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In Search of Dotless Kropki Puzzle Solution
Andri Purnama Ramadan

Abstract—Searching all possible solution and finding the min-
imum number of clues to make uniquely solvable puzzle always
been a natural question for puzzle enthusiast. However, the
attempt usually provide that as difficult task. In this paper,
we attempt to search the solution of Kropki puzzle without dot
clues given with graph theory approach, which resulted in some
conjectures involving the planarity of graph and cyclicity of latin
square.

Index Terms—Kropki, Latin Square, Puzzle

I. INTRODUCTION

LATIN square is an arrangement of n uniquely different
elements into n× n array such that no row and column

contains repeating element. Even though latin square can
use arbitrary symbol for the element, latin square puzzles
like sudoku, kropki, and futoshiki usually use the element of
A = {1, 2, . . . , n} for their element symbols.

Studying the solution or number of clues of puzzle is not a
new thing. Some works of it like [1]–[4] had been published,
even proof of minimum clues such that sudoku can be uniquely
solvable had been given by [5] with 7.1 million hours of
computation claim. However, research on latin square puzzle
seems mostly still involved in sudoku. It’s not surprising
because of sudoku’s popularity, but it’s encourage us to study
other latin square puzzle.

Kropki is a latin square puzzle with additional constraint
using black and white dots between two cells. Every adjacent
cells with 1 : 2 number ratio should be indicated with black
dots and every adjacent cells with consecutive number should
be indicated with white dots. Thus, if between the adjacent
cells contain no black or white dots, then those numbers must
not be consecutive or have 1 : 2 ratio.

Fig. 1: Kropki puzzle and its solution

Like the name, dotless kropki means there are no dot
clue given, so every adjacent cells should not contain any
consecutive number nor the numbers have 1 : 2 ratio.

II. PRELIMINARIES

In this paper, we write n × n latin square as n-ordered
latin square. Every rows and columns’ label will begin from
0 consecutively from top to bottom and left to right. For
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example, if we have 3-ordered latin square, then we will have
row 0, row 1, and row 2 from top to bottom and column 0,
column 1, and column 2 from left to right, labelling the said
row and column.

Every binary operation involving row and column will be
operated in Zn even if it’s not implicitly stated. However, no-
tice that even though we use the element of A = {1, 2, . . . , n}
to fill the Kropki puzzle, we will use them only as a symbol
without making any operation of it, so it shouldn’t make any
trouble.

Definition 1. Let L be n-ordered latin square. The element of
row r and column c from L is notated as xr,c.

To shorten the writing, we will write row r, column c, and
element xr,c as 3-tuple (r, c, xr,c), which then we will call it
coordinate of L.

Definition 2. [6] Let L be n-ordered latin square. If there
exist k ∈ N such that xr,c = xr+1,c+k for every r and c, then
L is called k-cyclic.

Considering the global constraint of dotless kropki puzzle
about what number can be adjacent to other number, we can
also construct the relation of the numbers using graph.

Definition 3. n-ordered dotless kropki graph is G =
(V,E) with V = {1, 2, . . . , n} and E = {(vi, vj) :
vi, vj nonconsecutive and the ratio of them is not 1 : 2} for
distinct i, j ∈ {0, 1, . . . , n− 1}

Let v0, v1, . . . , vk a sequence of distinct vertices in G =
(V,E) and P1 = (V1, E1) where V1 = {v0, v1, . . . , vk} ⊆
V (G) and E1 = {(vi, vi+1) : i ∈ 0, 1, . . . , k − 1} ⊆ E(G).
We call P as path in G. If edge (v0, vk) exists in G, then
C = (V1, E1 ∪ {(v0, vk)}) is called cycle in G. Hamiltonian
path is a path such that every vertices on G is visited exactly
once. Similarly, Hamiltonian cycle is a Hamiltonian path with
additional edge connecting path’s end vertices [7].

Classifying all graph that has Hamiltonian path or cycle
is not an easy task. In fact, research on finding globally
sufficient condition of Hamiltonian path and cycle is still being
developed like by [8], [9]. For this paper, Fan’s result from
[10] will be used to assist our work. We will write degree of
x, which is the number of edges connected to x, as deg(x).

Definition 4. [11] Let G = (V,E) be a graph, |G| be the
number of vertices in G, and k ∈ N. If |G| > 1 and G − F
is connected for every set F ⊆ E of fewer than k edges, then
G is called k-edge-connected.

