Further Results on P_{h}-supermagic Trees

Tita Khalis Maryati, Otong Suhyanto, and Fawwaz Fakhrurrozi Hadiputra

Abstract

Let G be a simple, finite, and undirected graph. An H-supermagic labeling is a bijective map $f: V(G) \cup$ $E(G) \rightarrow\{1,2, \cdots,|V(G)|+|E(G)|\}$ in which $f(V)=$ $\{1,2, \cdots,|V(G)|\}$ and there exists an integer m such that $w\left(H^{\prime}\right)=\sum_{v \in V\left(H^{\prime}\right)} f(v)+\sum_{e \in E\left(H^{\prime}\right)} f(e)=m$, for every subgraph $H^{\prime} \cong H$ in G. In this paper, we determine some classes of trees which have P_{h}-supermagic labeling.

Index Terms-Magic labeling, subgraph covering, trees.

I. Introduction

LET G be a simple, finite, and undirected graph. Let two isomorphic graphs G and G^{\prime} are denoted by $G \cong G^{\prime}$. A graph G is called a tree if it does not contain any cycles. An amalgamation of a collection of graphs $\left\{G_{i}\right\}$ is obtained by picking a vertex to be a terminal in each of G_{i}, and identifying the graphs by their terminals [1]. We use the notation $\operatorname{Amal}\left\{\left(G_{i}\right), c\right\}$ for an amalgamation which is obtained from identifying all c from each G_{i}. For convenience, let $[a, b]=\{i \mid i \in \mathbb{N}, a \leq i \leq b\}$.
Let H be a subgraph of G. If the graph G has a property that each edges of G belongs to at least one subgraph isomorphic to H in G, we say G admits H-covering. A bijection $f: V(G) \cup E(G) \rightarrow[1,|V(G)+E(G)|]$ is called H-magic labeling if there exists an integer m such that $w\left(H^{\prime}\right)=\sum_{v \in V\left(H^{\prime}\right)} f(v)+\sum_{e \in E\left(H^{\prime}\right)} f(e)=m$, for every subgraph $H^{\prime} \cong H$ of G. If for every vertex $v \in V$, $f(v) \in[1,|V(G)|]$, then f may also be called H-supermagic. The problem is to determine whether a certain graph admits H-magic or H-supermagic labeling.
Some known results are found for the subgraph H is isomorphic to either a star $K_{1, n}$, a cycle C_{n}, and a path P_{n}. Gutiérrez and Lladó [2] have found that $K_{1, n}$ is $K_{1, h}$-supermagic if $h \in[1, n]$ and $K_{n, n}$ is $K_{1, n}$-magic. Roswitha and Baskoro [3] have determined some double stars, caterpillars, fire crackers, and banana trees to be $K_{1, h}$-magic for some h. Moreover, some known graphs which are C_{h}-magic (or supermagic) for some h are found which include wheels, windmills [4], fans, books, ladders [5], and jahangirs [6].
Furthermore, some results of P_{h}-magic (or supermagic) graphs are also determined. Gutiérrez and Lladó [2] found that paths are P_{h}-supermagic as follows.

Theorem 1: Let $n \geq 3$ be an integer. The path P_{n} is $P_{h^{-}}$ supermagic for any $h \in[2, n]$.

Next, let $h \geq 3$ be an integer. We define grass graph to be the class graph of trees that admits P_{h}-covering such that all

[^0]subgraphs P_{h} in the graph contain identical vertex, denoted by $R b(h)$. A center of grass graph is the identical vertex of every subgraph P_{h}. We may write an equivalent theorem by [7] as follows.
Theorem 2: Let $h \geq 2$ be an integer. Any graph belongs to $R b(h)$ is P_{h}-supermagic.

The definition of $R b(h)$ may be used to find a radius of a tree graph. A radius of a tree graph $r(G)$ may be defined as $r(G)=m-1$ where m is the least number h such that the graph admits P_{h}-covering.

