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Stability Analysis On Models Of Spreading H1N1
And H5N1 Virus In Two Locations

Silviana Maya P., Hariyanto and Mahmud Yunus

Abstract—The dynamics of population mobility are occurring
in a population. This phenomena can expand the area of the
spread of a virus. Allowing the occurrence of a pandemic of a
coalition between the H5N1-p virus and H5N1. In this paper, we
analyze the stability of the model of the spread of H1N1 and
H5N1-p. Based on the basic reproduction number R0, which is
then simulated using the Matlab software, we conclude that when
R0 < 1 the system is stable, whereas when R0 > 1 the system is
unstable.

Index Terms—Basic reproduction number, stability.

I. INTRODUCTION

INFLUENZA spreads around the world in seasonal epi-
demics and caused the deaths of hundreds of thousands

and even millions of people in pandemic years. Genetic of
influenza viruses change constantly. This is very worrying,
because the virus H1N1 and H5N1-p will definitely be more
easily transmitted among humans. To better understand the
spreading dynamics of a disease, we need the basic repro-
duction number R0, which is a number that could be used to
determine whether a population is epidemic or not. By using
the value of R0 we can analyze the stability of a model, which
is important to determine the dynamical stability.

Previous research used kernel density function K(y, t) =
e−β

∗y declared as a monotonically decreasing function, while
this paper uses kernel density function K(y, t) = eβ

∗y2 ,
by assuming that the occurrence rate of virus transmissions
is very high, so the individual needs to be evacuated or
quarantined to restrict the mobility of the population. Beside
that, in previous research, the evolutionary model is built based
on any possibilities that may occur due to the interaction
between the susceptible individual to an infected individual,
whereas in this study, by considering the characteristics of the
virus, we assume that any susceptible individual (Sjm) that
interacts with individuals infected by H1N1-p virus (I1jm) will
directly become part of exposed sub-populations (E1jm), and
susceptible individuals, both poultry and humans, who interact
with birds infected by H5N1 (I2ju) will be directly affected.
Thus, the evolutionary model obtained will be different, and
the basic reproductive number obtained is also different.

With attention to genetic changes of the individual popula-
tions, which happens due to the interaction between individu-
als, as well as characteristics of the virus itself, then we obtain
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a spreading model of influenza viruses H1N1 and H5N1-p at
two locations, as follows:
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with initial conditions:

Sjm(x, 0) = σ, Iijm(x, 0) = Iijm0,

E1jm(x, 0) = E1jm0, S2ju(x, 0) = Su0, I2ju = Iu0

and Neumann boundary conditions, as follows:
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with total population

Njm(t) = Sjm(t) + E1jm(t) + I1jm(t) + I2jm(t)

N2ju(t) = S2ju(t) + I2ju(t)

Index i expresses influenza virus, where i = 1 for H1N1-p
virus and i = 2 for the H5N1 virus. Index j = 1, 2 expresses
the location, where j = 1 for location 1 and j = 2 for location
2. Index m and u, express the population of individuals, where
m denotes humans, and u for poultry.

II. METHODOLOGY

In our work, we use the following methodology to obtain
the results.
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A. Construction of Matrix Fi(X, t) and Vi(X, t) of the exist-
ing models

Determination of basic reproductive number of the system
equation begins by formulating Jacobian matrix. Before form-
ing Jacobian matrix, first we construct matrix Fi and Vi whose
elements represent newly infected individual and individual
changes in each subpopulation.

B. Proving that Matrix Fi and Vi fulfill five basic assumptions
of Van Driessche and proving that matrix V is M -nonsingular
matrix

After obtaining the Jacobian matrix of the existing model,
we prove that matrices Fi and Vi fulfill five basic assumptions
of Van Driesshe and V is non-singular M -matrix.

C. Calculate R0 of H1N-p of Virus, H5N1 of human and
H5N1 in Poultrys

By using the Jacobian matrix of the matrices Fi and Vi, we
can calculate R0 of each virus, as the spectral radius of the
matrix FV −1.