In simple word, a graph G is called k-edge-connected if G
remain connected whenever we remove l amount of edges in
G, with l < k. Furthermore, for our convenience, we will call
k-edge-connected as k-connected.
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Theorem 1. [10] Let G = (V,E) be 2-connected graph with
n ≥ 3 vertices and let u, v be distinct vertices with distance
of 2. If max{deg(u),deg(v)} ≥ n

2 then G have Hamiltonian
cycle.

If there’s a way to draw a graph G on Euclidian plane such
that every edges are not intersecting, then G is called planar
graph. One famous theorem to examine the planarity of a graph
is Kuratowski’s theorem.

Theorem 2 (Kuratowski’s theorem). [12] Let G = (V,E) be
a graph. G is nonplanar if and only if it contains subdivision
of complete graph K5 or complete bipartite graph K3,3

We can illustrate subdividing graph as adding additional
vertex on an edge, so the vertex divide the edge. As in contains,
we can only examine the subgraph of nonplanar graph G and
find the subdivision of K5 or K3,3.

Now we are going to search dotless kropki puzzle solution.

III. RESULTS AND DISCUSSIONS

For n = 1, it’s obvious that the puzzle will only have
one solution. For nontrivial cases, let L be n-ordered latin
square and to be filled with element of A = {1, 2, . . . , n}.
Because every rows and columns must contain non-repeating
n symbols, then there exist r, c ∈ N with c ̸= 1, n such
that (r, c, xr,c) is coordinate of L. Thus, every xr,c must be
adjacent to at least two different numbers. In graph, we could
interpreted it as degree of v = xr,c should be at least 2.

For n = 2, 3, 4, we have deg(2) = 0 because it can’t be
connected to 1, 3, and 4. For n = 5, we have deg(2) = 1
because it can only be connected to 5. Since every vertices’
degree of dotless kropki puzzle should be at least 2 to have a
solution, then we can conclude that n-ordered dotless kropki
puzzle don’t have any solution for n = 2, 3, 4, 5.

For n = 6, we will have deg(v) ≥ 2 for every v. If we add
the next vertex consecutively, we will still have deg(v) ≥ 2,
since the kropki constraint will only prohibit it connected to
maximum 2 other previous vertices, so there are still (n− 2)
other vertices to be choosen and it will implies deg(v) ≥ 2
for every v for all n ≥ 6.

Lemma 1. For n ≥ 6, every n-ordered dotless kropki graph
have Hamiltonian cycle.

Proof. Let G = (V,E) be n-ordered dotless kropki graph.
Since for every v ∈ V (G) we have deg(v) ≥ 2, so G must
be 2-connected.

We will always have 1 ∈ V (G) with deg(1) = (n− 1) for
every n ≥ 6, since 1 will be connected to every other number
except 2. However, there’s 5 ∈ V (G) such that (1, 5), (2, 5) ∈
E(G) for every n, thus there will always be vertices 1 and 2
with distance 2.

Since max{deg(1),deg(2)} = n−1 ≥ n
2 , then by theorem

1, G must be have Hamiltonian cycle.

In n-ordered latin square puzzle, the solution in k-cyclic
form can be constructed if n, k are coprime, and it’s very clear
that 1 and n−1 will always be coprime with n. However, since
we have additional kropki constraint, we can’t directly stated

that easily because the relationship of their adjacency may
forbid us to construct such solution. Fortunately, they are not.

Theorem 3. Let n ≥ 6 and L be n-ordered dotless kropki
puzzle. Dotless kropki graph always have solution in 1-cyclic
and (n− 1)-cyclic form.

Proof. By lemma 1, we know that every dotless kropki graph
have Hamiltonian cycle.

Let v0, v1, . . . , vn−1, v0 be vertices sequence that establish
the Hamiltonian cycle, then we can construct puzzle solution
for row r by (r, i, xr,i) coordinates with xr,i = vi. Represent-
ing it in graph, it’s clear that xr,i must be connected to xr,i−1

and xr,i+1, which have been fulfilled by the Hamiltonian cycle.
Notice that for every r, c ∈ {0, 1, . . . , (n − 1)}, xr,c is

adjacent to xr,c−1, xr,c+1, xr−1,c, and xr+1,c. If the puzzle
solution is in form of 1-cyclic like we already defined on def-
inition 2, we will have xr,i−1 = xr+1,i and xr,i+1 = xr−1,i.
So, if we consider the row r − 1 and row r + 1, we need no
any additional edges for the graph. Thus, we will not breaking
any kropki rules and the solution still satisfy the kropki puzzle.
Proof for (n− 1) is analogous.

By theorem 3 we conclude that n-ordered dotless kropki
puzzle always have solution in 1-cyclic and (n − 1)-cyclic
form, but are they the only solution form?

