
INTERNATIONAL JOURNAL OF COMPUTING SCIENCE AND APPLIED MATHEMATICS VOL. 10, NO. 1, MARCH 2024 12

Elementary Algorithmic Methods
for Solving Suguru Puzzles

Butrahandisya, Muhammad Arzaki, and Gia Septiana Wulandari

Abstract—We discuss elementary algorithmic aspects of the
Suguru puzzle—a single-player paper-and-pencil puzzle intro-
duced in 2001 and confirmed NP-complete by Robert et al. in
2022 [1]. We propose a backtracking algorithm with pruning
optimizations for solving an m×n Suguru puzzles containing R
regions and H hint cells in O(R · (mn−H + 2)!) time. Despite
this factorial asymptotic upper bound, a C++ implementation of
our proposed algorithm successfully solved all Suguru instances
with no more than 100 cells using a personal computer in less
than 0.5 seconds. We also prove that any Suguru instance of size
m× n with either m = 1 or n = 1 can be solved in linear time
regarding of the puzzle size. Finally, we provide an upper bound
for the number of solutions to such tractable instances.

Index Terms—asymptotic analysis, backtracking, Suguru puz-
zle, tractable subproblems

I. INTRODUCTION

S uguru (also known as Nanbaburokku) is a single-player
pencil-and-paper puzzle invented by Naoki Inaba, a

prominent Japanese puzzle designer. It first appeared in 2001
[2] and was recently proven NP-complete by Robert et al.
in 2022 [1]. Like the famous Sudoku, the player must fill the
empty cells in a rectangular grid, satisfying some puzzle rules.
The game is played on an m×n grid partitioned into regions.
A region is a collection of orthogonally connected cells. The
goal is to fill all cells with numbers such that:

1) no two cells in a region can contain the same number;
2) no two adjacent cells, either orthogonally or diagonally,

can contain the same number;
3) a number in a cell must be between 1 and the size of the

region it belongs to, where the size of a region is defined
as the number of cells in it.

Puzzles have long been regarded as captivating mental chal-
lenges that have entertained and engaged individuals through-
out history. They provide leisure and diversion opportunities
and stimulate cognitive skills such as critical thinking and
problem-solving [3]. Moreover, theoretical aspects of puzzles
have garnered substantial interest from the scientific commu-
nity in the last twenty years owing to their profound links
with crucial problems in mathematics and the theory of com-
putation, resulting in extensive investigations into their math-
ematical and computational aspects (see [4]–[6] for extensive

Butrahandisya was an undergraduate student at Computing Laboratory,
School of Computing, Telkom University, Bandung 40257, Indonesia, email
butrahandisya@gmail.com.

Muhammad Atzaki and Gia Septiana Wulandari are with
Computing Laboratory, Telkom University, Bandung 40257,
Indonesia, email: arzaki@telkomuniversity.ac.id,
giaseptiana@telkomuniversity.ac.id

Manuscript received June 20, 2023; accepted March 21, 2024.

investigations). Furthermore, a variety of paper-and-pencil-
based games have been confirmed NP-complete, including but
not limited to (in chronological order): Nonogram (1996) [7],
Sudoku (2003) [8], Nurikabe (2004) [9], Heyawake (2007)
[10], Hashiwokakero (2009) [11], Kurodoko (2012) [12],
Shikaku and Ripple Effect (2013) [13], Yosenabe (2014) [14],
Fillmat (2015) [15], Dosun-Fuwari (2018) [16], Tatamibari
(2020) [17], Kurotto and Juosan (2020) [18], Yin-Yang (2021)
[19], Tilepaint (2022) [20], and Suguru (2022) [1].

The NP-completeness of Suguru puzzles implies the exis-
tence of a polynomial-time verification procedure for check-
ing whether an arbitrary configuration is a solution to a
Suguru instance. However, solving a Suguru puzzle remains
an exponential-time task because no known polynomial-time
algorithm exists for any NP-complete problem. Moreover,
formal algorithmic investigation for solving Suguru puzzles
has been relatively limited as it has only recently proven NP-
complete. Investigations on elementary algorithmic methods
such as the exhaustive search and prune-and-search—which
utilizes a similar approach to the methods used in this paper—
have been carried out on puzzles such as Yin-Yang [21],
Tatamibari [22], Tilepaint [23], Path Puzzles [24], and Juosan
Puzzles [25]. More advanced techniques are also available for
solving NP-complete puzzles, such as SAT solvers [26], [27]
and the deep learning method [28].

This paper discusses an elementary approach, the back-
tracking method, enhanced with pruning optimizations. We
demonstrate that this approach can solve any Suguru puzzle,
with the caveat that the solving time increases in factorial
factor in terms of the puzzle size and the number of hints. In
addition to this, we delve into the exploration of a tractable
variant of the Suguru puzzle. Investigating such variants of
NP-complete problems holds significant importance in com-
putational complexity theory [29].

The remainder of this paper is structured as follows. Section
II introduces some definitions and notations regarding Suguru
puzzles’ data structure and mathematical representation, as
well as some relevant theoretical results. Section III presents
an algorithm that verifies a solution to a Suguru puzzle
of size m × n in O(mn) time. Section IV discusses our
proposed backtracking algorithm—which incorporates pruning
optimizations—for solving arbitrary m × n Suguru puzzles.
Specifically, we prove that our backtracking algorithm can
solve an arbitrary m×n Suguru instance with R regions and H
hint cells in O(R ·(mn−H+2)!) time. Section V investigates
a tractable variant of the puzzle. We show that any m × n
Suguru instances where m = 1 or n = 1 are solvable in linear
time. Nevertheless, we argue that discovering all solutions to a

mailto:butrahandisya@gmail.com
mailto:arzaki@telkomuniversity.ac.id
mailto:giaseptiana@telkomuniversity.ac.id

INTERNATIONAL JOURNAL OF COMPUTING SCIENCE AND APPLIED MATHEMATICS VOL. 10, NO. 1, MARCH 2024 13

tractable Suguru puzzle may require a non-polynomial number
of computational steps. The experimental results to evaluate
our proposed algorithm’s practical performance are discussed
in Section VI. Lastly, the important results of this paper are
summarized and concluded in Section VII.

II. PRELIMINARIES

All arrays in this paper use one-based indexing and are
written using uppercase letters. The notation Ai for a one-
dimensional array A of length or size n denotes the i-th entry
of array A where 1 ≤ i ≤ n. The notation Ai,j for a two-
dimensional array A of m rows and n columns denotes the
entry in i-th row and j-th column of array A where 1 ≤ i ≤ m
and 1 ≤ j ≤ n.

A. Definition and Representation of Suguru Puzzles

Before delving into the technical details and algorithms
related to the Suguru puzzle, we introduce the definition of
Suguru instance, configuration, and solution in Definition 1.
Moreover, Fig. 1a and Fig. 1b depict a Suguru instance and
one of its corresponding solutions.

Definition 1. A Suguru instance of size m× n is defined as
a grid of m rows and n columns containing mn cells divided
into one or more regions. A region is a collection of one or
more orthogonally connected cells. The size of a region is
the number of cells within such a region. Initially, each cell
may either be empty or contain an integer between 1 and s
(inclusive), where s is the size of the region it belongs to. A
configuration of a Suguru instance is obtained by filling all
of its empty cells with non-negative integers. A solution to a
Suguru instance is a configuration that satisfies the following
rules of Suguru:

1) no two cells in the same region can contain the same
integer;

2) no two adjacent cells, either orthogonally or diagonally,
can contain the same integer; and

3) all cells must be filled with an integer between one and
the size of the region it belongs to.

In this paper, we formally represent a Suguru instance of
size m×n using a two-dimensional array G of the same size
such that Gi,j = (hi,j , ri,j) where hi,j and ri,j respectively
denote the hint for the cell (i, j) and the region label to which
the cell (i, j) belongs. The value ri,j is a positive integer
between 1 and R (inclusive), where R is the number of regions
in the corresponding instance. The regions are numbered using
the row-major order format, i.e., the first region in the first row
is labeled with one while the last region visited is labeled with
R. The value hi,j is a non-negative integer between 0 and
sri,j where sri,j denotes the size of the region labeled ri,j .
Furthermore, hi,j = 0 if and only if the cell (i, j) is empty. A
cell (i, j) that initially contains a number (or mathematically
hi,j ̸= 0) is called a hint cell. From Definition 1, we know that
a Suguru configuration C corresponding to a Suguru instance
G is obtained by imposing the value of hi,j to a positive
integer for every cell (i, j), that is, we need to fill every
empty cell with a number satisfying the constraint above.

5

3

(a) An instance of a Suguru
puzzle.

5

3

1 4 1

2 2

3 1

(b) An example of a solution
to the instance in Fig. 1a.

(0,1) (0,1) (0,2)
(0,1) (5,1) (0,2)
(0,1) (0,3) (3,2)

(c) Array G for the Suguru
instance in Fig. 1a.

(1,1) (4,1) (1,2)
(2,1) (5,1) (2,2)
(3,1) (1,3) (3,2)

(d) Representation of a so-
lution to the instance in Fig.
1a obtained by altering 0 to
a positive integer in array G
in Fig. 1c.

Fig. 1: An example of a Suguru instance (Fig. 1a), its solu-
tion (Fig. 1b), and data structure representations for Suguru
instance and solution (Fig. 1c and Fig. 1d).

