
INTERNATIONAL JOURNAL OF COMPUTING SCIENCE AND APPLIED MATHEMATICS, VOL. 9, NO. 2, NOVEMBER 2023 50

Optimal Control of an Uncertain Linear Networked
Control System Under Denial of Service Attacks

Tua Agustinus Tamba

Abstract—Controller design based on networked control sys-
tem (NCS) framework combines sensing, control, and actuation
tasks using shared channel of communication network. Such a
use of communication channel often makes the NCS design more
challenging due to the presence of system uncertainties, limitation
on available computational/communication systems resources, as
well as possible occurrences of data transmission failures or cyber
attacks. This paper develops mathematical grounds for dynamic
event-triggered control design method for an uncertain linear
NCS with matched uncertainties whose communication channel
undergoes cyber attaks in the form of Denial-of-Service (DoS).
The DoS attacks are assumed to halt the execution of control
update tasks that was scheduled by the dynamic event-triggered
control scheme. Under such possible occurrences of DoS attacks,
this paper bounds the allowable duration of the DoS presence and
derives suitable control signals which can guarantee the closed
loop NCS remains stable.

Index Terms—Optimal Control, Uncertain Linear Networked,
Networked Control System.

I. INTRODUCTION

NCS typically uses a network of computers and dedi-
cated communication system to regulate the data interac-
tions/exchanges between the plant, sensor, controller and ac-
tuator elements [1]. This coupling between physical, compu-
tational and communication components often makes the NCS
implementation becomes more challenging. Over the last two
decades, significant studies and researches on NCS design
are continuously done to improve NCS’ resource utilization
efficiency as well as robustness to cyber attacks.

To improve the efficiency of NCS’ resource utilization, a
new control scheduling approach based on a static event-
triggered scheme (SETS) was proposed recently [2], [3]. The
SETS is essentially an aperiodic sampling strategy which up-
dates the control signals only when some predefined conditions
(events) on the systems are satisfied. When compared to the
commonly practiced periodic update schemes, the SETS-based
method is shown to be more resource-aware as it utilizes the
computational resource more efficiently [4], [5].

With regard to the used communication systems, previous
studies on NCS design have commonly focused on examining
the effects of communication system constraints (such as
transmission delay, data quantization, or packet drops) on
the closed loop NCS stability and performances (cf. [6] and
references therein). Such studies on NCS communication
constraints are usually done under the assumption that the
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used communication channels are predesigned such that their
models and bounded uncertainties are known [7], [8].

In recent years, increased attentions have been given to
explore and address related issues on NCS security to cyber
attacks. This new research trend is particularly driven by real
life observation of NCS applications which demonstrate their
vulnerability to unpredictable cyber attacks [9], [10], [11],
[12], [13]. One of such attacks is the well-known denial-of
service (DoS) attack which can reduce or even diminish the
timeliness of data transmission between different elements of
the NCS. When coupled with possible uncertainties on the
NCS model, the occurrence of DoS attacks can significantly
deteriorate both the performance and stability of NCS. These
thus suggest the need for NCS design frameworks which can
ensure not only the efficiency of resource utilization but also
the resiliency towards possible cyber attacks [14], [15], [16].

This paper presents mathematical grounds of a dynamic
event-triggered scheme (DETS) for the design of uncertain
linear NCS which is subjected to DoS attacks. The considered
model uncertainty is assumed to be of matched uncertainty
type [17], while the DoS attack is modeled as in [18],
[19] which only assumes limited information about attacks’
duration and frequency. This paper presents DETS formulation
of the optimal control solution to uncertain linear systems as
developed in [17], and then derives an update scheme for
control signals that can guarantee the input-to-state stability
(ISS) property of the closed loop system. In particular, the
derived control signal and its update scheme illustrate the
impacts of DoS attacks’ presence/absence on the ISS property
of the NCS.
Notations: I denotes the set of nonnegative integers. R and
R+

0 , respectively, are the sets of real and nonnegative real
numbers, while Rn is Euclidean space of dimension n. ∥x∥ is
the norm of a vector x ∈ Rn. λ(M) and λ(M), respectively,
are the maximum and minimum of the eigenvalues λ(M) of
matrix M . M ⪰ 0 means matrix M is positive semidefinite.
F (·) ∈ K means F (·) belongs to class K function such that it
is continuous, strictly increasing, and F (0) = 0. F (·) ∈ K∞
means F (·) is of class K function which further satisfies
F (ζ) → +∞ as ζ → +∞. For a function F (t), t > 0,
F (t−) denotes the limit of F (τ) as τ ⇝ t from the left, such
that F (t−) := F (t) when F is continuous at t.

