and h € [1,n]. If G
is a Pjyo-magic graph, then G is H,-free.

Some other P,-magic (or supermagic) graphs are shackles
and amalgamations [1], disjoint union of graphs and amalga-
mations [9], and cycles with some pendants [8]. Variants for
this problem can be seen in [10], [11] and for more information
of H-magic (or supermagic) labeling, please consult to [12].
In this paper, we would like to investigate more about Pj-
supermagic tree graphs.

II. MAIN RESULTS

Denote e, to be an edge which belongs to a path from v
to ¢ and incident to v. We start this section by introducing an
useful lemma.

Lemma 1: Let h > 2 be an integer, and G be a Pj-magic
tree with a magic labeling f where ¢ = |V (G)|. If there exists
a subgraph H which belongs to Rb(h) with ¢ as a center,
such that every pair v; € H and its incident edge ej satisfy
J(vi)+ f(e5,) = 2t+1 then for arbitrary H’ which belongs to
Rb(h) with a center ¢/, G' = Amal{(G, H'), '} is P,-magic.
Also, if G is Pj,-supermagic, then G’ is P-supermagic.

Proof: Denote n = |V(H')| — 1, or equivalent of total
vertices in H' without its center. Let f’ be a labeling of G’.
Then, for every v € V(G) and e € E(G), label as follows

f'(w) = f(v), f'(e) = f(e) + 2n.

Take all the unused labels {t+1,t+2,...,t+2n} and create
a partition into 2-sets, sets consists of two elements, such that
the sum of the elements of each 2-set is 2¢ + 2n + 1. Then,
use all these 2-sets to label all {v;, e, } in any order so that

Fvi) + f/(eS,) =2t +2n + 1.
with f(v;) < f'(eS).
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By evaluating, for every subgraph P, we got w(FPy) = (h—
D2t +2n+1)+ f'(c). [

This lemma enable us to identify the center of any Rb(h) to
a terminal vertex of Pj,-magic graph in order to produce other
Pp-magic (or supermagic) graph. The terminal vertex chosen
for this study is mostly a pendant.

Theorem 4: Let h > 3 be an integer and let H belongs to
Rb(h). The graph G = Amal{(H, Pp11, Ph11),c} with ¢ is
a center of H and a pendant of each P is Pj-supermagic.

Proof: Denote V(G) = V(H) U {u;,v; | i € [1,h+ 1]}
with u; = v; = ¢ and E(G) = E(H) U {uiuiH,viviH | xS
[1,h]}. Let t = |V(G)|. Define a labeling f as follows

f(ug) =5, fleug) =2t —4
flupsr) =1, flupupir) =2t — 1,
f(v2) =6, flevg) =2t =5,
f(vn+1) =2, f(onvp1) =2t =3
fle) =4
Compile the unused labels {3} U{7,..., ¢} U{t+1,...,2t —

6} U {2t — 2} and create a partition of 2-sets such that the
sum of the elements of each 2-sets is 2¢ + 1. Then, use all
these 2-sets to label all unlabeled pairs {v;, e}, {u;, e, } and
{g, €5} for ¢ € H in any order such that

flui) + fleg,) = fui) + f(er,) = f(@) + fleg) = 2t + 1.

with f(vi) < f(eg,), fui) < f(eg,), and f(q) < f(eg). By
Lemma 1, G is Pp-supermagic.

An example of a tree for Theorem 4 can be seen in Figure
1.

1 35 3 3¢ 7 30 8 29 5 33 4 31 6 28 9 27 10 26 11 33

12 55 13 34 1447 [,™N0 19 18
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15 23

Fig. 1. A Ps-supermagic tree.

Theorem 5: Let h > 3 be an integer and let H belongs
to Rb(h). The graph G = Amal{(H, Ph+1, Pht1, Pht1), ¢}
with ¢ is a center of H and a pendant of each P} is Pj-
supermagic.

Proof: Denote V(G) = V(H
1]} with w3 = v1 = a1 =

YU {ug,vi,m | 1€ [1,h+
c and E(G) = E(H) U
hl

{witit1, V41, xiq1 | ¢ € [1,R]}. Let t = |V(G)|. Define

a labeling f as follows

f(ug) =2, fleug) =2t — 1,

flunsr) =1, f(ununyr) =2t =6,

flvg) =4, flevy) =2t — 3,

f(vns1) =6, f(vnvny1) =2t =5,

f(z2) =5, f(exe) = 2t — 4,

f(xhe1) =1, f(@rzner) =2t =2,
fle)=3.