We provide an example of a Suguru instance, its solution,
and its corresponding data structure formalization in Fig. 1.
Using this convention, the Suguru instance and solution in
Fig. 1a and Fig. 1b are respectively represented formally as
two-dimensional arrays of pairs in Fig. 1c and Fig. 1d.

B. Summary of the NP-Completeness of Suguru Puzzles

Suguru puzzles are recently proven NP-complete by Robert
et al. in 2022 [1]. The authors demonstrated the NP-
completeness of these puzzles by establishing a polynomial-
time reduction from the Planar Circuit SAT problem to the
Suguru puzzle. According to Robert et al., the Planar Circuit
SAT problem is similar to the Planar SAT problem, shown NP-
complete by Lichtenstein [30]. The Planar SAT problem was
proven NP-complete by the reduction from the 3-Quantified
Boolean Formula problem, similar to the 3-SAT problem.

In the Planar Circuit SAT problem, a planar logical circuit
is given and connected solely to the logic gates responsible for
computing a Boolean formula. A planar circuit is a Boolean
circuit that can be drawn on a plane such that none of its wires
intersect.

Robert et al. in [1] construct a polynomial-time reduc-
tion using constant-sized partial instances of Suguru puzzles,
known as gadgets, for representing objects in the Planar Cir-
cuit SAT problem. The summary of the gadgets’ constructions
is described as follows:

1) The construction of types of cells. Four types of cells are
used to formally define the gadgets: input, output, prop-
agated, and independent cells. These cells are explained
in [1, Fig. 6].

2) The construction of true and false gadgets. The true and
false gadgets are constructed using a region of size 1×2
or 2× 1 in a Suguru instance. It is important to note that
the orientation of the cells determines whether the gadget

INTERNATIONAL JOURNAL OF COMPUTING SCIENCE AND APPLIED MATHEMATICS VOL. 10, NO. 1, MARCH 2024 14

is either a true or false gadget. For further illustration of
these gadgets, see [1, Fig. 4] and [1, Fig. 5].

3) The construction of the not gadget. The not gadget is
created using a Suguru instance of size 5×11. This gadget
takes an input and produces an output. The not gadget is
illustrated in [1, Fig. 7].

4) The construction of the or and and gadgets. The or and
and gadgets are constructed using a Suguru instance of
size 5× 11. These gadgets take two inputs and generate
an output. Although the or and and gadgets are alike,
they differ in some of the predetermined cells. Pictorial
representations of these gadgets are available in [1, Fig.
8] and [1, Fig. 9].

5) The construction of split and split stop gadgets. The split
gadget is created using a Suguru instance of size 5× 22
and propagates its input to two outputs of identical values
(true or false). In contrast to the split gadget, the split
stop gadget propagates its input to just one of the outputs.
The split and split stop gadgets are illustrated in [1, Fig.
10] and [1, Fig. 11], respectively.

6) The construction of the horizontal and vertical isolator
and connector. Robert et al. in [1] introduced horizontal
and vertical isolators and connectors to connect all of
the logical gadgets. The horizontal isolator, horizontal
connector, vertical isolator, and vertical connector are
respectively illustrated in [1, Fig. 12], [1, Fig. 13], [1,
Fig. 14], and [1, Fig. 15].

According to Robert et al. [1], it is possible to transform
any Planar Circuit SAT instance into a Suguru instance using
the gadgets above. Furthermore, if the planar circuit has a
maximum of x logical gadgets in a row of its layout and a
maximum of y logical gadgets in a column, the correspond-
ing Suguru instance constructed contains x × 22 rows and
y × 15 − 10 columns. Thus, the Suguru instance constructed
is polynomially proportional to the input size. To determine
whether a formula in the Planar Circuit SAT instance is
satisfiable, we set the output in the corresponding Suguru
instance to true. The formula is satisfiable if a solution to
the Suguru instance exists. Consequently, the polynomial-time
reduction is established. Moreover, since the compliance of
Suguru configuration to the puzzle’s rules can be carried out
in polynomial time, they belong to the NP-complete class.
Section III of this paper also discusses a polynomial-time
verification algorithm that can check the compliance of an
arbitrary Suguru configuration to the puzzle’s rules.

C. The Non-existence of a Particular 2× 2 Subgrid

In a Suguru instance, it is possible to have a 2× 2 subgrid
that contains more than one complete region. To formally
illustrate this condition, we first discuss some collections of
cells in Definition 2 and Definition 3. Fig. 2 illustrates an
example of a grid that is a subgrid of another larger grid and
a grid that is not.

Definition 2. A contiguous orthogonal collection of cells in
grid S is a subgrid of G if there exists S in G and the region
for each cell in S is identical to the region for each cell in G.

2 5

3 1

(a) Grid S1 of size 2× 2.

2 5

3 1

(b) Grid S2 of size 2× 2.

5

3 3

1 4 1

2 2

1

(c) Grid G of size 3× 3.

Fig. 2: Grid S1 in Fig. 2a is a subgrid of grid G in Fig. 2c,
while Grid S2 in Fig. 2b is not.

Definition 3. A region is completely inside a subgrid if all its
cells are contained within the subgrid.

In the following theorem, we prove an elementary property
that a Suguru instance with a 2 × 2 subgrid containing more
than one complete region has no solution.

Theorem 1. If G is a Suguru instance of size m × n that
contains at least one 2 × 2 subgrid with more than one
complete region, then G has no solution.

Proof. Suppose G is a Suguru instance that contains a 2× 2
subgrid S consisting of more than one complete region, then
at least two cells within S must contain the integer 1. Since
all cells in S are adjacent to each other, this results in two
adjacent cells having the same number, which violates one of
the Suguru puzzle’s rules.

III. VERIFYING SUGURU SOLUTIONS IN POLYNOMIAL
TIME

This section outlines an algorithm for verifying whether a
configuration constitutes a solution to a Suguru instance. The
algorithm requires a two-dimensional array of pairs of integers
denoting the configuration of a particular Suguru instance.

A. Determining the Size of Each Region

Suppose we consider a Suguru configuration C containing
R regions where each cell (i, j) consists of a pair (hi,j , ri,j).
We define an array S = [s1, s2, . . . , sR] where sk denotes the
size of region k (1 ≤ k ≤ R). Here, sk = |{(i, j) : ri,j = k}|.
We can determine the array S by traversing all mn cells in
row-major order and increment the value sk if and only if
ri,j = k for a cell (i, j). Thus, the asymptotic upper bound
of the running time for determining the array S is O(mn).
Moreover, the process to construct S requires O(R) space
where R ≤ mn.

INTERNATIONAL JOURNAL OF COMPUTING SCIENCE AND APPLIED MATHEMATICS VOL. 10, NO. 1, MARCH 2024 15

B. Computing the Number of Cells Containing a Particular
Number within a Region

To check if every cell (i, j) has a unique value within a
particular region k (1 ≤ k ≤ R), we use a list CV of “cell
values” of size R whose k-th component is a list of size sk.
The notation CVα,β denotes the number of cells (i, j) such that
hi,j = β and ri,j = α, that is, the number of cells in region α
filled with the number β. We determine CV by traversing all
mn cells in row-major order and increment the value CVα,β if
and only if α = ri,j and β = hi,j for a cell (i, j). The process
to construct CV requires O(mn) time and O(mn) space.

C. Validating the Compliance of Cell Values within a Region

To verify if the value of hi,j in a given cell (i, j) complies
with the region’s size, we check the condition 1 ≤ hi,j ≤ sk,
where k corresponds to the region ri,j that the cell belongs to.
The validation process for a cell takes a constant O(1) time.

D. Validating the Uniqueness of Cell Values within a Region

To validate if the value of hi,j in a given cell (i, j) is
unique within its corresponding region, we need to ensure
that it satisfies the condition CVα,β = 1 where α and β
corresponds to the region ri,j and the value hi,j , respectively.
The validation process for a cell takes constant O(1) time.

E. Validating the Compliance of Adjacent Cell Values

This process ensures that the value of hi′,j′ of any cell
(i′, j′) that is adjacent to the cell (i, j) differs from hi,j .
Mathematically it checks that if |i− i′| ≤ 1 and |j − j′| ≤ 1
for any cell (i′, j′) ̸= (i, j), then hi,j ̸= hi′,j′ . The validation
process for a cell is constant, i.e., O(1), since a cell can only
have at most eight adjacent cells.

F. Main Verification Process

To verify whether a configuration is a solution to a Suguru
instance, we initially perform the computations outlined in
Section III-A and Section III-B, which have a time complexity
of O(mn). Subsequently, we verify that all cell values satisfy
the conditions specified in Section III-C, Section III-D, and
Section III-E. This process has a time complexity of O(mn),
since we need to check for mn cells, and for every cell, each
validation step has a constant time complexity of O(1). This
demonstrates that verifying whether a Suguru configuration is
also a solution can be done in polynomial time. Additionally,
the space complexity of this process is O(mn) as the size of
the list CV is proportional to mn.