II. PROBLEM SETUP AND FORMULATION

We first recall the model of an uncertain linear NCS with its
corresponding optimal controller, and then presents the closed
loop control problem to be considered in this paper when DoS
attacks occurrences are taken into consideration.
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A. An Uncertain Linear NCS Model

We consider an uncertain linear NCS model below.

ẋ(t) = A(p)x(t) +Bu(t), x(0) = x0, (1)

with state x(t) ∈ Rn and input u(t) ∈ Rm. B is the input
matrix, and the system matrix A(p) with uncertain parameter
p ∈ P satisfies the matched uncertainty below [20]:

• for a nominal parameter p0 ∈ p, the pair {A(p0), B} is
stabilizable

• given some matrices R, S ⪰ 0, there is a matrix ζ(p)
such that: ζT (p)Rζ(p) ≤ S. Also, for some known p0:

A(p)−A(p0) = Bζ(p). (2)

The matched uncertainty property allows (1) to be written as

ẋ(t) = A(p0)x(t) +Bu(t) +Bζ(p)x(t). (3)

The controls of NCS (3) can be done using LQR design
approach to ensure the closed loop asymptotic stability for all
p ∈ P [17]. In particular, a feedback control signal of the form
u(t) = K⊺x(t) can be searched through the minimization of
the following cost function.

J =

∫ ∞

0

(x(t)⊺ (S +Q)x(t) + u(t)⊺(t)Ru(t)) dt, (4)

in which S := inf {S : ζ(p)⊺ζ(p) ≤ S}. In this regard, an
optimal control law for (3) is of the following form

u(t) = −R−1B⊺Px(t) = K⊺x(t), (5)

with P ⪰ 0 satisfies an algebraic Riccati equation below.

P ⊺A(p0) +A⊺(p0)P + S +Q− PBR−1B⊺P = 0. (6)

B. Problem Formulation

Consider the NCS setup of (3)–(5) as shown in Fig. 1.
Assume the control signal (5) is generated using a zero-order
hold sampler and then transmitted through a communication
channel to the plant/actuator. Let {ti}i∈I with t0 := 0 denotes
the sequence of control signal update times. Then for two
successive update times, the control signal (5) satisfies

u(t) = K⊺x(ti), ∀t ∈ [ti, ti+1), (7)

such that the closed loop NCS model (3) can be written as

ẋ(t) = A(p0)x(t) +BK⊺x(ti) +Bζ(p)x(t). (8)

Define the error e(t) between the values of NCS states at
the last control update time and at the current time t below.

e(t) = x(ti)− x(t), ∀t ∈ [ti, ti+1). (9)

Using (9), model (8) can be rewritten for all t ∈ [ti, ti+1) as

ẋ(t) = (A(p0) +BK⊺)x(t) +BK⊺e(t) +Bζ(p)x(t). (10)

The objective of this paper is to study the stability property
of NCS model (10) when its communication channels are
subjected to DoS attacks (cf. Fig. 1). For this purpose, our
analysis will use a DoS attack model developed in [18].

