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Abstract—Present study considers the mathematical modeling
of free convection boundary layer flow and heat transfer on
a solid sphere with viscous dissipation and thermal radiation
effects. The transformed partial differential equations are solved
numerically by using the Keller-box method. Numerical solutions
are obtained for the reduced Nusselt number, the local skin
friction coefficient, the velocity and temperature profiles. The
features of the flow characteristics for various values of the
Prandtl number, radiation parameter and Eckert number are
discussed. It is worth mentioning that the results are obtained
until x = 180◦. This is contrary to the previous report where
the separation boundary layer flow occurs after x = 120◦. The
results in this paper is important for the researchers working in
the area of boundary layer flow and this can be used as reference
and also as complement for comparison purposes in the future.

Index Terms—Mathematical modeling, free convection bound-
ary layer flow, solid sphere, viscous dissipation, thermal radiation.

I. INTRODUCTION

CONVECTION boundary layer flow on a solid sphere
becomes an important topic due to numerous engineering

and industrial applications such as the spherical storage tanks
and turbocharged ball bearing in automotives segment. The
efficiency of lubricating and heat removes process (convection)
in turbocharged unit definitely depends on design of the
turbocharged itself, the flow, conductivity, viscosity and the
characteristic of the fluid used.

The exact analysis on laminar free convection from a
sphere was first investigated by Chiang et al. [1]. Amato and
Tien [2] have worked on the experimental studies on free
convection heat transfer from isothermal spheres in water. The
experimental result obtained shows a very good agreement
with predictions of Acrivos theory. Geoola and Cornish [3]
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have solved the steady-state free convective from a solid sphere
using an extrapolated Gauss-Seidel method and obtained so-
lutions for Grashof number less than 50. Next, Huang and
Chen [4] have investigated this topic with the effects of suction
and blowing while Jafarpur and Yovanovich [5] introduced a
new analytical method in solving the laminar free convective
from isothermal sphere. This problem has been extended to
micropolar fluid by Nazar et al. [6], [7] by considering constant
wall temperature and constant surface heat flux. Shafie et
al. [8], Molla et al. [9] and Miraj et al. [10] studied the
effect of g-jitter on double diffusion, magnetohydrodynamic,
heat generation and thermal radiation on natural convection
flow on sphere, respectively. Salleh et al. [11] considered
the Newtonian heating as boundary conditions in this topic
before extended it with micropolar fluid [12]. Other type of
fluids considered including viscoelastic fluid which have been
covered by Kasim et al. [13] and recently by Abdul Gaffar
et al. [14] by considering the thermal radiation and heat
generation/absorption effects in porous media with constant
surface heat flux, respectively.

In considering the viscous dissipation effects, we know
that the viscous dissipation is the induced kinetic energy
converted into thermal energy. It is usually present in free
convection subjected to large deccelaration from high rotat-
ing speeds [15]. Soundalgekar [16] has solved the viscous
dissipation effects on unsteady free convective flow past an
infinite, vertical porous plate with constant suction analytically.
Vajravelu and Hadjinicolaou [17], Murthy and Singh [18],
Tunc and Bayazitoglu [19] and Chen [20] have investigated the
viscous dissipation effects on viscous fluid over a stretching
surface, non-Darcy regime, microtubes and vertical surface,
respectively. Many investigations have been made regarding
the viscous dissipation effects including from the works of
Olanrewaju et al. [21], Kameswaran et al. [22], RamReddy
et al. [23] and recently by Qasim and Noreen [24] and
Sheikholeslami et al. [25].

Based on the above contribution, the aim of present study
is to investigate the free convective boundary layer flow on
a solid sphere with viscous dissipation and thermal radiation
effects.

II. MATHEMATICAL FORMULATIONS

A solid sphere with radius a, which is heated to a constant
temperature Tw embedded in a viscous fluid with ambient tem-
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perature T∞ is considered. The model and physical coordinate
system is shown in Fig. 1.

Fig. 1. Coordinate system of the physical model.

The orthogonal coordinates of x̄ are measured along the
sphere surface, starting from the lower stagnation point (x̄ =
0) and ȳ measures the distance normal to the surface of the
sphere. We define r̄(x̄) = a sin(x̄/a) as the radial distance
from the symmetrical axis to the surface of the sphere. Based
on Nazar et al. [6] and Salleh et al. [11], the dimensional
governing equations are

∂

∂x̄
(r̄ū) +

∂
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(r̄v̄) = 0, (1)

ū
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subject to the boundary conditions