IV. A BACKTRACKING APPROACH FOR SOLVING SUGURU
PUZZLES

Backtracking is an algorithmic strategy used to explore all
or some possible solutions to a problem by incrementally
building partial solutions and testing if they satisfy the prob-
lem’s constraints. The method abandons (or prunes) a partial
solution when it determines that it cannot lead to a valid
solution within the constraints. This approach involves making

a series of choices and using recursion to traverse the state
space tree until a solution is found or all possibilities are
exhausted [31]. Backtracking is chosen as our approach for
solving Suguru puzzles due to its efficiency compared to other
elementary methods, such as the exhaustive search approach
(see [23]–[25] for such arguments).

To solve the Suguru puzzle using a backtracking approach,
we initially compute the arrays S of region sizes and CV of
cell values as explained in Section III-A and Section III-B.
We achieve this by incrementing sk where k = ri,j for each
cell (i, j) and CVα,β for each hint cell (i, j), where α =
ri,j and β = hi,j . Recall that CV can be considered as two-
dimensional list of size R whose k-th component is a list
of size sk such that CVα,β is the number of cells in region
α whose hints are equal to β. These computations yield the
necessary information to construct a list of length R containing
sets of integers denoted by χ. Each set χα (1 ≤ α ≤ R)
within χ consists of numbers β (1 ≤ β ≤ sα) that do not
appear in any of the initial hint cells within region α where
1 ≤ α ≤ R. In other words, χα contains a set of possible
values for every empty cell in the region α. Mathematically,
χα = {β : 1 ≤ β ≤ sα, CVα,β = 0}. Subsequently, the
algorithm follows these steps:

1) We fill the cells in row-major order. For each hint cell
(i, j), we leave it unchanged. However, for each empty
cell (i, j), we attempt to fill it with the values β from
the set χα corresponding to region α = ri,j . We iterate
through the elements of χα in increasing order. As we
fill the cell (i, j) with a value β, we simultaneously
increment CVα,β .

2) After assigning a value β to cell (i, j), we evaluate
whether backtracking is necessary based on the following
conditions:

a) any of the adjacent cells to cell (i, j) have the same
value as β;

b) there exists another cell in the same region ri,j with
the value β (i.e., CVα,β > 1 where α = ri,j).

If any of the above conditions are met, we backtrack
by first undoing the value assignment of cell (i, j) and
simultaneously decrementing CVα,β where α = ri,j . We
then proceed to try other possible values for cell (i, j).
However, if no other values are available to try for cell
(i, j), we continue backtracking further, moving back to
the previous cell.

3) Once all cells have been successfully filled, a solution
has been found, and the algorithm terminates.

4) If we backtrack after trying all possible values β for
cell (1, 1), or if we backtrack to the hint cell (1, 1), we
conclude that the instance has no solution.

To provide a more elaborate description of the algo-
rithm, we introduce two auxiliary functions: the function
NEXTCELL(i, j), which returns the next cell (i′, j′) following
the row-major order traversal from cell (i, j), and the function
MUSTBACKTRACK(i, j), which determines if backtracking is
necessary from cell (i, j) based on the conditions mentioned
in step 2 above.

Algorithm 1 provides a more detailed description of the

INTERNATIONAL JOURNAL OF COMPUTING SCIENCE AND APPLIED MATHEMATICS VOL. 10, NO. 1, MARCH 2024 16

Algorithm 1 MUSTBACKTRACK(i, j) returns true if we need
to backtrack based on the current condition of cell (i, j).

Input: The cell to be checked (i, j) taken from an instance
Gi,j .

Output: If any of the backtracking conditions are met, the
function returns true.

1: (h, r)← Gi,j ▷ h is the hint and r is the region label
2: ConditionA← false
3: for all cell (i′, j′) adjacent to (i, j) do
4: (h′, r′)← Gi′,j′

5: ConditionA← ConditionA or h = h′

6: end for
7: ConditionB ← CVr,h > 1
8: return ConditionA or ConditionB

MUSTBACKTRACK(i, j) function. The variable ConditionA
in line 2 of Algorithm 1 stores a Boolean value illustrating
whether any cells adjacent to the cell (i, j) have hints equal
to hi,j . The variable ConditionB in line 7 of Algorithm 1
describes the condition of whether a particular hint hi,j within
a region r appears more than once. Notice that this algorithm
involves one iteration in lines 3-5 to update the value of
ConditionA. Since a cell (i, j) has at most eight adjacent
cells, we may assume that Algorithm 1 takes O(1) time for
an input cell (i, j).

Algorithm 2 expounds the backtracking algorithm, utilizing
NEXTCELL(i, j) and MUSTBACKTRACK(i, j) as subroutines.
These functions and procedures consider the variables G
and C, respectively representing the grid state during the
backtracking process and the grid state that constitutes a solu-
tion. Furthermore, these processes also consider the variables
CV as a list of size R whose k-th component is a list of
integers of size sk, and χ as a list of size R where each
component is a set of integers. Here, R denotes the number
of regions. By invoking SEARCH(1, 1) outlined in Algorithm
2, the search for a solution commences recursively using
the backtracking approach, starting from cell (1, 1). Fig. 3
visualizes the algorithm on a 3× 3 instance with two regions
and four hint cells.

We use the state space tree model of the backtracking pro-
cess to analyze the asymptotic complexity of the running time
for Algorithm 2. This running time is measured in terms of
the number of elementary operations as defined in [32]. In the
following theorem, the notation P (n, r) denotes the number
of r-permutations of n objects, i.e., P (n, r) = n!/(n − r)!
where n! denotes the factorial of n.

Theorem 2. The number of elementary operations in Algo-
rithm 2 for solving any Suguru instance of size m×n with R
regions is given by T (m,n,R) where

T (m,n,R) ≤ 1 +

R∑
α=1

[
εα∑
i=1

((
α−1∏
κ=1

εκ!

)
· P (εα, i) · i

)]

where εα denotes the number of empty cells in region α (1 ≤
α ≤ R).

Proof. In the worst-case scenario, the number of states in the
backtracking algorithm equals the number of nodes in the state
space tree. In this proof, it is important to note that when we
refer to a state, we specifically mean a valid state unless it is
specified otherwise. By valid state, we mean a state with at
least one child node within the search space tree (except for
the terminal state).

Each region α allows an empty cell there to be filled with
any value from the set χα, where χα is the set of numbers
β (1 ≤ β ≤ sα) that do not appear in any of the initial hint
cells within region α. Here, sα denotes the number of cells in
region α. Consequently, each region α (1 ≤ α ≤ R, where R
is the number of regions), contains εα = |χα| empty cells.

The order in which empty cells are filled does not impact
the number of states in the state space tree, provided we
exclude the pruning process for the condition related to the
adjacent cells. This is because the number of possible values
for all empty cells in a region remains identical regardless of
the current state’s condition. For simplicity, we consider the
generated state space tree as a result of filling the empty cells
in the order of region labels.

Each level in the state space tree, except for the root
state (i.e., the initial puzzle state) level, corresponds to states
resulting from filling a single empty cell, branching from the
previous level. The immediate ε1 levels after the root consist
of states obtained by filling the empty cells in region 1. The
following ε2 levels correspond to the states obtained by filling
the empty cells in region 2 after all empty cells in region 1 are
filled. In general, εα levels starting at level

(∑α−1
κ=1 εκ

)
+ 1

until level
∑α

κ=1 εκ correspond to the states obtained by filling
the empty cells in region α (1 ≤ α ≤ R) after all cells in
region κ for 1 ≤ κ ≤ α − 1 are filled. To visualize this state
space tree, see Fig. 4.

Level 1 involves filling the first empty cell in region 1. In
this level, there are ε1 states. This can be easily understood
by observing that the root state branches out into ε1 states, as
there are ε1 possible values for the first empty cell.

Level 2 corresponds to possible states of filling the second
empty cell in region 1. Notice that there are ε1(ε1−1) possible
states in this level because there are ε1 states in the previous
level (level 1), and each of those states branches to ε1 − 1
states. Moreover, ε1 − 1 possible values exist for the second
empty cell, as one value is already taken to fill the first empty
cell.

Generally, the number of states in the i-th level (2 ≤ i ≤ εα)
corresponding to region α can be determined based on the
number of states in the preceding level. Each state from the
preceding level branches to εα−(i−1) states. This is because
by the i-th level, i− 1 out of εα values in the set χα are no
longer possible to be filled into the current empty cell, as they
are already taken by i− 1 previous cells in the region α.

To ease our analysis, let us introduce the function S(i, α) to
count the number of states at the i-th level within the εα levels
corresponding to the region α. We can define it recursively as
S(i, α) = S(i − 1, α) · (εα − (i − 1)), where 1 ≤ i ≤ εα,
S(1, 1) = ε1, and S(1, α) = S(εα−1, α−1) ·εα for any value
1 < α ≤ R. The reason for this is that the preceding level

INTERNATIONAL JOURNAL OF COMPUTING SCIENCE AND APPLIED MATHEMATICS VOL. 10, NO. 1, MARCH 2024 17

Algorithm 2 SEARCH(i, j) uses a backtracking approach by filling empty cells in row-major order to search for a solution to
a Suguru instance. Executing SEARCH(1, 1) commences the search for a solution starting from cell (1, 1).

Input: The cell (i, j) to be filled taken from an instance Gi,j . The initial instance is represented by a two-dimensional array
G.