Known results are discussing not only sufficient conditions of P_{h}-magic graphs but also necessary conditions of P_{h}-magic graphs. One of the results is determined by Maryati et al. [8] stating that P_{h}-magic graphs cannot contain a subgraph H_{n} constructed as follows. Let $n \geq 1$ be an integer. Obtain two disjoint odd paths $P_{2 n+1}$ and add one more edge such that the center of those two graphs are adjacent.
Theorem 3: Let n be a positive integer and $h \in[1, n]$. If G is a P_{h+2}-magic graph, then G is H_{n}-free.

Some other P_{h}-magic (or supermagic) graphs are shackles and amalgamations [1], disjoint union of graphs and amalgamations [9], and cycles with some pendants [8]. Variants for this problem can be seen in [10], [11] and for more information of H-magic (or supermagic) labeling, please consult to [12]. In this paper, we would like to investigate more about $P_{h^{-}}$ supermagic tree graphs.

II. Main Results

Denote e_{v}^{c} to be an edge which belongs to a path from v to c and incident to v. We start this section by introducing an useful lemma.

Lemma 1: Let $h \geq 2$ be an integer, and G be a P_{h}-magic tree with a magic labeling f where $t=|V(G)|$. If there exists a subgraph H which belongs to $R b(h)$ with c as a center, such that every pair $v_{i} \in H$ and its incident edge $e_{v_{i}}^{c}$ satisfy $f\left(v_{i}\right)+f\left(e_{v_{i}}^{c}\right)=2 t+1$ then for arbitrary H^{\prime} which belongs to $R b(h)$ with a center $c^{\prime}, G^{\prime} \cong \operatorname{Amal}\left\{\left(G, H^{\prime}\right), c^{\prime}\right\}$ is P_{h}-magic. Also, if G is P_{h}-supermagic, then G^{\prime} is P_{h}-supermagic.

Proof: Denote $n=\left|V\left(H^{\prime}\right)\right|-1$, or equivalent of total vertices in H^{\prime} without its center. Let f^{\prime} be a labeling of G^{\prime}. Then, for every $v \in V(G)$ and $e \in E(G)$, label as follows

$$
f^{\prime}(v)=f(v), \quad f^{\prime}(e)=f(e)+2 n
$$

Take all the unused labels $\{t+1, t+2, \ldots, t+2 n\}$ and create a partition into 2 -sets, sets consists of two elements, such that the sum of the elements of each 2 -set is $2 t+2 n+1$. Then, use all these 2 -sets to label all $\left\{v_{i}, e_{v_{i}}^{c}\right\}$ in any order so that

$$
f^{\prime}\left(v_{i}\right)+f^{\prime}\left(e_{v_{i}}^{c}\right)=2 t+2 n+1
$$

with $f^{\prime}\left(v_{i}\right)<f^{\prime}\left(e_{v_{i}}^{c}\right)$.

By evaluating, for every subgraph P_{h} we got $w\left(P_{h}\right)=(h-$ 1) $(2 t+2 n+1)+f^{\prime}(c)$.

This lemma enable us to identify the center of any $R b(h)$ to a terminal vertex of P_{h}-magic graph in order to produce other P_{h}-magic (or supermagic) graph. The terminal vertex chosen for this study is mostly a pendant.

Theorem 4: Let $h \geq 3$ be an integer and let H belongs to $R b(h)$. The graph $G \cong \operatorname{Amal}\left\{\left(H, P_{h+1}, P_{h+1}\right), c\right\}$ with c is a center of H and a pendant of each P_{h+1} is P_{h}-supermagic.

Proof: Denote $V(G)=V(H) \cup\left\{u_{i}, v_{i} \mid i \in[1, h+1]\right\}$ with $u_{1}=v_{1}=c$ and $E(G)=E(H) \cup\left\{u_{i} u_{i+1}, v_{i} v_{i+1} \mid i \in\right.$ $[1, h]\}$. Let $t=|V(G)|$. Define a labeling f as follows

$$
\begin{array}{rlrl}
f\left(u_{2}\right) & =5, & f\left(c u_{2}\right) & =2 t-4, \\
f\left(u_{h+1}\right) & =1, & f\left(u_{h} u_{h+1}\right) & =2 t-1, \\
f\left(v_{2}\right) & =6, & f\left(c v_{2}\right) & =2 t-5, \\
f\left(v_{h+1}\right) & =2, & f\left(v_{h} v_{h+1}\right) & =2 t-3, \\
f(c) & =4 . &
\end{array}
$$