Let {δn}n∈I be the sequence of times when DoS attacks
occur. Define Dn := [δn, δn+1) as the time interval of the

Fig. 1. NCS schematic of (3) and (5) under DoS attacks.

nth DoS with duration τn during which the communica-
tion between controller and system actuator is compromised.
During such a duration, the system actuator is assumed to
implement the last succesfully received control signal. By the
definitions of such δn,Dn and tn, the time duration [0, t] can
be partitioned into the following elements:

• The set Ω(t) denoting the period up to time ”t” at which
the controller–actuator communication exists, i.e.:

Θ(t) := [0, t]\ ∪n∈I Dn. (11)

The control signal (7) is implemented during Θ(t).
• The set Ω(t) denoting the instances of DoS occurrences

when controller–actuator communication do not exist:

Ω(t) := ∪n∈I Dn ∩ [0, t]. (12)

The control signal at each element of Ω(t) is:

u(t) = K⊺x
(
ti(t)

)
(13)

where the subscript i(t) is defined as:

i(t) :=

{
−1, if θ(t) = ∅
sup (i ∈ I : ti ∈ Θ(t)) , otherwise

(14)
It can be seen that (13) essentially defines the latest
control signal received and updated by the actuators.

It is also assumed that the DoS sequence {dn}n∈I satisfies

inf
n∈I

τn > 0, (15)

and that the following holds on Ω(t) for a constant κ > 0:

|Ω(t)| ≤ κ+
t

T
. (16)

Condition (15) basically assumes that the occurrence of DoS is
regular (i.e. the occurrence frequency is finite and non-Zeno),
while (16) sets the DoS’ slow-on-the-average property with
average dwell-time parameter of T (cf. [21]).

Given NCS model (10) and DoS characteristics (11)-(16),
we aim to bound the allowable time duration of DoS presence
as well as suitable control signals that can stabilize the closed
loop NCS. In [18], this problem was first examined for LTI
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systems of the form ẋ(t) = Ax(t) + Bu(t) using SETS [2]
with control update time logic as follows: t0 = 0, and

ti+1 = inf
{
t ∈ R

∣∣∣ t > ti ∧ σx(t)⊺Qx(t)

− 2x(t)⊺PBK⊺e(t−)] ≤ 0} (17)

with σ ∈ (0, 1). Choosing a Lyapunov function V (x(t)) =
x(t)⊺Px(t) with P ⪰ 0, [18] showed that LTI systems with
control update logic (17) that are attacked by DoS satisfying
(15)-(16) will remain GAS if the conditions below hold:

(i) γ1 > σγ2, and (ii) τ > 1 +
α2γ2 (2 + σ)

α1 (γ1 − σγ2)
(18)

with γ1 = λ(Q), γ2 = 2∥PBK⊺∥, α1 = λ(P ), α2 = λ(P ),
and Q ⪰ 0 satisfies (A+BK⊺)⊺P + P ⊺(A+BK⊺) = −Q.
The work in [22] extends the results in [18] for uncertain linear
NCS of the form (10) using update logic in (17), while [23]
examined similar problem as in [18] but using a DETS that
was proposed in [24] as the control update time logic.

This paper essentially further develops the results in [18],
[22], [23] by addressing DoS-resilient control design problem
for uncertain linear NCS of the form (10) using DETS frame-
work. The inclusion of system uncertainties in NCS model and
analysis makes the proposed method more realistic/applicative.
Furthermore, as shown in [24], the use of DETS also provides
a sequence of control update times with longer inter-sampling
intervals and therefore ensures more efficient utilization of the
available NCS resources.

The DETS that is used in this paper assumes the following
sequence of control update times [24]: t0 = 0, and

ti+1 = inf{t ∈ R | t > ti ∧ η(t) + θ[σx(t)⊺Qx(t)

− 2x(t)⊺PBK⊺e(t−)] ≤ 0} (19)

where the dynamic variable η(t) satisfies equation below.

η̇(t) = −φη(t) + σx(t)⊺Qx(t)− 2x(t)⊺PBK⊺e(t) (20)

with η(0) = η0. This paper’s objective is to examine required
conditions under which the closed loop NCS (10) maintains
an ISS property when using DETS (19)-(20) and is subjected
to DoS attacks. Definition 1 formalizes such an ISS concept.

Definition 1. Dynamical systems of the form (10) is said to
satisfy the ISS property if for all x(0) := x0 ∈ Rn, there exist
an ISS Lyapunov function V (x(t)) : Rn × R+ → R+ and
functions α1, α2, φ, ξ ∈ K∞ of class K∞ such that:

1) α1

(
∥x(t)∥2

)
≤ V (x(t)) ≤ α2

(
∥x(t)∥2

)
,

2) V̇ (x(t)) ≤ −φ (∥x(t)∥) + ξ (∥e(t)∥) .