Output: A solution to a Suguru instance (if any), or information that the instance has no solution.
1: if i ≤ m then
2: (h, r)← Gi,j ▷ h is the hint and r is the region label of the cell (i, j)
3: if h ̸= 0 then ▷ the cell (i, j) is a hint cell
4: (i′, j′)← NEXTCELL(i, j) ▷ go to the next cell based on row-major order traversal
5: SEARCH(i′, j′)
6: else ▷ the cell (i, j) is not a hint cell (i.e., it is empty)
7: for each integer β in χr do
8: Gi,j ← (β, r) ▷ set β as the value for the cell (i, j)
9: CVr,β ← CVr,β + 1 ▷ increment CVr,β by 1

10: if not MUSTBACKTRACK(i, j) then ▷ up to this point, filling the cell (i, j) with β does not violate the rule
11: (i′, j′)← NEXTCELL(i, j) ▷ go to the next cell based on row-major order traversal
12: SEARCH(i′, j′)
13: end if
14: Gi,j ← (0, r) ▷ filling the cell (i, j) with β violates the rule, hence h is reset to 0
15: CVr,β ← CVr,β − 1 ▷ decrement CVr,β by 1
16: end for
17: end if
18: else ▷ all cells in G are filled
19: C ← G ▷ set G as the configuration of the Suguru instance (which is also the solution)
20: terminate the algorithm
21: end if
22: if (i, j) = (1, 1) then ▷ at this point, the instance has no solution
23: terminate the algorithm
24: end if

of the first level of the region 1 is the root state level. On
the other hand, for α > 1, the preceding level of the first
level corresponding to the region α is the last level from the
previous region (region α − 1). Simplifying the function for
region 1, we obtain S(i, 1) = ε1 · (ε1 − 1) · (ε1 − 2) · · · (ε1 −
(i − 1)) where 1 ≤ i ≤ εα. It can be proven that S(i, 1)
represents the number of i-permutations of ε1 elements. Thus,
within the ε1 levels corresponding to region 1, the i-th level
has S(i, 1) = P (ε1, i) states where 1 ≤ i ≤ ε1.

Now let us consider the first level corresponding to region
2, which is level ε1 +1. Notice that S(1, 2) = S(ε1, 1) · ε2 =
ε1! · ε2 states, as the preceding level (level ε1) has S(ε1, 1) =
P (ε1, ε1) = ε1! states. In general, we observe that S(i, α) =
S(εα−1, α− 1) ·P (εα, i) for α > 1. Simplifying the function
using mathematical induction to a non-recursive form, we also
observe that S(εα, α) = S(εα−1, α− 1) · εα! = ε1! · ε2! · ... ·
εα!. Therefore, the i-th level corresponding to region α has
S(i, α) =

(∏α−1
κ=1 εκ!

)
· P (εα, i) states where 1 ≤ i ≤ εα.

By considering all εα levels corresponding to a region α, it
is clear that the number of states associated with region α is
given by Sα where

Sα =

εα∑
i=1

((
α−1∏
κ=1

εκ!

)
· P (εα, i)

)
.

Accordingly, by taking into account all levels across all
regions, the maximum number of states in the tree is bounded

by S where

S = 1 +

R∑
α=1

Sα

= 1 +

R∑
α=1

[
εα∑
i=1

((
α−1∏
κ=1

εκ!

)
· P (εα, i)

)]
.

Furthermore, the algorithm performs i operations for each
state that belongs to the i-th level of the region α where 1 ≤
α ≤ R. This involves branching the current state into other i
invalid states, with each branching operation taking constant
time. This is because the set χα does not shrink as we fill
the cells in the region α. Thus, the number of elementary
operations in Algorithm 2 is:

T (m,n,R) ≤ 1 +

R∑
α=1

[
εα∑
i=1

((
α−1∏
κ=1

εκ!

)
· P (εα, i) · i

)]
,

where the inequality occurs because we omit the pruning
process related to the adjacent cells.

In an m × n Suguru instance with only one region and
ε empty cells, the number of states in the corresponding
state space tree as in the proof of Theorem 2 becomes
1 +

∑ε
i=1 P (ε, i). As a result, the number of elementary

operations involved for solving this instance using Algorithm
2 becomes T (m,n, 1) ≤ 1 +

∑ε
i=1 P (ε, i) · i. Notice that

INTERNATIONAL JOURNAL OF COMPUTING SCIENCE AND APPLIED MATHEMATICS VOL. 10, NO. 1, MARCH 2024 18

2

5

44

2

5

44

1

2

5

44

1 1 2

5

44

1 2

2

5

44

1 2

1

2

5

44

1 2

3

2

5

44

1 2

3 1

2

5

44

1 2

3 2

2

5

44

1 2

3 3

2

5

44

1 2

3 3

1

✓

Fig. 3: Illustration of the pruned state space tree generated by Algorithm 2 for solving a 3×3 Suguru instance (depicted in the
topmost part). The hint cells are indicated by bold red-colored numbers within the cells. Pruned states, which cannot possibly
lead to a solution as they meet any condition specified in step 2, are indicated by red crosses. The solution found is indicated
by a green check mark.

P (ε, i) ≤ ε! for any 1 ≤ i ≤ ε, thus
∑ε

i=1 P (ε, i) <
ε · ε! < (ε + 1)!. Accordingly, 1 +

∑ε
i=1 P (ε, i) · i <

1+
∑ε

i=1 P (ε, i) ·ε < 1+ε ·(ε+1)! < 1+(ε+2)!. Therefore,
the asymptotic upper bound for solving this instance can be
written as O((ε+2)!). Notice that the number of empty cells,
ε, can be expressed as mn − H , where H is the number of
hint cells in the instance. As a result, the asymptotic upper
bound for solving an m × n Suguru instance with only one
region and H hints using Algorithm 2 is O((mn−H + 2)!).

To analyze the asymptotic running time complexity of an
m × n Suguru instance with R regions and H hint cells, we
first prove the following lemma.

Lemma 1. Let a1, a2, . . . , an be n positive integers, then
(
∑n

k=1 ak)! ≥
∏n

k=1(ak!).

Proof. From the Multinomial Theorem (see, e.g., [33], [34]),
we have (a1+a2+···+an)!

a1!·a2!···an!
is a non-negative integer. This

quantity represents the number of ways to permute
∑n

i=1 ai
objects with ai indistinguishable objects of type i (1 ≤ i ≤ n).
Equivalently it also represents the coefficient of xa1

1 xa2
2 · · ·xan

n

in the expansion of (x1 + x2 + · · ·+ xn)
(a1+a2+···+an). Thus

(a1+a2+···+an)!
a1!·a2!···an!

≥ 1 and therefore the lemma is proven.

The following corollary establishes the closed-form expres-
sion for the asymptotic running time of Algorithm 2 for
solving a general m × n Suguru instance with H hint cells
and R regions. The proof of this corollary uses the fact that
the total number of empty cells in such an instance equals
mn−H , i.e.,

∑R
κ=1 εκ = mn−H .

Corollary 1. The asymptotic running time complexity of the
backtracking algorithm described in Algorithm 2 for solving
m×n Suguru instance containing H hint cells and R regions
is bounded above by O(R · (mn−H + 2)!).

Proof. From Theorem 2, the number of elementary operations
of Algorithm 2, denoted by T (m,n,R), satisfies the following
expression

T (m,n,R) ≤ 1 +

R∑
α=1

[
εα∑
i=1

((
α−1∏
κ=1

εκ!

)
· P (εα, i) · i

)]
.

(1)

To analyze the asymptotic upper bound of T (m,n,R),
let us first observe the upper bound of the expression∑εα

i=1

[(∏α−1
κ=1 εκ!

)
· P (εα, i)

]
on the right hand side of (1).

Notice that this expression is identical to Sα, i.e., the number

INTERNATIONAL JOURNAL OF COMPUTING SCIENCE AND APPLIED MATHEMATICS VOL. 10, NO. 1, MARCH 2024 19

Fig. 4: The state space tree generated by Algorithm 2 for solving a general m × n Suguru puzzle with R regions. Although
Algorithm 2 fills the empty cells in row-major order, the illustration presents a scenario where the empty cells are filled
according to the order of region labels. This approach is discussed in the proof of Theorem 2. Each node in the tree represents
a grid state, with the root node representing the initial grid state.

INTERNATIONAL JOURNAL OF COMPUTING SCIENCE AND APPLIED MATHEMATICS VOL. 10, NO. 1, MARCH 2024 20

of states associated with region α, as defined earlier in the
proof of Theorem 2. By using the fact that P (εα, i) ≤ εα!, the
definition of product, and Lemma 1, we observe the following
chains of inequalities

εα∑
i=1

[(
α−1∏
κ=1

εκ!

)
· P (εα, i)

]

≤
εα∑
i=1

[(
α−1∏
κ=1

εκ!

)
· εα!

]
(because P (εα, i) ≤ εα!)

=

εα∑
i=1

[(
α∏

κ=1

εκ!

)]
(definition of product)

≤
εα∑
i=1

((
α∑

κ=1

εκ

)
!

)
(by Lemma 1)

=

(
α∑

κ=1

εκ

)
! ·

εα∑
i=1

1.

Thus, we have

εα∑
i=1

[(
α−1∏
κ=1

εκ!

)
· P (εα, i) · i

]
≤

(
α∑

κ=1

εκ

)
! ·

εα∑
i=1

i.

Accordingly, we can bound the right hand side of (1) as
follows

R∑
α=1

(
εα∑
i=1

[(
α−1∏
κ=1

εκ!