Compile the unused labels $\{3\} \cup\{7, \ldots, t\} \cup\{t+1, \ldots, 2 t-$ $6\} \cup\{2 t-2\}$ and create a partition of 2 -sets such that the sum of the elements of each 2 -sets is $2 t+1$. Then, use all these 2 -sets to label all unlabeled pairs $\left\{v_{i}, e_{v_{i}}^{c}\right\},\left\{u_{i}, e_{u_{i}}^{c}\right\}$ and $\left\{q, e_{q}^{c}\right\}$ for $q \in H$ in any order such that

$$
f\left(v_{i}\right)+f\left(e_{v_{i}}^{c}\right)=f\left(u_{i}\right)+f\left(e_{u_{i}}^{c}\right)=f(q)+f\left(e_{q}^{c}\right)=2 t+1
$$

with $f\left(v_{i}\right)<f\left(e_{v_{i}}^{c}\right), f\left(u_{i}\right)<f\left(e_{u_{i}}^{c}\right)$, and $f(q)<f\left(e_{q}^{c}\right)$. By Lemma 1, G is P_{h}-supermagic.

An example of a tree for Theorem 4 can be seen in Figure 1.

Fig. 1. A P_{5}-supermagic tree.
Theorem 5: Let $h \geq 3$ be an integer and let H belongs to $R b(h)$. The graph $G \cong \operatorname{Amal}\left\{\left(H, P_{h+1}, P_{h+1}, P_{h+1}\right), c\right\}$ with c is a center of H and a pendant of each P_{h+1} is $P_{h^{-}}$ supermagic.

Proof: Denote $V(G)=V(H) \cup\left\{u_{i}, v_{i}, x_{i} \mid i \in[1, h+\right.$ 1] $\}$ with $u_{1}=v_{1}=x_{1}=c$ and $E(G)=E(H) \cup$ $\left\{u_{i} u_{i+1}, v_{i} v_{i+1}, x_{i} x_{i+1} \mid i \in[1, h]\right\}$. Let $t=|V(G)|$. Define a labeling f as follows

$$
\begin{array}{rlrl}
f\left(u_{2}\right) & =2, & f\left(c u_{2}\right) & =2 t-1, \\
f\left(u_{h+1}\right) & =7, & f\left(u_{h} u_{h+1}\right) & =2 t-6, \\
f\left(v_{2}\right) & =4, & f\left(c v_{2}\right) & =2 t-3, \\
f\left(v_{h+1}\right) & =6, & f\left(v_{h} v_{h+1}\right) & =2 t-5, \\
f\left(x_{2}\right) & =5, & f\left(c x_{2}\right) & =2 t-4, \\
f\left(x_{h+1}\right) & =1, & f\left(x_{h} x_{h+1}\right) & =2 t-2, \\
f(c) & =3 . &
\end{array}
$$

Compile the unused labels and create a partition of 2sets such that the sum of the elements of each 2 -sets is $2 t+1$. Then, use all these 2 -sets to label all unlabeled pairs
$\left\{u_{i}, e_{u_{i}}^{c}\right\},\left\{v_{i}, e_{v_{i}}^{c}\right\},\left\{x_{i}, e_{x_{i}}^{c}\right\}$ and $\left\{q, e_{q}^{c}\right\}$ for $q \in H$ in any order such that

$$
\begin{aligned}
f\left(v_{i}\right)+f\left(e_{v_{i}}^{c}\right) & =f\left(u_{i}\right)+f\left(e_{u_{i}}^{c}\right) \\
=f\left(x_{i}\right)+f\left(e_{x_{i}}^{c}\right) & =f(q)+f\left(e_{q}^{c}\right)=2 t+1 .
\end{aligned}
$$

with $f\left(v_{i}\right)<f\left(e_{v_{i}}^{c}\right), f\left(u_{i}\right)<f\left(e_{u_{i}}^{c}\right), f\left(x_{i}\right)<f\left(e_{x_{i}}^{c}\right)$ and $f(q)<f\left(e_{q}^{c}\right)$. By Lemma 1, G is P_{h}-supermagic.