III. MAIN RESULTS

This section presents this paper’s main results regarding
properties of DETS (19)-(20) and their use to derive conditions
for ISS of NCS (10) when DoS attacks are present.

A. Properties of Dynamic Event-Triggered Scheme

Lemma 1 below shows that the dynamic variable η(t) in
DETS (19)-(20) is always non-negative. Such a property will
be useful for deriving the ISS conditions of NCS (10).

Lemma 1. Consider the DETS in (19)-(20). Then for all t ∈
[t,∞), the following inequalities hold for η(t):

1) η(t) + θ (σx(t)⊺Qx(t)− 2x(t)⊺PBK⊺e(t)) ≥ 0
2) η(t) ≥ 0

Proof. We first show that condition 1) in Lemma 1 is true.
The construction of the DETS update times logic (19) implies
that the following holds for all t ∈ [0,∞).

η(t) + θ
(
σx(t)⊺Qx(t)− 2x(t)⊺PBK⊺e(t−)

)
≥ 0 (21)

By noting that e(t) ≥ e(t−) holds for all t ∈ [0,∞), then (21)
implies that the following also true.

η(t) + θ (σx(t)⊺Qx(t)− 2x(t)⊺PBK⊺e(t)) ≥ 0, (22)

which is statement 1) in Lemma 1. Now we show 2) by
examining (22) when θ = 0 and θ ̸= 0. If θ = 0, (22) reads

η(t) ≥ 0 (23)

Next, if θ ̸= 0, then (22) becomes

σx(t)⊺Qx(t)− 2x(t)⊺PBK⊺e(t) ≥ −1

θ
η(t). (24)

Based on (23) and (24), the dynamics of η(t) in (20) becomes

η̇(t) ≥ − (φ+ 1/θ) η(t), η(0) ≥ 0. (25)

By the comparison lemma [25], then (25) implies that

η(t) ≥ η(0)e−(φ+1/θ)t, η(0) ≥ 0 (26)

which proves η(t) ≥ 0 as in statement 2) of Lemma 1.

Next, Lemma 2 shows that the inter-execution time (ti+1)
of DETS (19)-(20) is greater than that of the SETS in (17).

Lemma 2. Let tsi+1 be the next (i+ 1)th control update time
of SETS (17), and tdi+1 be the next (i + 1)th control update
time of DETS (19). Then, it holds that: tdi+1 ≥ tsi+1.

Proof. Assume for the moment that tsi+1 ≥ tdi+1. Then the
SETS update logic (17) implies the following must hold.

σx(tdi+1)
⊺Qx(tdi+1)− 2x(tdi+1)

⊺PBK⊺e(tdi+1) > 0 (27)

Now, consider the DETS update logic (19) for two cases of θ
values. Firstly, if θ > 0, then the update time logic (19) and
the non-negativity of η(t) showed in Lemma 1 imply:

0 ≥ η(tdi+1) + θ
[
σx(tdi+1)

⊺Qx(tdi+1)

− 2x(tdi+1)
⊺PBK⊺e(tdi+1)

]
,

≥ θ
[
σx(tdi+1)

⊺Qx(tdi+1)− 2x(tdi+1)
⊺PBK⊺e(tdi+1)

]
.
(28)

Since θ ≥ 0, then (28) will hold only if (29) below is true.

σx(tdi+1)
⊺Qx(tdi+1)− 2x(tdi+1)

⊺PBK⊺e(tdi+1) < 0. (29)
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Note that (29) contradicts (27), so tdi+1 ≥ tsi+1 should instead
be true. Secondly, if θ = 0, the DETS update logic in (19)
implies ηdt+1 ≤ 0, and so the η(t) dynamics in (20) becomes

η̇(t) ≤ 0 ⇒ σx(t)⊺Qx(t)− 2x(t)⊺PBK⊺e(t) ≤ 0. (30)

Again, (30) contradicts the assumption in (27) and therefore
tdi+1 ≥ tsi+1 should instead be true as stated in Lemma 2.