)
· P (εα, i) · i

])

≤
R∑

α=1

((
α∑

κ=1

εκ

)
! ·

εα∑
i=1

i

)

<

R∑
α=1

((
α∑

κ=1

εκ

)
! · εα2

)

<

R∑
α=1

((
R∑

κ=1

εκ

)
! · εα2

)

=

R∑
α=1

(
(mn−H)! · εα2

)
<

R∑
α=1

(
(mn−H)! · (mn−H)

2
)

(since εα < mn−H)

= R · (mn−H)! · (mn−H)2

< R · (mn−H)! · (mn−H + 1) · (mn−H + 2)

= R · (mn−H + 2)!.

Therefore, the corollary is proven.

Notice that Corollary 1 complies with the condition when
the instance contains only one region, namely, the expression
O(R · (mn − H + 2)!) becomes O((mn − H + 2)!). Un-
surprisingly, this corollary aligns with a factorial complexity
class, considering the n-queen problem, another NP-complete
problem that shows factorial complexity when solved using
the backtracking technique [31].

V. TRACTABLE VARIANTS OF SUGURU PUZZLES

There are occasions where NP-complete problems, known
for their computational hardness, have solvable subproblems
in polynomial time. This means that although the general
problem remains NP-complete, certain sub-problems within it
can be efficiently solved. One recent example of such a case
is the Yin-Yang puzzle, which, despite being NP-complete,
possesses a polynomial-time solution for the puzzles of size
m × n where m ≤ 2 or n ≤ 2, including the search of all
possible solutions [21, Theorem 2 and Theorem 3]. Another
case involves Nonogram, another NP-complete puzzle that has
a tractable variant. Specifically, the subproblem where each
row or column consists of a single block of connected cells
can be solved in polynomial time by transforming it into
a 2-SAT problem [35]. Several tractable problems are also
found in computational graph theory. The existence of the
maximum clique in a general graph is NP-complete, but the
problem can be solved in polynomial time if the graph is
planar [36]. Moreover, determining the minimum set cover and
the maximum independent set in bipartite graphs are tractable
even though these problems are NP-complete in arbitrary
graphs [36]. These tractable subproblems provide some ways
to identify specific situations within NP-complete problems
where efficient solutions are attainable. By isolating these
tractable subproblems, we may gain valuable insights into
the underlying structure and properties of the NP-complete
problems.

This section demonstrates that Suguru puzzles of size 1×n
and m × 1 can be solved in polynomial time. To ease our
analysis, we focus on the instance of size 1 × n, noting that
the case of size m × 1 can be transformed into this form. A
1× n Suguru puzzle is a variant of the Suguru puzzle, where
the grid is restricted to a single row of length n. Two key
characteristics of a 1× n Suguru puzzle are: 1) the shapes of
all regions are rectangular; 2) each cell can be adjacent to at
most two other cells.

Before delving into the general solution for a 1×n Suguru
puzzle, let us first introduce a specific variant referred to as
the hintless 1×n Suguru. This variant is characterized by the
absence of hint cells. In the hintless 1× n Suguru, we divide
the n cells into R regions, which are sequentially labeled from
left to right with integers ranging from 1 to R. Each region k
consists of sk cells. Furthermore, we represent the value in the
i-th cell of the puzzle as vi. To solve the hintless 1×n instance,
we use an algorithm that follows these straightforward steps:

1) For each region k (1 ≤ k ≤ R), we assign the values 1
to sk to all sk cells in the region. Specifically, we fill the
i-th cell in each region k with the value i.

2) We examine each i-th cell (1 ≤ i ≤ n − 1) in the grid
in left-to-right order and consider two cases when vi =
vi+1:

a) If sα = 1, where α represents the region label of
the (i+ 1)-th cell in the puzzle, we conclude that the
instance has no solution.

b) Otherwise, we swap the values between vi+1 and vi+2.
The aforementioned algorithm clearly runs in O(n) time.

The following example outlines the step-by-step construction

INTERNATIONAL JOURNAL OF COMPUTING SCIENCE AND APPLIED MATHEMATICS VOL. 10, NO. 1, MARCH 2024 21

1 1 2 1 2 3

(a) Instance G after filling each region’s i-th cell with i.

1 2 1 1 2 3

(b) Instance G after swapping the values of v2 and v3.

1 2 1 2 1 3

(c) Instance G after swapping the values of v4 and v5.

Fig. 5: Solving a hintless 1× 6 Suguru instance G with three
regions.

of a hintless 1× 6 Suguru puzzle.

Example 1. Consider a hintless 1× 6 Suguru puzzle instance
G, where the cells are divided into three regions: region 1
consists of the first cell, region 2 consists of the next two
cells, and region 3 consists of the remaining three cells. To
obtain a solution, we begin by sequentially filling the i-th cell
within each region with the value i. As a result, the current
values for v1, v2, v3, v4, v5, and v6 are respectively set as
1, 1, 2, 1, 2, and 3 (see Fig. 5a). Currently, v1 is equal to v2,
and considering s2 > 1, we proceed by swapping the values
of v2 and v3 (see Fig. 5b). Consequently, v3 is now equal to
v4, and since s3 > 1, we perform another swap between v4
and v5 (see Fig. 5c). Ultimately, the resulting values v1 = 1,
v2 = 2, v3 = 1, v4 = 2, v5 = 1, and v6 = 3 form a solution.
This process is visually summarized in Fig. 5.

The aforementioned algorithm is specifically designed to
solve a hintless 1×n Suguru puzzle. It cannot solve a general
1× n Suguru puzzle due to the presence of initial hint cells.
The reason is that the swapping process described in the
algorithm cannot be applied to initial hint cells since they are
not allowed to be modified.

We discuss the algorithm to solve a general 1 × n Suguru
puzzle in the proof of the following theorem, which is refined
from the explanation in [37].

Theorem 3. The construction of a solution (or determination
of its non-existence) to any instance of a 1×n Suguru puzzle
can be achieved in O(n).

Proof. Suppose we have a Suguru puzzle of size 1×n, where
the cells are divided into R regions with each region labeled
in left-to-right order with integers from 1 to R. Each region
k contains sk cells, and each cell in region k is labeled ck,i
indicating that it is the i-th cell in region k in left-to-right
order where 1 ≤ i ≤ sk. Moreover, the value presents in cell
ck,i is denoted as vk,i. We first check if any adjacent cells
share the same number to ensure a valid initial condition. If
we find such a pair of cells, we determine that the instance
has no solution. Subsequently, for each region k, we define the
sets αk, βk, and χk: the set αk = {1, 2, . . . , sk} contains the

possible numbers that can appear in any cell of region k; the
set βk contains the numbers in the initial hint cells in region
k; the set χk = αk \βk contains the numbers that can be used
to fill the non-hint cells in region k. By utilizing an efficient
implementation of the set data structure, the initial values of
αk, βk, and χk for all k (1 ≤ k ≤ R) can be determined
in linear time complexity O(n) as each set operation such as
inserting, removing, or finding an element can be performed
in constant time O(1). Moreover, we define the set ρk for each
region k representing the set of numbers that the right-most
cell of the region k (i.e., cell ck,sk) can only be filled with,
considering only the condition of the region k−1 and ignoring
the condition of the region k+1. We set ρ1 initially as follows:
if the right-most cell in region 1 (i.e., cell c1,s1) is a hint cell,
we set ρ1 = {v1,s1} (i.e., the set containing only the number
in the right-most cell of region 1); otherwise, we set ρ1 =
χ1. Subsequently, we proceed to determine ρ2, ρ3, . . . , ρR by
going through each region k (2 ≤ k ≤ R). We perform the
following steps for each region:

1) We check if |χk| = 1, in which case there is only one
way to fill the empty cell in the region k.

2) If |ρk−1| = 1 and vk,1 ∈ ρk−1, we determine that there is
no possible solution for the instance. This is because this
condition implies that we have two adjacent cells with
the same value.

3) If |ρk−1| = 1 and |χk| = 2, then there are two ways to
fill the empty cells in region k, and one of these ways
may conflict with vk−1,sk−1

(i.e., the number present in
right-most cell in the previous region, k − 1). For each
way, we verify if the condition vk,1 /∈ ρk−1 is satisfied.
If the condition holds for such a way, we call it a valid
way. For each valid way, we add vk,sk to ρk.

4) If the previous step does not hold, we set ρk as follows:
if the right-most cell in region k is a hint cell, we set
ρk = {vk,sk} (i.e., the set containing only the number in
the right-most cell of region k); otherwise, we set ρk =
χk.