Theorem 4. Let L be 6-ordered dotless kropki puzzle, then L
only have 1-cyclic and 5-cyclic form solution.

Proof. We already know that 6-ordered dotless kropki puzzle
have solution in 1-cyclic or 5-cyclic form. So, we only need
to proof there are no other form solution.

Since L is latin square, then every column should contain
2. So, we will have (r, 1, 2) as solution coordinate for some
r. However, notice that 2 can only be connected to 5, 6, this
implies (r, 0, 6) and (r, 2, 5) or (r, 0, 5) and (r, 2, 6) must be
the other solution coordinates.

Let (r, 0, 6) and (r, 2, 5) be the other solution coordinates.
Notice that 3 can only be connected to 1, 5. Thus, we will have
(r, 3, 3), (r, 4, 1), and (r, 5, 4) as another solution coordinates.
So, if we look at the row r, we will have 6, 2, 5, 3, 1, 4
sequence as solution of the puzzle on row r. On the other
hand, if we let (r, 0, 5) and (r, 2, 6) as solution coordinates,
then we will have 5, 2, 6, 4, 1, 3 sequence as solution of the
puzzle on row r.

So, the puzzle always should contain 6, 2, 5, 3, 1, 4 or
5, 2, 6, 4, 1, 3 sequence in some row to be solvable.

Let L have row of 6, 2, 5, 3, 1, 4 for the solution. Consid-
ering the solution coordinates of row r, we can only have
(r+1, 0, 2) or (r+1, 2, 2) as other solution coordinate. If we
have (r+1, 2, 2) as solution coordinate, we are going to have
(r+1, 0, 4), (r+1, 1, 6), (r+1, 3, 5), (r+1, 4, 3), (r+1, 5, 1) as
other solution coordinate. This also implies (r− 1, 0, 2), (r−
1, 1, 5), (r − 1, 2, 3), (r − 1, 3, 1), (r − 1, 4, 4), (r − 1, 5, 6) as
other coordinate. Repeating this, we will have k = 1 such
that xr,c = xr+1,c+1 for all r, c, which means the solution is
1-cyclic.

With similar approach and letting (r+1, 0, 2), we will have
5− cyclic solution. We will also have similar result by letting



INTERNATIONAL JOURNAL OF COMPUTING SCIENCE AND APPLIED MATHEMATICS VOL. 10, NO. 1, MARCH 2024 9

(r, 0, 5) and (r, 2, 6) as solution coordinates. So, no matter
how we choose the possibility, it will be always 1-cyclic or
5-cyclic.

Considering the permutation of latin square row, we can
easily see that there are only 2× 6× 2 = 24 possible solution
for 6-ordered dotless kropki puzzle. Unfortunately, the more
vertices the dotless kropki graph have, the more complex it
will be.

Theorem 5. Let L be 7-ordered dotless kropki puzzle. If the
puzzle solution is in k − cyclic form, then k = 1 or 6

Proof. By theorem 3, we know that 7-ordered dotless kropki
puzzle must have a solution in 1-cyclic and 6-cyclic form. So,
Assume the solution is in k − cyclic form with k ̸= 1, 6.

As already mentioned in the proof of theorem 3, xr,i must
be connected to xr,i−1, xr,i+1, xr−1,i, xr+1,i. However, since
k ̸= 1, 6, then the vertices connected to xr,i must be distinct.

Now, let k = 2, then the dotless kropki graph must contain
this below graph as subgraph.

xr,i

xr,i+1

xr,i+2

xr,i+3

xr,i+4

xr,i+5xr,i+7

Call it graph G = (V,E). Now take H = (V,E −
{(xr,i+1, xr,i+2), (xr,i+3, xr,i+4), (xr,i+5, xr,i+6)}) subgraph
of G, then we will have H as below

xr,i+7

xr,i+5xr,i+4

xr,i+3 xr,i+2

xr,i+1xr,i

As we can see, graph H contain subdivision of K3,3, so
by theorem 2 H must be nonplanar. Since H is not planar,
then G must be nonplanar. However, 7-ordered dotless kropki
graph is planar as shown below.

3 5 2 6 4

1

7

So, it’s impossible for the dotless kropki graph to contains G,
therefore k must not be 2. For k = 3, 4, 5, similar proof will
follow and it force k to be 1 or 6 only.

An alternative proof is to show that for solution to be k-
cyclic with k ̸= 1, (n− 1), then it should satisfy deg(v) ≥ 4
for every vertices v, but in 7-ordered dotless kropki graph
we have 2 with deg(2) = 3. This is also our background to
propose conjecture 1 later.