Lastly, we present in Lemma 3 below an upper bound for
the functional of the error e(t) when DoS attacks are present.

Lemma 3. Consider NCS (10) under DETS control update
time logic (19)-(20). Assume the NCS is subjected to DoS
attacks with properties as in (11)–(16). Then for all t ∈ Ω(t),
the inequality below holds regarding the error e(t) in (9).

2γ2∥x(t)∥∥e(t)∥ ≤ (σγ1 + 2γ2) ∥x(δn)∥2

+ 2γ2∥x(t)∥2 +
1

θ
∥η(δn)∥

(31)

Proof. On the one hand, note for the error e(t) in (9) that the
following can be written for all t ∈ Ω(t).

e(t) = x(ti(δn))− x(t) (32)

On the other hand, the construction of control update time
logic (19) implies the following also holds for all t ∈ Ω(t).

2x(δn)
⊺PBK⊺e(δn) ≤ σx(δn)

⊺Qx(δn) +
1

θ
η(δn) (33)

Consequently, we can write the norm of (33) as below.

2∥PBK∥∥x(δn)∥∥e(δn)∥ ≤ σλ(Q)∥x(δn)∥2 +
1

θ
∥η(δn)∥

2γ2∥x(δn)∥
(
∥x(ti(δn))− x(dn)∥

)
≤ σγ1∥x(δn)∥2

+
1

θ
∥η(δn)∥

2γ2∥x(δn)∥∥x(ti(δn))∥ ≤ 2γ2∥x(δn)∥2 + σγ1∥x(δn)∥2

+
1

θ
∥η(δn)∥

(34)
As a result, the following functional relationship can be
obtained based on the error e(t) definition in (32).

2x(t)⊺PBK⊺e(t) = 2x(t)⊺PBK⊺
(
x(ti(δn))− x(t)

)
(35)

By taking the norm of (34), we then have that:

2∥PBK⊺∥∥x(t)∥∥e(t)∥ ≤ 2∥PBK∥∥x(t)∥∥xti(δn)
∥

+ 2∥PBK∥∥x(t)∥2

≤ 2∥PBK∥∥x(dn)∥∥xti(δn)
∥

+ 2∥PBK∥∥x(t)∥2

(36)

The substitution of (35) into (36) allows us to write (36) as

2γ2∥x(t)∥∥e(t)∥ ≤ 2γ2∥x(δn)∥2 + σγ1∥x(δn)∥2

+
1

θ
∥η(δn)∥+ 2γ2∥x(t)∥2

≤ (σγ1 + 2γ2) ∥x(δn)∥2

+ 2γ2∥x(t)∥2 +
1

θ
∥η(δn)∥

(37)

which is as stated in the lemma. The proof is completed.

In subsections III-B-III-C, we use the DETS properties
derived in this subsection to characterize conditions which will
guarantee the ISS property of uncertain linear NCS (10) in the
absence or presence of DoS attacks.

B. NCS Stability Analysis: DoS Attacks are Absent

We first derive required conditions to ensure ISS property
of the uncertain linear NCS (10) when DoS attacks are absent
on the communication channels. Proposition 4 below states
such conditions.

Proposition 4. Consider the uncertain linear NCS in (10).
Assume the DETS control update logic (19)-(20) is used. Then
the closed loop NCS (10) is GAS when DoS is absent.

Proof. For P ⪰ 0, consider the quadratic Lyapunov function
V (x(t)) = x(t)⊺Px(t) for NCS (10). Thus:

α1∥x(t)∥2 ≤ V (x(t)) ≤ α2∥x(t)∥2, (38)

where α1 = λ(P ), α2 = λ(P ). On the state trajectories of
(10), the time derivative V̇ of V (x(t)) can be written as

V̇ = Vx {[A(p0) +BK⊺]x(t) +BK⊺e(t) +Bζ(p)x(t)} ,
= Vx [(A(p0) +BK⊺)x(t)] + VxBK⊺e(t)

+ VxBζ(p)x(t).
(39)

where Vx := (∂V (x)/x). Using (6), (39) can be rewritten as

V̇ = −x (S +Q+K⊺RK)x+ 2x(t)⊺PBK⊺e(t)

− 2x(t)⊺K⊺Rζ(p)x(t),

= −x (S +Q+K⊺RK +K⊺Rζ(p) + ζ⊺(p)R⊺K)x

+ 2xTPBK⊺e,
(40)

Now add xT (t)ζT (p)Rζ(p)x(t) to and substract it from the
right hand side of (40). We can then write the following.