D. Simulations and interpretations of the model

The obtained system is then simulated by using the fourth-
order Runge-Kutta method to make sure that results are in
accordance with the analysis result. The simulation program
is run by varying the parameters that fulfill two conditions,
namely when R0 < 1 and R0 > 1.

III. MAIN RESULTS

Basic reproduction number (R0) is a number that specifies
the average of secondary infected individuals to primary
infected individuals that take place in susceptible populations.

By seeing the population (Sjm, E1jm, I1jm) of the existing
system of equations, we have matrix Fi and Vi, as follows:

Fi =

 0
kE1jm

pI1jm


Vi =

kE1jm + dSjm − bSjm − µ2Sjm − oSjm − q1Sjm
pI1jm + dE1jm + bE1jm − µσEm + µEm + nEm

dI1jm + bI1jm + uI1jm


Let x = (Sjm, E1jm, I1jm) with (Sjm, E1jm, I1jm) ≥ 0,

then it can be shown that matrix Fi and Vi fulfill five basic
assumptions of Van Driesshe and matrix V is as follows:

V =

d− b+ µ2 − o− q1 k 0
0 d+ b+ n+ µ2 p
0 0 d+ b+ u

 .
Notice that V is a non-singular M -matrix.

Then, the three basic reproduction numbers: R0 from H1N1-
p virus, H5NI virus in humans and H5N1 in poultry, are
obtained as the spectral radius of the matrix FV −1, as follows:

R0H1N1−p
=

p

d+ b+ u
, R0H1N1p−m

=
a

d+ b+ v
,

R0H1N1p−u
=

s

d+ b

From the existing spreading model of H1N1-p and H5N1
virus at two locations above, we acquire disease-free equi-
librium point E0 = (Sjm, 0, 0, 0, S2ju, 0) and the endemic
equilibrium point E0 = (x4, x5, x1, x2, x3, x6) where:

x1 = I1jm

x2 = I2jm

x3 = I2ju

x4 =

ax2 +
kpx1

k − d− b+ µσ − µ− n

b− d+ o+ q1 + q2

x5 =
px1

k − d− b+ µσ − µ− n

x6 =
sx3
b− d

From the simulation results we can obtain a full description
of each subpopulation comparison conditions when R0 < 1
and R0 > 1, as shown by Figs. 1 and 2 below: We can see

Fig. 1. Stability of the system when R0 < 1.

that when R0 < 1, the system is in a stable condition for
a disease-free equilibrium point. This means no transmission
of the disease occurs in the system. Therefore the number of
populations (E1jm, I1jm, and I2ju) decreases continuously,
while the number I and Sju increasing continuously. The
influence of virus H5N1 to the system is less when the density
of susceptible populations is equal to the density of infected
populations.

From Fig. 2, we can see that when R0 > 1, and when the
mortality rate is bigger than the birth rate (d > b), natural
recovery rate is very small, and H1N1 virus infection rate (k
and p) is high enough the system is in an unstable state. The
spread of the virus occurred in a very short time, resulting in
transmission of the virus H1N1 and H5N1-p in the system.
It is shown in the increasing number of infected inviduals,
both in human and poultry subpopulations. The number of
susceptible subpopulations and exposed continue to decrease
and the number of infected human populations is increased.
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Fig. 2. Stability of the system when R0 > 1.

IV. CONCLUSIONS

From the discussions, the research is concluded as follows.
The system is stable when R0 < 1, which is a condition
when the average infected individuals produce less than one
new infected individual. In other words, transmission of the
virus does not happen in the system. Thus it does not cause
endemic. In this condition, the mortality rate is equal to the
birth rate (d = b), and virus H5N1 is still affecting the change
of the system even less influence if the density of susceptible
populations is equal to the density of infected populations.

Besides that, the system is unstable when R0 > 1, which
is a condition when the average infected individuals produce
more than one infected individual. In other words, there is a
transmission virus in very large quantities. Thus this condition
causes endemic and endanger the survival of the individual in
the system. In this condition, the mortality rate is bigger than
the birth rate (d > b), natural recovery rate is very small, and
H1N1 virus infection rate (k and p) is high enough.
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