The absence of a specific condition for when |ρk−1| = 1 and
|χk| > 2 can be derived by the fact that all values in χk is
possible to be filled in the right-most cell of region k (the cell
ck,sk). Specifically, when filling ck,sk with any value λ from
the set χk where |χk| > 2, the cardinality of χk minus the
set consisting of λ and ρk−1 where |ρk−1| = 1 is greater
than zero, i.e., |χk \ ({λ} ∪ ρk−1)| > 0. Consequently, if
the left-most cell in region k (cell ck,1) is empty, we ensure
that we have a way to fill ck,1 without conflicting with the
right-most cell in the previous region (cell ck−1,sk−1

). This
process of determining ρ2, ρ3, . . . , ρR can be achieved with a
linear time complexity O(n) by traversing sk cells in step 1
or step 3 for each region k. Once we successfully determine
all the sets ρ2, ρ3, . . . , ρR, we conclude that a solution to the
Suguru instance exists. Subsequently, we proceed to construct
the solution by going through each region k (1 ≤ k ≤ R)
in reverse order (i.e., from region R to region 1). For each
region, we perform the following steps:

1) If k > 1 and the left-most cell in region k (i.e., ck,1) is
empty and |ρk−1| = 1, we fill vk,1 with any number λ

INTERNATIONAL JOURNAL OF COMPUTING SCIENCE AND APPLIED MATHEMATICS VOL. 10, NO. 1, MARCH 2024 22

Algorithm 3 CONSTRUCTχ(G) constructs the set χk for every
region k (1 ≤ k ≤ R) in a one-dimensional Suguru instance
G.
Input: A one-dimensional Suguru instance G containing vk,i

for each region k and cell i where 1 ≤ k ≤ R and 1 ≤
i ≤ sk.

Output: The array χ containing the set χk for every region
k (1 ≤ k ≤ R).

1: α← [α1, α2, . . . , αR]
2: β ← [β1, β2, . . . , βR]
3: χ← [χ1, χ2, . . . , χR]
4: for k ← 1 to R do
5: αk ← {1, 2, . . . , sk}
6: βk ← {vk,i : ISNOTEMPTYCELL(ck,i), 1 ≤ i ≤ sk}
7: ▷ βk is the set of initial hints for region k
8: χk ← αk \ βk

9: ▷ χk is the set of possible values for region k
10: end for
11: return χ

in χk that is not in ρk−1. We then update ρk, and χk

accordingly.
2) If the right-most cell in region k (i.e., ck,sk) is empty,

we fill vk,sk with any number λ in ρk and update χk

accordingly.
3) We fill all of the remaining empty cells in region k with

numbers in χk in any order.
4) If k > 1, we update ρk−1 by removing the number in the

left-most cell of region k (i.e., vk,1) (if any). This means
that ρk−1 becomes ρk−1 \ {vk,1}.

By the end of these steps, all of the cells in the Suguru
instance are filled with numbers, and we have successfully
constructed a solution. In step 3, the process of traversing sk
cells for each region k exhibits a time complexity of O(n).
This algorithm operates with a time complexity of O(n) for
each of its processes, leading to an overall time complexity of
O(n).

To elaborate on the algorithm described in the proof of
Theorem 3, we introduce four functions:

1) ISEMPTYCELL(ck,i), which returns true if the cell ck,i
is empty;

2) ISNOTEMPTYCELL(ck,i), which returns true if the cell
ck,i is not empty;

3) CONSTRUCTχ(c), which returns the array χ containing
sets χ1, χ2, . . . , χR;

4) and CONSTRUCTρ(c, χ), which returns the array ρ con-
taining sets ρ1, ρ2, . . . , ρR.

The functions CONSTRUCTχ(c) and CONSTRUCTρ(c, χ)
are described in Algorithm 3 and Algorithm 4,
respectively. Furthermore, Algorithm 5 elaborates the
steps described in the proof of Theorem 3, utilizing the
functions ISEMPTYCELL(ck,i), ISNOTEMPTYCELL(ck,i),
CONSTRUCTχ(c), and CONSTRUCTρ(c, χ) as subroutines.
These algorithms consider the variable s as an array of
integers of size R, storing the size of each region.

1 2

(a) Initial instance G.

1 23 1

(b) Instance G after filling the cells in region 3.

1 23 11 2

(c) Instance G after filling the cells in region 1.

Fig. 6: Solving a 1× 6 Suguru instance G with three regions
and two hint cells.

The following example outlines the step-by-step construc-
tion of a 1 × 6 Suguru puzzle containing three regions with
two hint cells.

Example 2. Consider a 1× 6 Suguru puzzle instance G with
six cells divided into three regions as in Fig. 6a. Region 1
consists of the first two cells, region 2 consists of the next
cell, and region 3 consists of the remaining three cells. In
this instance, the cells c2,1 and c3,2 are hint cells filled with
the numbers 1 and 2, respectively. We first construct the sets
χ1 = {1, 2}, χ2 = ∅, and χ3 = {1, 3}. These sets contain
the numbers that do not appear in any initial hint cells of
their respective regions. Subsequently, we construct the sets
ρ1, ρ2, and ρ3 to determine the possible values of the right-
most cell of their respective regions. Since the right-most cell
in region 1 (cell c1,s2) is empty, we set ρ1 = χ1. Similarly,
as the right-most cell in region 2 (cell c2,1) is a hint cell, we
set ρ2 = {v2,1}. For ρ3, we have two ways to fill the empty
cells in region 3. Using the first way, we fill cells c3,1 and c3,3
respectively with the numbers 1 and 3. We find that v3,1 ∈ ρ2,
indicates that the first way is not valid. However, using the
second way, we fill cells c3,1 and c3,3 correspondingly with
the numbers 3 and 1. This time, v3,1 /∈ ρ2, confirming that
the second way is valid. Hence, we set ρ3 = {v3,3}. Since all
ρ1, ρ2, and ρ3 are successfully constructed, a solution exists
for the Suguru instance. To construct the solution, we fill cells
from the right-most region and move towards the first region.
In this case, as cell c3,1 is empty and |ρ2| = 1, we fill v3,1
with a value λ from χ3 excluding ρ2, which in this case is
{3}. Since only one possible value exists, we set v3,1 = 3.
Next, since ρ3 contains only one value, we fill v3,3 = 1. The
instance after the cells in region 3 are filled is depicted in Fig.
6b. As the only cell in region 2 is a hint cell, we leave it
unchanged and update ρ1 to ρ1 \ {v2,1} = {2}. Subsequently,
as ρ1 has only one value, we fill v1,2 = 2. Finally, we fill
v1,1 = 1 as depicted in Fig. 6c. The visual representation for
the overall process is given in Fig. 6.

Although the algorithm described in the proof of Theorem
3 has an O(n) running time upper bound, it does not retrieve
all solutions to a Suguru instance of size 1 × n. In contrast,

INTERNATIONAL JOURNAL OF COMPUTING SCIENCE AND APPLIED MATHEMATICS VOL. 10, NO. 1, MARCH 2024 23

Algorithm 4 CONSTRUCTρ(G,χ) construct the set ρk for every region k (1 ≤ k ≤ R) in a one-dimensional Suguru instance
G.
Input: A one-dimensional Suguru instance G containing vk,i for each region k and cell i where 1 ≤ k ≤ R and 1 ≤ i ≤ sk,

and the array χ containing the sets χ1, χ2, . . . , χR.
Output: The array ρ containing the sets ρk for every region k (1 ≤ k ≤ R), ρk denotes the set of possible values for the

right-most cell of the region k (1 ≤ k ≤ R).
1: ρ← [ρ1, ρ2, . . . , ρR]
2: if ISNOTEMPTYCELL(c1,s1) then
3: ρ1 ← {v1,s1} ▷ c1,s1 is a hint cell
4: else
5: ρ1 ← χ1 ▷ ρ1 can be filled with any value in χ1 = α1 \ β1

6: end if
7: for k ← 2 to R do
8: if |χk| = 1 then
9: fill the one remaining empty cell in region k with the only number in χk

10: end if
11: if |ρk−1| = 1 and vk,1 ∈ ρk−1 then ▷ if this condition holds, we terminate as the instance has no solution
12: return empty array
13: end if
14: if |ρk−1| = 1 and |χk| = 2 then
15: if the first way of filling cells in region k is a valid way then
16: fill the cells in region k with the first way
17: ρk ← ρk ∪ {vk,sk}
18: undo the filling of cells in region k
19: end if
20: if the second way of filling cells in region k is a valid way then
21: fill the cells in region k with the second way
22: ρk ← ρk ∪ {vk,sk}
23: undo the filling of cells in region k
24: end if
25: else
26: if ISNOTEMPTYCELL(ck,sk) then
27: ρk ← {vk,sk}
28: else
29: ρk ← χk

30: end if
31: end if
32: end for
33: return ρ

the Yin-Yang puzzle has a tractable variant when considering
puzzles of size m × n with m ≤ 2 or n ≤ 2, where the
number of solutions is correspondingly bounded above by
O(n) or O(m) [21, Theorem 2 and Theorem 3], enabling the
retrieval of all solutions in polynomial time. Nonetheless, in
the subsequent analysis, we demonstrate that for any arbitrary
1× n Suguru instance with H hints, the number of solutions
is factorial in terms of n − H . It is not unexpected that this
observation holds, considering that some computationally easy
decision problems (with polynomial time complexities) show
non-polynomial time complexities when their corresponding
counting problems are considered [38].

The following theorem provides an upper bound on the
number of solutions in a 1× n Suguru instance.

Theorem 4. The number of solutions to a Suguru instance of
size 1×n with H hint cells is bounded above by O((n−H)!).

Proof. Consider a Suguru instance of size 1×n containing H
hint cells, divided into R regions. Each region k corresponds
to the set χk containing the numbers not present in any hint
cell within that region. Thus, each region k has |χk| empty
cells, resulting in a total of

∑R
k=1 |χk| = n−H empty cells

across all regions. It is easy to see that empty cells in each
region k can be filled in |χk|! possible ways. Considering all
regions k where 1 ≤ k ≤ R, the total number of solutions
to the instance is bounded by

∏R
k=1 |χk|!. Using Lemma 1,

we have
∏R

k=1 |χk|! ≤
(∑R

k=1 |χk|
)
! = (n − H)!, which is

O((n−H)!).