Theorem 6: Let $h \geq 3$ be an integer and let H belongs to $R b(h)$. The graph $G \cong \operatorname{Amal}\left\{\left(H, P_{h+1}, P_{h+2}\right), c\right\}$ with c is a center of H and a pendant both of P_{h+1} and P_{h+2} is P_{h}-supermagic.

Proof: Denote $V(G)=V(H) \cup\left\{u_{i}, v_{i} \mid i \in[1, h+\right.$ 1] $\} \cup\left\{v_{h+2}\right\}$ with $u_{1}=v_{1}=c$ and $E(G)=E(H) \cup$ $\left\{u_{i} u_{i+1}, v_{i} v_{i+1} \mid i \in[1, h]\right\} \cup\left\{v_{h+1} v_{h+2}\right\}$. Let $t=|V(G)|$. Define a labeling f as follows

$$
\begin{array}{rlrl}
f\left(u_{2}\right) & =6, & f\left(c u_{2}\right) & =2 t-5, \\
f\left(u_{h+1}\right) & =1, & f\left(u_{h} u_{h+1}\right) & =2 t-2, \\
f\left(v_{2}\right) & =8, & f\left(c v_{2}\right) & =2 t-7, \\
f\left(v_{3}\right) & =5, & f\left(v_{2} v_{3}\right) & =2 t-4, \\
f\left(v_{h+1}\right) & =3, & f\left(v_{h} v_{h+1}\right) & =2 t-6, \\
f\left(v_{h+2}\right) & =7, & f\left(v_{h+1} v_{h+2}\right) & =2 t-3, \\
f(c) & =4 . &
\end{array}
$$

Compile the unused labels and create a partition of 2sets such that the sum of the elements of each 2 -sets is $2 t+1$. Then, use all these 2 -sets to label all unlabeled pairs $\left\{v_{i}, e_{v_{i}}^{c}\right\},\left\{u_{i}, e_{u_{i}}^{c}\right\}$ and $\left\{q, e_{q}^{c}\right\}$ for $q \in H$ in any order such that

$$
f\left(v_{i}\right)+f\left(e_{v_{i}}^{c}\right)=f\left(u_{i}\right)+f\left(e_{u_{i}}^{c}\right)=f(q)+f\left(e_{q}^{c}\right)=2 t+1
$$

with $f\left(v_{i}\right)<f\left(e_{v_{i}}^{c}\right), f\left(u_{i}\right)<f\left(e_{u_{i}}^{c}\right)$, and $f(q)<f\left(e_{q}^{c}\right)$. By Lemma 1, G is P_{h}-supermagic.
Before we continue to the next theorem, we need define to define P_{n}^{+}. Let y be one of a vertices in a path P_{h} which is adjacent to a pendant. For $n \geq 4$, a graph P_{n}^{+}is obtained from a path P_{n} which the vertex y is attached with one more pendant. A pendant z of P_{n}^{+}is called a furthest pendant if it is not adjacent to y.

Theorem 7: Let $h \geq 3$ be an integer and let H of order at least two belongs to $R b(h)$. The graph $G \cong$ $\operatorname{Amal}\left\{\left(H, P_{n}^{+}, P_{n}\right), c\right\}$ with c is a center of H, and a (furthest) pendant of both P_{h} and P_{h}^{+}is P_{h}-supermagic.

Proof: Since the order of H is at least two, there exists a subgraph K_{2} in H such that $V(H)=V\left(H^{\prime}\right) \cup\{x\}$ and $E(H)=E\left(H^{\prime}\right) \cup\{c x\}$ for some other H^{\prime} which belongs to $R b(h)$. Denote $V(G)=V(H) \cup\left\{u_{i}, v_{i} \mid i \in[1, h+1]\right\} \cup\left\{u_{h}^{+}\right\}$ with $u_{1}=v_{1}=c$ and $E(G)=E(H) \cup\left\{u_{i} u_{i+1}, v_{i} v_{i+1} \mid i \in\right.$ $[1, h]\} \cup\left\{u_{h} u_{h}^{+}\right\}$. Let $t=|V(G)|$ and $r=|V(H)|-2$. Define a labeling f as follows