Compile the unused labels and create a partition of 2-
sets such that the sum of the elements of each 2-sets is
2t + 1. Then, use all these 2-sets to label all unlabeled pairs

{ui, €5, ) {vis e, b {5, } and {g,eg} for ¢ € H in any
order such that

flui) + f(er,) = flui) + fleg,)

=f(x:) + fleg,) = f(q) + fleg) =2t + 1.
with f(v) < f(e5,), Flui) < f(e5), f(z:) < f(eS,) and
flg) < f(eg). By Lemma 1, G is Ph supermagic. [ ]

Theorem 6: Let h > 3 be an integer and let H belongs
to Rb(h). The graph G =2 Amal{(H, Py+1, Pni2),c} with ¢
is a center of H and a pendant both of P4, and Pjo is
Pp,-supermagic.

Proof: Denote V(G) = V(H) U {u;,v; | i € [1,h +
1]} U {vp42} with w3 = v1 = ¢ and E(G) = E(H) U
{Uiui+1,11ﬂ/i+1 | 1€ [1, h]} U {vh+1vh+2}. Lett = |V(G)|
Define a labeling f as follows

f(uz) =6, f(eug) =2t — 5,
flung1) =1, fupunyr) =2t =2,
f(v2) =38, fleva) =2t =17,
f(vs) =5, flugvg) =2t — 4,
f(vny1) =3, f(vnhvpgr) =2t — 6,
f(vht2) =T, f(Uh1vn42) =2t =3,
fle)=4

Compile the unused labels and create a partition of 2-
sets such that the sum of the elements of each 2-sets is
2t 4+ 1. Then, use all these 2-sets to label all unlabeled pairs
{viseg, b {ui, e, } and {q,eg} for ¢ € H in any order such
that

flui) + f(er,) = fui) + f(eq,) = (@) + fleg) = 2t + 1.

with f(v;) < f(e5,), flu;) < f(e5,), and f(q) < f(eS). By
Lemma 1, G is Pj-supermagic.

Before we continue to the next theorem, we need define to
define P;. Let y be one of a vertices in a path P, which is
adjacent to a pendant. For n > 4, a graph P,j is obtained
from a path P,, which the vertex y is attached with one more
pendant. A pendant z of P is called a furthest pendant if it
is not adjacent to y.

Theorem 7: Let h > 3 be an integer and let H of
order at least two belongs to Rb(h). The graph G =
Amal{(H, P\, P,), c} with cis a center of H, and a (furthest)
pendant of both P, and P,j is Pj-supermagic.

Proof: Since the order of H is at least two, there exists
a subgraph K in H such that V(H) = V(H') U {z} and
E(H) = E(H') U {cz} for some other H' which belongs to
Rb(h). Denote V(G) = V(H)U{u;,v; | i € [1,h+1]}U{u;}
with u; = v1 = c and E(G) = E(H) U {u;ui41,vivi41 | 1 €
[1,h]}U{upu)}. Let t = |V(G)| and r = |V (H)| — 2. Define
a labeling f as follows

flu)=h—i+2, € [1,h],
fujuipr) =2t — h +14, ze[l h—1],
fluns) =h+2, flunungr) =2t
f(uf) =h+3, (uhuh):2 -1,
flog)=t—r, flevy) =t +r+1,
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fonyr) =1,

Compile the unused labels and create a partition of 2-sets
such that the sum of the elements of each 2-sets is 2¢ + 1.
Then, use all these 2-sets to label all unlabeled pairs {v;, e, },
{ui, e, }, and {g,eg} for ¢ € H in any order such that

fui) + fler,) = fui) + fleq,) = f(a) + fleg) = 2t +1
with f(v;) < f(eg,), f(ui) < f(ef,). and f(q) < f(e7). By
u

Lemma 1, G is Pj-supermagic.
An example of a tree in Theorem 7 is illustrated in Figure

f(’l}hvh+1) =t+h+r+1.

2.

6 30 2 33 3 32 4 31 5 24 11 27 8 26 9 28 1

10 25 12743 Logg
Izg 253 17
7 13 9
20N\ 16
15

Fig. 2. A Pj-supermagic tree.