VI. COMPUTATIONAL EXPERIMENTS AND RESULTS

This section discusses the computational experiments
of our proposed backtracking algorithm and their results.
We conducted the experiments using a C++ programming

INTERNATIONAL JOURNAL OF COMPUTING SCIENCE AND APPLIED MATHEMATICS VOL. 10, NO. 1, MARCH 2024 24

Algorithm 5 SOLVEONEDIMENSIONALSUGURU(G) returns a solution to the 1 × n Suguru instance, or determines that the
instance has no solution.
Input: A one-dimensional Suguru instance G containing vk,i for each region k and cell i where 1 ≤ k ≤ R and 1 ≤ i ≤ sk.
Output: A solution to the Suguru instance (if any).

1: for all cells γ in G do ▷ checking if there are adjacent cells that share a number
2: if γ shares a number with its adjacent cell then
3: return “no solution”
4: end if
5: end for
6: χ← CONSTRUCTχ(G)
7: ρ← CONSTRUCTρ(G,χ)
8: if ρ is an empty array then
9: return “no solution”

10: end if
11: for k ← R to 1 do ▷ construct the solution
12: if k > 1 and ISEMPTYCELL(ck,1) and |ρk−1| = 1 then
13: fill vk,1 with any number λ ∈ χk \ ρk−1

14: ρk ← ρk \ {vk,1}
15: χk ← χk \ {vk,1}
16: end if
17: if ISEMPTYCELL(ck,sk) then
18: fill vk,sk with any number λ ∈ ρk
19: χk ← χk \ {vk,sk}
20: end if
21: fill all of the |χk| remaining empty cells in region k with the numbers in χk

22: if k > 1 then
23: ρk−1 ← ρk−1 \ {vk,1}
24: end if
25: end for
26: return G

language and g++ compiler version 12.2.0 on a 64-bit
Windows 10 operating system with 16 GB of RAM and
an Intel(R) Core(TM) i7-10750H CPU @ 2.60GHz. We
used C++ to implement the algorithm because, according
to empirical investigation, it performs relatively faster
than other prevalently used programming languages
[39]. Interested readers may retrieve the C++ source
codes of our program, test cases for all instances,
and other documents pertinent to the experiment at
https://github.com/abcqwq/suguru-backtrack.

The experiment evaluated the performance of the backtrack-
ing algorithm described in Section IV, implemented in C++.
To ensure comprehensive testing, we utilized a diverse set of
test cases gathered from [40]. The test cases encompass a wide
range of Suguru puzzles, varying in dimensions from 6 × 6
to 10× 10. There are one hundred eighty test cases, of which
around 28.9% are of size 8× 8. All instances in the test cases
are guaranteed to have exactly one solution. The objective
of the experiment was to calculate the average running time
across ten executions required for the algorithm to solve each
instance.

Table 1 summarizes the algorithm’s running times for
solving the test cases, categorized according to their sizes.
From the experiment, despite the factorial upper bound of
the running time according to Corollary 1, it is evident that
the C++ implementation of our proposed algorithm solves all

instances in less than 0.5 seconds. Unfortunately, we could
not test the implementation with larger puzzles due to the
limitation of the test cases. It is important to note that the
puzzle size does not solely determine the running time of the
backtracking algorithm. Factors such as the number of regions,
the number of hint cells, the position of the hint cells, and their
arrangements also affect the algorithm’s running time. As a
result, two equally sized test cases may yield varying outcomes
and larger test cases potentially have a shorter running time
than the smaller ones.

Figure 7 illustrates a particularly challenging instance of
the Suguru puzzle for the proposed algorithm, showcasing
the longest running time among all test cases. Although,
at first glance, the puzzle appears to be a standard 8 × 8
Suguru grid, its intricacies lie in the number of hints, the
arrangement of regions, the configuration of these regions, and
the strategic placement of hint cells. These factors contribute to
the proposed algorithm encountering numerous invalid states
during its exploration before ultimately converging to the
correct solution state. Except for this challenging instance, on
average, the proposed algorithm solved all 8 × 8 test cases
in 2.679 milliseconds. Moreover, excluding such an instance
also brings the average running time for solving all instances
to 1.311 milliseconds. The challenging instance in Figure 7 is
the most complex puzzle regarding the time required to solve
it.

https://github.com/abcqwq/suguru-backtrack

INTERNATIONAL JOURNAL OF COMPUTING SCIENCE AND APPLIED MATHEMATICS VOL. 10, NO. 1, MARCH 2024 25

Puzzle Size Number of Test Cases Minimum Running Time Maximum Running Time Average Running Time
6× 6 42 0.024 3.676 0.242
7× 7 24 0.032 0.597 0.119
8× 8 52 0.037 470.481 11.675
9× 9 24 0.092 21.497 1.830

10× 10 38 0.138 3.859 1.082

Table 1. Running times (in milliseconds) taken by the backtracking algorithm for solving one hundred eighty instances. One
particular test case of size 8× 8 takes 470.481 milliseconds to be solved and is depicted in Figure 7. Exclusion of such a test
case brings the average running time of the algorithm for solving 8× 8 test case to 2.679 milliseconds.

2 4 2

4

5 5

4

3 1 4

5 1

(a) The instance of the challenging 8×8 Suguru puzzle.

4 1 2 5 3 1 5 1

2 5 3 4 2 4 2 3

3 1 2 1 3 5 1 4

4 5 3 4 2 4 3 5

1 2 1 5 3 5 1 4

5 4 3 2 4 2 3 2

3 2 5 1 3 1 5 4

5 1 3 4 2 4 2 1

(b) The solution to the challenging 8×8 Suguru puzzle.

Fig. 7: An instance of a challenging 8× 8 Suguru puzzle among the test cases and its solution.

VII. CONCLUDING REMARKS AND OPEN PROBLEMS

We present an algorithm that verifies a Suguru puzzle solu-
tion of size m×n in O(mn) time and propose a backtracking
technique for solving arbitrary Suguru puzzle instance of size
m×n with H hint cells and R regions in O(R·(mn−H+2)!)
time. Despite this factorial upper bound for the asymptotic
running time, all test cases from [40] were solved using a
standard personal computer in less than half a second. These
test cases contain Suguru puzzles with no more than 100 cells.

With the exclusion of the single test case exhibiting the
maximum running time among all 8 × 8 puzzles (depicted
in Figure 7), the average running time for the proposed
algorithm in solving 8×8 test cases notably decreased to 2.679
milliseconds. This brings the overall average time for solving
any instance among the test cases to 1.311 milliseconds.

We also discuss some tractable variants of Suguru puzzles.
In particular, in Theorem 3, we prove that any Suguru puzzle
of size m × n where either m or n equals 1 is solvable in
linear time. This finding presents a particular subproblem of
the Suguru puzzles where the solution can be efficiently found.
In Theorem 4, we discuss the upper bound for the number
of solutions to a Suguru instance of size 1 × n with H hint
cells. We mathematically prove that the number of solutions
to such a Suguru instance is bounded above by O((n−H)!).
This result provides insight into the complexity of the counting

problem for a tractable Suguru puzzle. We conjecture that the
complexity for such a counting problem belongs to the #P
class.

We conclude by suggesting more investigations into the
potential use of SAT solvers in solving Suguru puzzles. The
application of SAT solvers has proven highly effective in
solving other NP-complete problems, such as the n-queen
problem [27], and could also be a promising approach for
Suguru puzzles. Additionally, SAT solvers can be used for
generating Suguru puzzles with unique solutions, opening
up the possibilities to explore and gain insights into the
underlying structure and properties of Suguru puzzles.

ACKNOWLEDGMENT

We want to thank John L. from the Computer Science Stack
Exchange Community for his insight we use in Theorem 3 and
Algorithm 5.

REFERENCES

[1] L. Robert, D. Miyahara, P. Lafourcade, L. Libralesso, and T. Mizuki,
“Physical zero-knowledge proof and NP-completeness proof of Suguru
puzzle,” Information and Computation, vol. 285, p. 104858, 2022.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0890540121001905

[2] Naoki Inaba, “number block,” http://inabapuzzle.com/honkaku/nblock.
html, Jul. 2001, accessed: 2023-06-19.

https://www.sciencedirect.com/science/article/pii/S0890540121001905
https://www.sciencedirect.com/science/article/pii/S0890540121001905
http://inabapuzzle.com/honkaku/nblock.html
http://inabapuzzle.com/honkaku/nblock.html

INTERNATIONAL JOURNAL OF COMPUTING SCIENCE AND APPLIED MATHEMATICS VOL. 10, NO. 1, MARCH 2024 26

[3] Z. Xu and J. Mayer, “Teaching critical thinking and problem solving
skills through online puzzles and games,” in 7th International Confer-
ence on Distance Learning and Web Engineering. Citeseer, 2007, pp.
321–325.

[4] G. Kendall, A. Parkes, and K. Spoerer, “A survey of NP-complete
puzzles,” ICGA Journal, vol. 31, no. 1, pp. 13–34, 2008.