Of course the solution of dotless kropki puzzle doesn’t
always have to be k-cyclic. For example, we have valid non
k-cyclic solution for 8-ordered dotless kropki as below.

7 4 1 3 5 8 6 2
4 1 3 7 2 6 8 5
6 8 5 2 7 4 1 3
1 5 2 6 4 7 3 8
8 3 7 4 6 2 5 1
3 7 4 1 8 5 2 6
5 2 6 8 1 3 7 4
2 6 8 5 3 1 4 7

However, Finding all possibility of solution combination
is exhausting, even for n = 7. The cyclicity ensure degree
of every vertices v of G to be deg(v) = 4. Without it, it’s
possible to have deg(v) = 2, 3, 4. If we ignore what vertices
does the edge connecting to, we still have 37 = 2187 possible
combination to be examine. The number of combination for
n = 7 is still low, but it will grow exponentially as n
increasing.

After tedious brute force, we can’t find any another solution
of 7-ordered dotless kropki in any form other than 1-cyclic and
6-cyclic. We know brute force method is not practical for large
number of n. So, after proving theorem 5, we try to find any
properties that related to the solution classification.
8-ordered dotless kropki graph G = (V,E) is non-

planar because there’s subgraph H = (V − {4, 6}, E −
{(1, 3), (5, 7), (5, 8)}) which contains subdivision of K3,3. As
8-ordered dotless kropki graph will always be subgraph of
n-ordered dotless kropki graph with n > 8, then n-ordered
dotless kropki graph must be nonplanar for n ≥ 8.

We suspect distance of vertices pair, degree of vertices, and
the planarity of graph is related to construct the dotless kropki
puzzle solution, so we propose some conjecture which seems
to be true.

Conjecture 1. Let n ≥ 6 and G = (V,E) be n-ordered
dotless kropki graph, then there exists vi ∈ V such that
deg(vi) < 4 if and only if every k-cyclic solution form of
the kropki puzzle only satisfied with k = 1, (n− 1)

For left to right proof, it can be seen by looking through any
coordinate solution (r, c, xr,c). If we want k-cyclic solution
with k ̸= 1, (n − 1), then xr,c must be adjacent with distinct



INTERNATIONAL JOURNAL OF COMPUTING SCIENCE AND APPLIED MATHEMATICS VOL. 10, NO. 1, MARCH 2024 10

xr+1,c, xr−1,c, xr,c+1, and xr,c−1, which means deg(xr,c)
should be at least 4. Thus, it’s impossible to construct such
solution with deg(vi) < 4 for some vi. By theorem 3, the only
solution in k-cyclic form are 1-cyclic and (n− 1)-cyclic.

For right to left proof, we already prove through theorem 4
and 5 that k-cyclic solution form with k ̸= 1, (n− 1) doesn’t
exists for n = 6, 7. And, for n = 6, 7, we have deg(2) = 3 < 4
which hold true for the statement. To investigate further, we
also search all possible combination to create k-cyclic form
for n = 8.

Let n = 8. We need to find all Hamiltonian cycle from 8-
ordered dotless kropki graph and use the Hamiltonian path of
the cycle as our solution of row 0’s puzzle. After that, we can
construct our k-cyclic by shifting every elements of the row
(r− 1) to fill row r by k and prove that there will be at least
one adjacent cells which break the kropki puzzle rules.

For illustration, let’s take 135274681 as our Hamiltonian
cycle from 8-ordered dotless kropki graph, then we can fill the
row 0 of our solution candidate with 13527468 consucetively.

Fig. 2: Our solution candidate for 8-ordered dotless kropki

Then, shifting the previous row’s element by k cells with
k = 1, 2, . . . , 7 respectively, we will have below k-cyclic form
as in figure 3 from figure 2. The shaded cells are the elements
that break the rules of latin square or kropki.

Fig. 3: Every k − cyclic form from figure 2

By theorem 3, we know that 1-cyclic and 7-cyclic form
solution exist. However, from the figure 3, we can see that
there are no any other solution for k = 2, 3, . . . , 6, at least
with our choosen Hamiltonian cycle before, because it will
either break the latin square rules (if k, n is coprime) or kropki
rules.

Since if k, n coprime, then the k-cyclic form will not satisfy
latin square rules, thus we can neglect every k that coprime
with n to ease our work. So that for n = 8, we only need
to inspect all the 3-cyclic, 5-cyclic form for our solution
candidate.