$$
\begin{array}{rlrl}
f\left(u_{i}\right) & =h-i+2, & i \in[1, h], \\
f\left(u_{i} u_{i+1}\right) & =2 t-h+i, & i \in[1, h-1], & \\
f\left(u_{h+1}\right) & =h+2, & f\left(u_{h} u_{h+1}\right) & =2 t-h, \\
f\left(u_{h}^{+}\right) & =h+3, & f\left(u_{h} u_{h}^{+}\right) & =2 t-h-1, \\
f\left(v_{2}\right) & =t-r, & f\left(c v_{2}\right) & =t+r+1,
\end{array}
$$

$$
f\left(v_{h+1}\right)=1, \quad f\left(v_{h} v_{h+1}\right)=t+h+r+1
$$

Compile the unused labels and create a partition of 2-sets such that the sum of the elements of each 2 -sets is $2 t+1$. Then, use all these 2-sets to label all unlabeled pairs $\left\{v_{i}, e_{v_{i}}^{c}\right\}$, $\left\{u_{i}, e_{u_{i}}^{c}\right\}$, and $\left\{q, e_{q}^{c}\right\}$ for $q \in H$ in any order such that

$$
f\left(v_{i}\right)+f\left(e_{v_{i}}^{c}\right)=f\left(u_{i}\right)+f\left(e_{u_{i}}^{c}\right)=f(q)+f\left(e_{q}^{c}\right)=2 t+1
$$

with $f\left(v_{i}\right)<f\left(e_{v_{i}}^{c}\right), f\left(u_{i}\right)<f\left(e_{u_{i}}^{c}\right)$, and $f(q)<f\left(e_{q}^{c}\right)$. By Lemma $1, G$ is P_{h}-supermagic.

An example of a tree in Theorem 7 is illustrated in Figure 2.

Fig. 2. A P_{4}-supermagic tree.
Theorem 8: Let $h \geq 2$ be an integer and let H, H^{\prime} belongs to $\operatorname{Rb}(h)$. If $G^{\prime} \cong \operatorname{Amal}\left\{\left(H, P_{h}\right), c\right\}$, where c is a center of H and a pendant of P_{h}, then the amalgamation $G \cong \operatorname{Amal}\left\{\left(G^{\prime}, H^{\prime}\right), c^{\prime}\right\}$ where c^{\prime} is a center of H^{\prime} and the other pendant of P_{h} is P_{h}-supermagic.

Proof: First, we need to prove $G^{\prime} \cong \operatorname{Amal}\left\{\left(H, P_{h}\right), c\right\}$ is P_{h}-supermagic with a magic labeling satisfying the condition of the lemma. Denote $V\left(G^{\prime}\right)=V(H) \cup\left\{u_{i} \mid i \in[1, h]\right\}$ where $c=u_{1}, p=u_{h}$ and $E\left(G^{\prime}\right)=E(H) \cup\left\{u_{i} u_{i+1} \mid i \in[1, h-1]\right\}$. Let $t=\left|V\left(G^{\prime}\right)\right|$. Label the vertices and edges as follows

$$
f\left(u_{i}\right)=t-i+1, \quad f\left(u_{i} u_{i+1}\right)=t+i
$$

Then, take $\{1,2,3, \ldots, t-h\} \cup\{t+h, t+2, \ldots, 2 t-1\}$, and create a partition of 2 -sets such that the sum of the elements of each 2 -set is $2 t$. Use all these 2 -sets to label all $\left\{v_{i}, e_{v_{i}}^{c}\right\}$ in any order so that

$$
f\left(v_{i}\right)+f\left(e_{v_{i}}^{c}\right)=2 t
$$

where $f\left(v_{i}\right)<f\left(e_{v_{i}}^{c}\right)$. By evaluating, for every P_{h} we got $w\left(P_{h}\right)=(h-1)(2 t)+f(c)$.

We have shown that $G^{\prime} \cong \operatorname{Amal}\left\{\left(H, P_{h}\right), c\right\}$ is $P_{h^{-}}$ supermagic with a magic labeling f. It can be seen that there exists a subgraph H^{*} of G^{\prime} which belongs to $R b(h)$ with u_{h} as a center. This subgraph and the magic labeling f are satisfying Lemma 1 , hence by applying the lemma, we have $\operatorname{Amal}\left\{\left(G^{\prime}, H^{\prime}\right), c^{\prime}\right\}$ with $c^{\prime}=u_{h}$ is P_{h}-supermagic.