[5] E. D. Demaine, “Playing games with algorithms: Algorithmic combi-
natorial game theory,” in International Symposium on Mathematical
Foundations of Computer Science. Springer, 2001, pp. 18–33.

[6] E. D. Demaine, Y. Okamoto, R. Uehara, and Y. Uno, “Computational
complexity and an integer programming model of Shakashaka,” IEICE
Transactions on Fundamentals of Electronics, Communications and
Computer Sciences, vol. 97, no. 6, pp. 1213–1219, 2014.

[7] N. Ueda and T. Nagao, “NP-completeness results for Nonogram via
parsimonious reductions,” Department of Computer Science, Tokyo
Institute of Technology, Tech. Rep., 1996.

[8] T. Yato and T. Seta, “Complexity and completeness of finding another
solution and its application to puzzles,” IEICE transactions on funda-
mentals of electronics, communications and computer sciences, vol. 86,
no. 5, pp. 1052–1060, 2003.

[9] M. Holzer, A. Klein, and M. Kutrib, “On the NP-completeness of the
Nurikabe pencil puzzle and variants thereof,” in Proceedings of the 3rd
International Conference on FUN with Algorithms. Citeseer, 2004, pp.
77–89.

[10] M. Holzer and O. Ruepp, “The troubles of interior design–a complexity
analysis of the game Heyawake,” in International Conference on Fun
with Algorithms. Springer, 2007, pp. 198–212.

[11] D. Andersson, “Hashiwokakero is NP-complete,” Information Process-
ing Letters, vol. 109, no. 19, pp. 1145–1146, 2009.

[12] J. Kölker, “Kurodoko is NP-complete,” Information and Media Tech-
nologies, vol. 7, no. 3, pp. 1000–1012, 2012.

[13] Y. Takenaga, S. Aoyagi, S. Iwata, and T. Kasai, “Shikaku and Ripple
Effect are NP-complete,” Congressus Numerantium, vol. 216, pp. 119–
127, 2013.

[14] C. Iwamoto, “Yosenabe is NP-complete,” Journal of Information Pro-
cessing, vol. 22, no. 1, pp. 40–43, 2014.

[15] A. Uejima and H. Suzuki, “Fillmat is NP-complete and ASP-complete,”
Journal of Information Processing, vol. 23, no. 3, pp. 310–316, 2015.

[16] C. Iwamoto and T. Ibusuki, “Dosun-Fuwari is NP-complete,” Journal of
Information Processing, vol. 26, pp. 358–361, 2018.

[17] A. Adler, J. Bosboom, E. D. Demaine, M. L. Demaine, Q. C. Liu,
and J. Lynch, “Tatamibari is NP-Complete,” in 10th International
Conference on Fun with Algorithms (FUN 2021), ser. Leibniz
International Proceedings in Informatics (LIPIcs), M. Farach-Colton,
G. Prencipe, and R. Uehara, Eds., vol. 157. Dagstuhl, Germany:
Schloss Dagstuhl–Leibniz-Zentrum für Informatik, 2020, pp. 1:1–1:24.
[Online]. Available: https://drops.dagstuhl.de/opus/volltexte/2020/12762

[18] C. Iwamoto and T. Ibusuki, “Polynomial-time reductions from
3SAT to Kurotto and Juosan puzzles,” IEICE Transactions on
Information and Systems, vol. 103, no. 3, pp. 500–505, 2020.
[Online]. Available: https://www.jstage.jst.go.jp/article/transinf/E103.D/
3/E103.D 2019FCP0004/ pdf

[19] E. D. Demaine, J. Lynch, M. Rudoy, and Y. Uno, “Yin-Yang Puzzles
are NP-complete,” in 33rd Canadian Conference on Computational
Geometry (CCCG) 2021, 2021.

[20] C. Iwamoto and T. Ide, “Five Cells and Tilepaint are NP-Complete,”
IEICE Transcations on Information and Systems, vol. 105, no. 3, pp.
508–516, 2022. [Online]. Available: https://www.jstage.jst.go.jp/article/
transinf/E105.D/3/E105.D 2021FCP0001/ pdf

[21] M. I. Putra, M. Arzaki, and G. S. Wulandari, “Solving Yin-Yang Puzzles
Using Exhaustive Search and Prune-and-Search Algorithms,” (IJCSAM)
International Journal of Computing Science and Applied Mathematics,
vol. 8, no. 2, pp. 52–65, 2022.

[22] E. C. Reinhard, M. Arzaki, and G. S. Wulandari, “Solving Tatamibari
Puzzle Using Exhaustive Search Approach,” Indonesia Journal on
Computing (Indo-JC), vol. 7, no. 3, pp. 53–80, 2022.

[23] V. A. Fridolin, M. Arzaki, and G. S. Wulandari, “Elementary Search-
based Algorithms for Solving Tilepaint Puzzles,” Indonesia Journal on
Computing (Indo-JC), vol. 8, no. 2, pp. 36–64, 2023.

[24] J. E. Sakti, M. Arzaki, and G. S. Wulandari, “A Backtracking Approach
for Solving Path Puzzles,” Journal of Fundamental Mathematics and
Applications (JFMA), vol. 6, no. 2, pp. 117–135, 2023.

[25] M. T. Ammar, M. Arzaki, and G. S. Wulandari, “Note on Algorithmic
Investigations of Juosan Puzzles,” Jurnal Ilmu Komputer dan Informasi,
vol. 17, no. 1, pp. 19–35, 2024.

[26] T. Weber, “A SAT-based Sudoku solver,” in LPAR, 2005, pp. 11–15.
[27] C. Bright, J. Gerhard, I. Kotsireas, and V. Ganesh, “Effective problem

solving using SAT solvers,” in Maple Conference. Springer, 2019, pp.
205–219.

[28] A. Sbrana, L. G. B. Mirisola, N. Y. Soma, and P. A. L. de Castro,
“Solving NP-Complete Akari games with deep learning,” Entertainment
Computing, p. 100580, 2023.

[29] C. Bessiere, C. Carbonnel, E. Hebrard, G. Katsirelos, and T. Walsh, “De-
tecting and exploiting subproblem tractability,” in IJCAI: International
Joint Conference on Artificial Intelligence, 2013, pp. 468–474.

[30] D. Lichtenstein, “Planar formulae and their uses,” SIAM journal on
computing, vol. 11, no. 2, pp. 329–343, 1982.

[31] R. Neapolitan and K. Naimipour, Foundations of algorithms. Jones &
Bartlett Publishers, 2010.

[32] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to algorithms, 3rd ed. MIT press, 2009.

[33] D. Bolton, “The multinomial theorem,” The Mathematical Gazette,
vol. 52, no. 382, pp. 336–342, 1968.

[34] K. H. Rosen, Discrete Mathematics and Its Applications, 8th ed.
McGraw-Hill Higher Education, 2019.

[35] S. Brunetti and A. Daurat, “An algorithm reconstructing convex lattice
sets,” Theoretical computer science, vol. 304, no. 1-3, pp. 35–57, 2003.

[36] J. I. Gunawan, “Understanding Unsolvable Problem,” Olympiad in
Informatics, vol. 10, pp. 87–98, 2016.

[37] J. L. (https://cs.stackexchange.com/users/91753/john l), “Possibly
Tractable Variation of Suguru Puzzles,” Computer Science Stack
Exchange, uRL:https://cs.stackexchange.com/q/157307 (version: 2023-
02-19). [Online]. Available: https://cs.stackexchange.com/q/157307

[38] A. Antonopoulos, E. Bakali, A. Chalki, A. Pagourtzis, P. Pantavos,
and S. Zachos, “Completeness, approximability and exponential time
results for counting problems with easy decision version,” Theoretical
Computer Science, vol. 915, pp. 55–73, 2022.

[39] L. Prechelt, “An empirical comparison of seven programming lan-
guages,” Computer, vol. 33, no. 10, pp. 23–29, 2000.

[40] Otto Janko, “Suguru,” https://www.janko.at/Raetsel/Suguru/index.htm,
Oct. 2022, accessed: 2022-10-11.

https://drops.dagstuhl.de/opus/volltexte/2020/12762
https://www.jstage.jst.go.jp/article/transinf/E103.D/3/E103.D_2019FCP0004/_pdf
https://www.jstage.jst.go.jp/article/transinf/E103.D/3/E103.D_2019FCP0004/_pdf
https://www.jstage.jst.go.jp/article/transinf/E105.D/3/E105.D_2021FCP0001/_pdf
https://www.jstage.jst.go.jp/article/transinf/E105.D/3/E105.D_2021FCP0001/_pdf
https://cs.stackexchange.com/q/157307
https://www.janko.at/Raetsel/Suguru/index.htm

	Introduction
	Preliminaries
	Definition and Representation of Suguru Puzzles
	Summary of the NP-Completeness of Suguru Puzzles
	The Non-existence of a Particular 2 2 Subgrid

	Verifying Suguru Solutions in Polynomial Time
	Determining the Size of Each Region
	Computing the Number of Cells Containing a Particular Number within a Region
	Validating the Compliance of Cell Values within a Region
	Validating the Uniqueness of Cell Values within a Region
	Validating the Compliance of Adjacent Cell Values
	Main Verification Process

	A Backtracking Approach for Solving Suguru Puzzles
	Tractable Variants of Suguru Puzzles
	Computational Experiments and Results
	Concluding Remarks and Open Problems
	References