ū(x̄, 0) = v̄(x̄, 0) = 0, T (x̄, 0) = Tw,

ū(x̄,∞)→ 0, T (x̄,∞)→ T∞, (4)

where ū and v̄ are the velocity components along the x̄
and ȳ axes, respectively. µ is dynamic viscosity, ν is the
kinematic viscosity, g is the gravitt acceleration, k is the
thermal conductivity, β is the thermal expansion, T is the local
temperature, ρ is the fluid density and Cp is the specific heat
capacity at a constant pressure. The radiative heat flux qr can
be simplified as

qr = −4σ∗

3k∗
∂T 4

∂y
. (5)

where σ∗ and k∗ are the Stefan-Boltzmann constant and the
mean absorption coefficient, respectively. Using Rosseland

approximation [26], (3) is reduced to
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(6)
From the above equation, we can see that the effect of
radiations is to enhance the thermal diffusivity. If we define
NR =

4σ∗T 3
∞

kk∗ as the radiation parameter, then (6) becomes
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Note that thermal radiation effects are absent when NR = 0.
Next, we introduce the governing non-dimensional variables

r =
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a
, x =

x̄

a
, y = Gr1/4 ȳ

a
, u =

a

v
Gr−1/2ū,
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v
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, (8)

where Gr = gβ(Tw−T∞)a3

v2 is the Grashof number. Using
(8), (1), (2) and (7) becomes the following dimensionless
governing equations
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subject to the boundary conditions

u(x, 0) = v(x, 0) = 0, θ(x, 0) = 1, (12)
u(x,∞)→ 0, θ(x,∞)→ 0 (13)

Notice that Pr = νk
ρCp

is the Prandtl number and Ec =
ν2Gr

a2Cp(Tw−T∞) is an Eckert number. In order to solve (9)-(11),
the following functions are introduced

ψ = xr(x)f(x, y), θ = θ(x, y), (14)

where ψ is the stream function, which is defined as u = 1
r
∂ψ
∂y

and v = − 1
r
∂ψ
∂x that satisfies (9) and θ is the rescaled

dimensionless temperature of the fluid. If we substitute (14)
into (10)-(11), the following transformed partial differential
equations are obtained
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with boundary conditions

f(x, 0) = 0, ∂f∂y (x, 0) = 0, θ(x, 0) = 1
∂f
∂y (x,∞)→ 0, θ(0,∞)→ 0.

(17)
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The physical quantities of interest are the skin friction
coefficient Cf = τw

ρu2
∞

and the local Nusselt number Nux =
aqw

k(Tw−T∞) where the surface shear stress τw and the surface
heat flux qw are given by

τw = µ

(
∂ū

∂ȳ

)
ȳ=0

, qw = −k
(
∂T

∂ȳ

)
ȳ=0

. (18)

From (14) and (18), we obtain

CfGr
1/4 = x

∂2f

∂y2
(x, 0) and NuxGr−1/4 = −∂θ

∂y
(x, 0).

(19)

III. NUMERICAL METHOD

The partial differential equations (15) and (16) subject to
boundary conditions (17) are solved numerically using the
Keller-box method. This method is an implicit finite-difference
method in conjunction with Newton’s method for linearization.
This is a suitable method to solve parabolic partial differential
equations. The previous studies which use the Keller-box
method in solving boundary layer problems including Ishak
et al. [27], [28], Nazar et al. [29], [30] and Salleh et al. [31],
[32]. As described in the books by Na [33] and Cebeci and
Bradshaw [34], the Keller-box method consists of four main
steps:

1) reduce (15) and (16) to a first-order system,
2) write the difference equations using central differences,
3) linearize the resulting algebraic equations by Newton’s

method, and write them in the matrix-vector form,
4) solve the linear system by the block tridiagonal elimi-

nation technique.

IV. RESULTS AND DISCUSSIONS

Equations (15)-(16) with boundary conditions (17) are
solved with three parameters considered namely the Prandtl
number Pr, radiation parameter NR and Eckert number Ec.
Keller-box method is used to solve this problem. The boundary
layer thickness y∞ = 12 and step size ∆y = 0.02 are used
in obtaining the numerical results. It is worth mentioning that
the numerical results obtained are not limited until x = 120◦

as reported previously by Huang and Chen [4], Nazar et al.
[6] and Salleh et al. [11]. The solution is obtained to the end
of sphere (x = 180◦). Table 1 shows the comparison values
with previous published results. We found that the results are
in a good agreement. Furthermore we believe that Keller-box
method is proven to be very efficient to solve the convective
boundary layer problems involving reduced partial differential
equations.

Figures 2 and 3 show the variation of reduced skin friction
coefficient CfGr1/4 against x with various values of Pr, Ec
and NR, respectively. From both figures, we can see that the
increment of x results in the increment of CfGr1/4 in the
middle of sphere surface before decreasing CfGr

1/4 ≈ 0 at
the end of sphere.