Theorem 8: Let h > 2 be an integer and let H, H’
belongs to Rb(h). If G' = Amal{(H, Py),c}, where c is
a center of H and a pendant of P, then the amalgamation
G = Amal{(G',H'),c'} where ¢’ is a center of H' and the
other pendant of P, is Pj-supermagic.

Proof: First, we need to prove G' = Amal{(H, P},), c} is
Pp,-supermagic with a magic labeling satisfying the condition
of the lemma. Denote V(G') = V(H)U{u;li € [1,h]} where
c=wu, p=uyand E(G") = E(H)U{uu;11li € [1,h—1]}.
Let t = |[V(G")|. Label the vertices and edges as follows

flug) =t —i+1, fluguipr) =t +1.

Then, take {1,2,3,....t —h}U{t+h,t+2,...,2t — 1}, and
create a partition of 2-sets such that the sum of the elements
of each 2-set is 2. Use all these 2-sets to label all {v;, e }
in any order so that

foi) + f(eg,) = 2t

where f(v;) < f(e. ). By evaluating, for every Pj, we got
w(Pn) = (h=1)(2t) + f(0).

We have shown that G' = Amal{(H, P,),c} is Py-
supermagic with a magic labeling f. It can be seen that there
exists a subgraph H* of G’ which belongs to Rb(h) with
up, as a center. This subgraph and the magic labeling f are
satisfying Lemma 1, hence by applying the lemma, we have
Amal{(G', H'"), '} with ¢ = uy, is Pj-supermagic.

Furthermore, the next result is applicable for h = 3.

Theorem 9: Let Hy, Hy be graphs which belongs to Rb(3).
Then, Amal{(H;, H2),p} where p is a pendant of both H
and H' is P3-supermagic.

Proof: Let |V (Hy)| = tr and ¢, are the centers of Hy,
for k € {1,2}. The proof is divided into two cases based on
d(ci, p).

Case 1: d(c1,p) = d(c2,Dp)
Let
A= [l,tl — 2] U [tl + 2t2,2(t1 + tz) — 3],

B = [t; + 2,t1 + 2t — 3]

Create a partition for A and B into 2-sets such that the sum
of the elements of each 2-set is 2(¢; + to — 1) for A and
2(t1 + t2) — 1 for B. Construct a f labeling as follows

f(p) =t1,
fler) =t +1,
fle2) =t1 -1,

Flesr) =1 + 2t5 — 2,
Flee) =ty +2ts — 1.

Use all 2-sets from A to label all {v, e} for v € Hy in any
order so that

f(0) + flet) = 2(t + 12 — 1)

with f(v) < f(eS'). Again, use all 2-sets from B to label all
{u, e} for u € Hy in any order so that

f(u) + flei?) = 2(t + t2) — 1

where f(u) < f(e¢?). Therefore, every vertices have smaller
labels from every edges. Furthermore, for every P; we got
f(P3) = 4(ty +t2) +6.

Case 2: d(c1,p) # d(c2,p)
Without loss of generality, d(c1,p) < d(ce,p). Let
A=[1t; = 3] U [ty + 2ty +1,2(t; +t2) — 3],
B = [tl —1,t1 + 1o —4]U [tl +to + 1,11 4 2to —2]

Create a partition for each A and B into 2-sets such that the
sum of the elements of each 2-set is 2(¢1 +t2 — 1) for A and
2(ny + ng) — 3 for B. Construct a f labeling as follows

f(p) = tl - 27
fler) =t1 +t2 =3,
fle2) =t +t2 — 1,

f(egl) =11 + 2o,
f(eff) = tl + 2t2 —1

(
(

Choose v; € H; other than ¢; or p. Continue labels as follows
f(’Ul) =n1 + no — 2,
f(ef}l) = tl + tg.

Use all 2-sets from A to label all {v,eS'} for v € Hy,v # v;
in any order so that

flo) + flegt) =2(t +12 = 1)

with f(v) < f(eS). Again, use all 2-sets from B to label all
{u,e2} for u € Hy in any order so that

flu) + fle) = 2(t +12) =3

with f(u) < f(e$?). Therefore, every vertices have smaller
labels from every edges. Furthermore, for every P; we got
f(P3) = 5(t1 + tQ) —17.

Hence, the theorem holds. [ |
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