Furthermore, the next result is applicable for $h=3$.
Theorem 9: Let H_{1}, H_{2} be graphs which belongs to $R b(3)$. Then, $\operatorname{Amal}\left\{\left(H_{1}, H_{2}\right), p\right\}$ where p is a pendant of both H and H^{\prime} is P_{3}-supermagic.

Proof: Let $\left|V\left(H_{k}\right)\right|=t_{k}$ and c_{k} are the centers of H_{k} for $k \in\{1,2\}$. The proof is divided into two cases based on $d\left(c_{i}, p\right)$.
Case 1: $d\left(c_{1}, p\right)=d\left(c_{2}, p\right)$
Let

$$
\begin{gathered}
A=\left[1, t_{1}-2\right] \cup\left[t_{1}+2 t_{2}, 2\left(t_{1}+t_{2}\right)-3\right], \\
B=\left[t_{1}+2, t_{1}+2 t_{2}-3\right]
\end{gathered}
$$

Create a partition for A and B into 2 -sets such that the sum of the elements of each 2 -set is $2\left(t_{1}+t_{2}-1\right)$ for A and $2\left(t_{1}+t_{2}\right)-1$ for B. Construct a f labeling as follows

$$
\begin{gathered}
f(p)=t_{1} \\
f\left(c_{1}\right)=t_{1}+1 \\
f\left(c_{2}\right)=t_{1}-1 \\
f\left(e_{p}^{c_{1}}\right)=t_{1}+2 t_{2}-2 \\
f\left(e_{p}^{c_{2}}\right)=t_{1}+2 t_{2}-1
\end{gathered}
$$

Use all 2-sets from A to label all $\left\{v, e_{v}^{c_{1}}\right\}$ for $v \in H_{1}$ in any order so that

$$
f(v)+f\left(e_{v}^{c_{1}}\right)=2\left(t_{1}+t_{2}-1\right)
$$

with $f(v)<f\left(e_{v}^{c_{1}}\right)$. Again, use all 2-sets from B to label all $\left\{u, e_{u}^{c_{2}}\right\}$ for $u \in H_{2}$ in any order so that

$$
f(u)+f\left(e_{u}^{c_{2}}\right)=2\left(t_{1}+t_{2}\right)-1
$$

where $f(u)<f\left(e_{u}^{c_{2}}\right)$. Therefore, every vertices have smaller labels from every edges. Furthermore, for every P_{3} we got $f\left(P_{3}\right)=4\left(t_{1}+t_{2}\right)+6$.

Case 2: $d\left(c_{1}, p\right) \neq d\left(c_{2}, p\right)$
Without loss of generality, $d\left(c_{1}, p\right)<d\left(c_{2}, p\right)$. Let

$$
\begin{gathered}
A=\left[1, t_{1}-3\right] \cup\left[t_{1}+2 t_{2}+1,2\left(t_{1}+t_{2}\right)-3\right], \\
B=\left[t_{1}-1, t_{1}+t_{2}-4\right] \cup\left[t_{1}+t_{2}+1, t_{1}+2 t_{2}-2\right]
\end{gathered}
$$

Create a partition for each A and B into 2 -sets such that the sum of the elements of each 2 -set is $2\left(t_{1}+t_{2}-1\right)$ for A and $2\left(n_{1}+n_{2}\right)-3$ for B. Construct a f labeling as follows

$$
\begin{gathered}
f(p)=t_{1}-2 \\
f\left(c_{1}\right)=t_{1}+t_{2}-3 \\
f\left(c_{2}\right)=t_{1}+t_{2}-1 \\
f\left(e_{p}^{c_{1}}\right)=t_{1}+2 t_{2} \\
f\left(e_{p}^{c_{2}}\right)=t_{1}+2 t_{2}-1
\end{gathered}
$$