V̇ = −x(t) (S +Q+K⊺RK)x(t) + 2x(t)⊺PBK⊺e(t)

− 2x(t)⊺K⊺Rζ(p)x(t),

= −x
[ (

S − ζT (p)Rζ(p)
)
+Q+K⊺RK +K⊺Rζ(p)

+ ζ(p)⊺R⊺K⊺ + ζ(p)⊺Rζ(p)
]
x+ 2x(t)⊺PBK⊺e(t),

= −x(t)
[
(S − ζ(p)⊺Rζ(p)) +Q

+ (K + ζ(p))
⊺
R (K + ζ(p))

]
x(t) + 2x(t)⊺PBK⊺e(t),

= −x(t)⊺Φx(t) + 2x(t)⊺PBK⊺e(t),

≤ −γΦ∥x(t)∥2 + 2∥PBK⊺∥∥x(t)∥∥e(t)∥,
(41)

where γΦ = λ(Φ) in which Φ = S − ζT (p)Rζ(p) + Q +
(K + ζ(p))

T
R (K + ζ(p)).

When there are no DoS attacks, the DETS control update
time logic (19)-(20) imply that the following holds.

η(t) + θ (σx(t)⊺Qx(t)− 2x(t)⊺PBK⊺e(t)) ≥ 0. (42)

Taking the norm of (42) and substituting it into (41) allow us
to write (41) into the following.

V̇ (x(t)) ≤ −γΦ∥x(t)∥2 + σλ(Q)∥x(t)∥2 + 1

θ
∥η(t)∥,

≤ −ω1V (x(t)) + ξ∥η(t)∥2,
(43)
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which satisfies Definition 1 in which φ := ω1 = (γΦ −
σγ1)/α1 and ξ = 1/θ. This thus shows the ISS property of
the closed loop NCS (10) when DoS attacks are absent.

C. NCS Stability Analysis: DoS Attacks are Present

Next, we examine the stability of NCS (10) when DoS
attacks are present. During such DoS occurrences (i.e ∀t ∈
Ω(t) defined in (12)), the DETS control update time logic
(19)-(20) cannot be carried out. In this regard, one instead
may examines the upperbound of the error functional term
2∥PBK⊺∥∥x(t)∥∥e(t)∥ of the time derivative V̇ (x) in (41).
This can be done using the result in (31) of Lemma 3. More
specifically, the substitution of (31) into (41) allows us to write
the time derivative in (41) as follows.

V̇ ≤ −γΦ∥x(t)∥2 + 2∥PBK⊺∥∥x(t)∥∥e(t)∥
≤ −γΦ∥x(t)∥2 + (σγ1 + 2γ2) ∥x(δn)∥2

+ 2γ2∥x(t)∥2 +
1

θ
∥η(δn)∥

≤ (2γ2 − γΦ)∥x(t)∥2 + (σγ1 + 2γ2) ∥x(δn)∥2

+
1

θ
∥η(δn)∥2

(44)

Note on one hand that if ∥x(δn)∥ ≤ ∥x(t)∥, (44) becomes

V̇ ≤ (σγ1 − γΦ + 4γ2)∥x(t)∥2 +
1

θ
∥η(t)∥2

≤ ω2V (x(t)) + ξ∥η(t)∥2
(45)

with ω2 = (σγ1−γΦ+4γ2)/α1. On the other hand, inequality
(46) below instead will hold if ∥x(δn)∥ ≥ ∥x(t)∥.