Figures 4 and 5 illustrate the variation of reduced Nusselt
number NuxGr−1/4 against x with various values of Pr, Ec
and NR, respectively. We can see that NuxGr−1/4 in Figs.
4 and 5 is decreasing w.r.t. x. From Fig. 4, it seems that

TABLE I
COMPARISON VALUES OF NuxGr−1/4 WITH PREVIOUS PUBLISHED

RESULTS FOR VARIOUS VALUES OF x.

x
Huang and Nazar et Salleh et PresentChen [4] al. [6] al. [11]

0◦ 0.4574 0.4576 0.4576 0.4576
10◦ 0.4563 0.4565 0.4565 0.4565
20◦ 0.4532 0.4533 0.4533 0.4533
30◦ 0.4480 0.4480 0.4481 0.4480
40◦ 0.4407 0.4405 0.4406 0.4406
50◦ 0.4312 0.4308 0.4310 0.4310
60◦ 0.4194 0.4198 0.4195 0.4195
70◦ 0.4053 0.4046 0.4053 0.4053
80◦ 0.3886 0.3879 0.3886 0.3886
90◦ 0.3694 0.3684 0.3692 0.3692
100◦ 0.3470 0.3469
110◦ 0.3216 0.3215
120◦ 0.2925 0.2925
130◦ 0.2594
140◦ 0.2216
150◦ 0.1795
160◦ 0.1265
170◦ 0.0712
180◦ 0.0045

Fig. 2. Variation of CfGr
1/4 against x with various values of Pr and Ec

when NR = 1.

when Pr increases, the value of NuxGr−1/4 also increases,
which physically means that bigger value of Pr contributes
to the enhancement of convective heat transfer process. Next,
the increment on Ec implies the reduction on the value of
NuxGr

−1/4. Also, the Ec effect is more pronounced with
bigger value of Pr. This is due to the large kinetic energy
offered from large Pr then converted to the thermal energy
which enhance the conduction effects. From Fig. 5, the in-
crease of NR gives the reduction in NuxGr−1/4. The effect of
changes in NR is the most pronounced at the stagnation region
(x = 0). Furthermore, we found that all set of parameters give
NuxGr

−1/4 ≈ 0, which physically means that no convection
or the conduction process occurs at the end of sphere.

Finally, Figs. 6, 7, 8 and 9 display the temperature θ(y)
and velocity profiles f ′(y) for various values of Pr and NR,
respectively. From Fig. 6, observe that the increase of Pr
results in the decrease of boundary layer thickness. This is
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Fig. 3. Variation of CfGr
1/4 against x with various values of NR when

Pr = 0.7 and Ec = 0.1.

Fig. 4. Variation of NuxGr−1/4 against x with various values of Pr and
Ec when NR = 1.

due to a decrease of thermal diffusivity, which leads to the
reduction in energy ability that reduces the thermal boundary
layer thickness as Pr increases. Meanwhile, the increase
of NR enhances the boundary layer thickness. The velocity
profiles in Fig. 8 suggest that the increase of Pr reduces the
velocity of the fluid and the velocity gradient which results
in the decrease of skin friction coefficients. The situation is
contrary with NR in Fig. 9. Boundary layer thickness increases
as NR increases. Furthermore, it is worth mentioning that the
Ec does not have any effect on θ(y) and f ′(y). It is clear
from (15) and (16) that at stagnation region (x = 0), Ec is
terminated from the equations.

V. CONCLUSIONS

In this paper, the mathematical modeling of free convection
boundary layer flow on solid sphere with viscous dissipation
and thermal radiation effects has been solved numerically. We
have shown how the Prandtl number Pr, radiation parameter

Fig. 5. Variation of NuxGr−1/4 against x with various values of NR when
Pr = 0.7 and Ec = 0.1.

Fig. 6. Temperature profiles θ(y) for various values of Pr when NR = 1
and Ec = 0.1.

NR and Eckert number Ec affect the values of the reduced
Nusselt number and reduced skin friction coefficient as well
as the velocity and temperature profiles.

As a conclusion, the increase of Pr results in the increase of
reduced Nusselt number while reduced skin friction coefficient
decreases. Pr gives huge effects to the flow compared to Ec.
Conversely, the increase of NR enhances the reduced skin fric-
tion coefficient while the reduced Nusselt number decreases.
Furthermore, the increase of Ec gives small increment on
the reduced skin friction coefficient but decrease the reduced
Nusselt number. Note that Ec is more pronounced with the
large value of Pr.

Next, the increase in Pr reduces the thermal boundary layer
thickness, the velocity of the fluid and the velocity gradient
which results in the decrease of skin friction coefficients.
Meanwhile, the thermal boundary layer thickness and the
velocity of the fluid increase as NR increases.
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Fig. 7. Temperature profiles θ(y) for various values of NR when Pr = 0.7
and Ec = 0.1.

Fig. 8. Velocity profiles f ′(y) for various values of Pr when NR = 1 and
Ec = 0.1.
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