Choose $v_{1} \in H_{1}$ other than c_{1} or p. Continue labels as follows

$$
\begin{gathered}
f\left(v_{1}\right)=n_{1}+n_{2}-2 \\
f\left(e_{v_{1}}^{c_{1}}\right)=t_{1}+t_{2}
\end{gathered}
$$

Use all 2-sets from A to label all $\left\{v, e_{v}^{c_{1}}\right\}$ for $v \in H_{1}, v \neq v_{1}$ in any order so that

$$
f(v)+f\left(e_{v}^{c_{1}}\right)=2\left(t_{1}+t_{2}-1\right)
$$

with $f(v)<f\left(e_{v}^{c_{1}}\right)$. Again, use all 2-sets from B to label all $\left\{u, e_{u}^{c_{2}}\right\}$ for $u \in H_{2}$ in any order so that

$$
f(u)+f\left(e_{u}^{c_{2}}\right)=2\left(t_{1}+t_{2}\right)-3
$$

with $f(u)<f\left(e_{u}^{c_{2}}\right)$. Therefore, every vertices have smaller labels from every edges. Furthermore, for every P_{3} we got $f\left(P_{3}\right)=5\left(t_{1}+t_{2}\right)-7$.

Hence, the theorem holds.

REFERENCES

[1] T. Maryati, A. Salman, E. Baskoro, J. Ryan, and M. Miller, "On h-supermagic labelings for certain shackles and amalgamations of a connected graph," Utilitas Mathematica, vol. 83, p. 333, 2010.
[2] A. Gutiérrez and A. Lladó, "Magic coverings," Journal of combinatorial mathematics and combinatorial computing, vol. 55, p. 43, 2005.
[3] M. Roswitha and E. T. Baskoro, "H-magic covering on some classes of graphs," in AIP Conference Proceedings, vol. 1450, no. 1. American Institute of Physics, 2012, pp. 135-138.
[4] A. Lladó and J. Moragas, "Cycle-magic graphs," Discrete Mathematics, vol. 307, no. 23, pp. 2925-2933, 2007.
[5] P. Jeyanthi and P. Selvagopal, "Some c4-super magic graphs," Ars Combinatoria, vol. 111, pp. 129-136, 2013.
[6] M. Roswitha, E. T. Baskoro, T. K. Maryati, N. A. Kurdhi, and I. Susanti, "Further results on cycle-supermagic labeling," AKCE International Journal of Graphs and Combinatorics, vol. 10, no. 2, pp. 211-220, 2013.
[7] T. Maryati, E. Baskoro, and A. Salman, "P~ h-supermagic labelings of some trees," Journal of Combinatorial Mathematics and Combinatorial Computing, vol. 65, p. 197, 2008.
[8] T. Maryati, E. Baskoro, A. Salman, and Irawati, "On the path-(super) magicness of a cycle with some pendants," Utilitas Mathematica, vol. 96, pp. 319-330, 2015.
[9] T. K. Maryati, A. Salman, and E. T. Baskoro, "Supermagic coverings of the disjoint union of graphs and amalgamations," Discrete Mathematics, vol. 313, no. 4, pp. 397-405, 2013.
[10] A. T. Saputra, N. Narwen, and E. Effendi, "Pelabelan total titik ajaib super pada graf c (7, n)," Jurnal Matematika UNAND, vol. 10, no. 1, pp. 54-61, 2021.
[11] N. Inayah, M. I. S. Musti, and S. N. Masyithoh, "Another antimagic decomposition of generalized peterzen graph," InPrime: Indonesian Journal of Pure and Applied Mathematics, vol. 3, no. 2, pp. 92-100, 2021.
[12] J. A. Gallian, "A dynamic survey of graph labeling," Electronic Journal of combinatorics, vol. 1, no. DynamicSurveys, p. DS6, 2018.

[^0]: T. K. Maryati and O. Suhyanto are with Department of Mathematics Education, UIN Syarif Hidayatullah Jakarta, Indonesia e-mail: tita.khalis@uinjkt.ac.id, otong.suhyanto@uinjkt.ac.id.
 F. F. Hadiputra is with the Master Program of Mathematics, Institut Teknologi Bandung, Indonesia e-mail: fawwazfh@alumni.ui.ac.id.

 Manuscript received December 5, 2022; accepted August 24, 2023.