V̇ ≤ ω2V (x(dn)) + ξ∥η(t)∥2 (46)

Using the obtained results in (43), (45), and (46), Theorem
5 below states the conditions which will guarantee the ISS
property of the closed loop NCS (10) for all time t ≥ 0.

Theorem 5. Consider the uncertain NCS (10) with DETS
control update time logic (19)-(20). Assume the NCS is being
attacked by DoS phenomenon with properties as in (11)–(16).
Then the closed loop NCS (10) maintains ISS property for any
DoS satisfying (15)-(16) with a constraint of the form

τ >
ω1 + ω2

ω1
, (47)

in which ω1 and ω2 are as in (43) and (46), respectively.

Proof. Define δn−1 = 0, τn−1 = 0. Then (43) allows us to
write the following for all t ∈ [δn−1 + τn−1, δn),

V (x(t)) ≤ e−ω1(t−(δn+τn))V (x(δn−1 + τn−1))

+
ξ

ω1
∥η(t)∥2∞ (48)

Similarly, we have the following from (46) for all t ∈ Dn.

V (x(t)) ≤ eω2(t−δn)V (x(δn)) +
ξ

ω2
∥η(t)∥2∞, (49)

Now note that (11)–(12) imply |Θ(t)| = t − |Ω(t)|. Thus for
all t ≥ 0, one may combines (48) and (49) as follows.

V (x(t)) ≤ e−ω1|Θ(t)|eω2|Ω(t)|V (x0) +ϖ∥η(t)∥2∞
≤ e−ω1te(ω2+ω1)|Ω(t)|V (x0) +ϖ∥η(t)∥2∞

(50)

in which ϖ := max (ξ/ω1, ξ/ω2). Substituting the constraint
(16) on DoS occurrences into (50), we have that

V (x(t)) ≤ e−ω1te(ω1+ω2)(κ+(t/T ))V (x0) +ϖ∥η(t)∥2∞
≤ eκ(ω1+ω2)e−(ω1−(ω1+ω2)/T )tV (x0) +ϖ∥η(t)∥2∞

(51)
Using property (38) of V (x(t)), we may write from (51) that

∥x(t)∥2 ≤
(
α2

α1
eκ(ω1+ω2)

)
e−(ω1−ω1+ω2

T )t ∥x0∥2

+
ϖ

α1
∥η(t)∥2∞

(52)

Now note that an inequality of the form a2 + b2 ≤ (a + b)2

holds for any pair of real numbers a > 0 and b > 0. Using
this fact on (52), we may infer the following inequality.

∥x(t)∥ ≤
√

α2

α1
eκ(ω1+ω2) e−[ω1−(ω1+ω2

T )] t2 ∥x0∥︸ ︷︷ ︸
−Ψ(∥x0∥,t)

+

√
ϕ

α1
∥η(t)∥∞︸ ︷︷ ︸

Γ(∥η(t)∥∞)

≤ −Ψ(∥x0∥, t) + Γ (∥η(t)∥∞)

(53)

Notice that Γ(·) in (53) is of class K∞. In order for (53) to
satisfy the second ISS condition in Definition 1 (i.e. guarantee
the ISS property of NCS (10)), then Ψ(∥x0∥, t) should also
be of class K∞ which can be ensured if condition (47) in the
theorem is satisfied. The proof is completed.

Condition (47) in Theorem 5 suggests that the ISS property
of DoS-attacked uncertain NCS in (10) is dependent on both
the frequency and individual duration of DoS occurrences.
Consequently, such a condition can also be viewed/used as a
measure of the NCS’ resiliency to DoS attacks which occurr
in the NCS’ communication channels.

IV. CONCLUSION

This paper has presented mathematical grounds for DETS-
based optimal control design approach to maintain an ISS
property of a class of NCS which satisfies the matched
uncertainty condition and undergoes DoS attacks. Under the
assumption that the DoS attacks occur in a regular manner,
this paper uses Lyapunov’s stability analysis method to derive
conditions for the proposed DETS-based control that will
produce a sequence of control update times which can preserve
the ISS property of the closed loop NCS. Future works will
be directed toward examining and implementing the proposed
resilient optimal control design method in practical and real
life NCS applications under uncertainties.
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