The complete list of Hamiltonian path and every k-cyclic
candidate solution that need to be inspected for n = 8 are
given in our supplementary files, and all of the candidate
solution will have at least one adjacent cell that broke kropki
rules. Moreover, for n = 8 we have deg(4) = 3 < 4, which
again analogous with our statement.

Interestingly, for n > 8, it seems we will always find k-
cyclic form solution with k ̸= 1, (n− 1), which also stronger
our notion for conjecture 1. Figure 4 show one of such solution
for n = 9, 10, 11, 12.

Fig. 4: k-cyclic solution with k ̸= 1, (n− 1) for n = 9, 10, 11, 12

Remember that for n = 9, 10, 11, 12, every degree of the
vertices always equals or more than 4, and Figure 4 show
that there exists k-cyclic form solution of kropki with k ̸=
1, (n− 1), which is in line with our propose conjecture.

Furthermore, we propose our next conjecture.

Conjecture 2. For n ≥ 6, the solution of n-ordered dotless
kropki is only in 1-cyclic and (n− 1)-cyclic form if and only
if n-ordered dotless kropki graph is planar.

We know that dotless kropki graph is planar only if n = 6, 7.
Through theorem 4, 5, and some small describing about
finding solution through brute force, we have right to left
proof.

For left to right proof, we may examine it through contra-
positive statement. So, if we have nonplanar graph, then there
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must be other solution other than in 1-cyclic and (n−1)-cyclic
form.

The easiest attempt to validate that it is probably by finding
any k−cyclic solution with k ̸= 1, n−1. However, we should
find general condition so that the Hamiltonian cycle on the
dotless kropki graph will preserve the condition of latin square
and kropki rules to not be broken. (Thus, we automatically
eliminate all possible non-coprime n, k pair, since it’ll not
hold latin square properties anymore). So, if we can prove
conjecture 1, then conjecture 2 will be proven automatically.

Since we already found non k-cyclic solution for 8-ordered
dotless kropki puzzle, we also suspect there are non k-cyclic
solution for arbitary n-ordered dotless kropki puzzle, with n ≥
8.

For more generalization, we also propose third conjecture
as below.

Conjecture 3. Let L be latin square puzzle with some re-
striction of the element adjacency. If the constructed graph
G = (V,E) of the puzzle’s elements is planar and contain
Hamiltonian cycle, then the puzzle solution must be in 1-cyclic
or (n− 1)-cyclic form.

For partial work, let’s assume that L only have k-cyclic form
solution with k ̸= 1, (n−1), let k, n coprime, and construct the
solution by one row of v0, v1, v2, . . . , vn−1 Hamiltonian path
from the Hamiltonian cycle with vi ∈ G(V ), then vi must be
connected to vi+1, vi−1 (by Hamiltonian path) and vi+k, vi−k

(by additional edge from (r − 1), r, and (r + 1) adjacency).
Since we have n, k coprime, then we must have vi+k ̸=

vi−k. It’s still possible that (vi+k, vi−k) ∈ E(G). However,
let’s assume that (vi+k, vi−k) /∈ E(G) for now.

Let’s take vertices vi, vi+1, vi+k, vi+k+1, vi−k, vi−k+1. It’s
obvious that vi is connected to vi+1, vi+k and vi−k.

Since the solution is k-cyclic, we will also have vi+k+1

connected to vi+k (from the Hamiltonian path) and vi+1 (from
the additional edge). With similar reasoning, we also will have
vi−k+1 connected to vi+1 and vi−k.

Remember that the row solution constructed from Hamil-
tonian cycle, thus for vi+k+1 ∈ V (G), we must have
path from vi+k+1 to vi−k by vi+k+1, vi+k+2, . . . , vi−2k, vi−k

through Hamiltonian path and additional edge for the
last edge. Within similar reasoning, we also will have
vi−k+1, vi−k+2, . . . , vi−1vi+k−1, vi+k path from vi−k+1 to
vi+k without intersecting the path of vi+k+1 to vi−k. This
prove that the graph will have subdivision of K3,3, so by
theorem 2 it must be nonplanar and contradict the planarity
hypothesis.

However, the same argument will not work if (vi+k, vi−k) ∈
E(G), because then we will have vi+k+1 = vi−k. Also,
of course the works only covered some possibility since we
assume that the solution is on k-cyclic. However, we hope this
partial work will give insight for further study.

IV. CONCLUSIONS

We create theorem 3, 4, and 5 to find the solution of dotless
kropki puzzle and propose conjecture 1, 2, and 3 as open
questions from our search of dotless kropki puzzle solution.
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