Construction of Cone 2-Norm Associated with S-Cone Inner Product

Sadjidon, Mahmud Yunus, Sunarsini, and Lukman Hanafi

Abstract—This paper is devoted to discussing an inner product in cone normed spaces and constructing S-cone inner products to define S-cone inner product spaces, especially in ℓ_2 -space. Moreover, we also construct cone 2-norm spaces associated with S-cone inner product spaces.

Index Terms—Cone Normed Spaces, S-cone inner product spaces, Cone 2-Norm Spaces

I. INTRODUCTION

T HE study of 2-norm space continues to grow and learn; among others, the study of 2-norms by associating its dual space that has been studied in [1][2][3], especially for the ℓ_2 -space and the inner product space, and also in [4] by studying the cone normed space. Therefore, taking into account in [1][2] is developed a study of the cone 2-norm and some of its properties described in [5][6]. Therefore, concerning inner product space and in [4][5] it has been developed and studied about the S-cone inner product space, then they obtained the construction and definition of S-cone inner product spaces, particularly for ℓ_2 -space. They also describe its properties, and construct its cone 2-normed such that is obtained a definition of cone 2-normed associated with a S-cone inner product.

To construct the S-cone inner product space, particularly for ℓ_2 -space, we need and use the following definitions and notations.

Definition 1. [1] Let X be a real vector space. A norm on X is a function $\|\cdot\|: X \to \mathbb{R}$ satisfying:

- (N1) $||x|| \ge 0$ for every $x \in X$ and ||x|| = 0 if and only if x = 0;
- (N2) $\|\alpha x\| = |\alpha| \|x\|$ for every $x \in X$ and $\alpha \in \mathbb{R}$;
- (N3) ||x + y|| = ||x|| + ||y||.

A vector space X equipped with a norm $\|\cdot\|$, written as $(X, \|\cdot\|)$, is called normed space.

Definition 2. [1] Let X be a real vector space. An inner product on X is a function $\langle \cdot, \cdot \rangle : X \times X \to \mathbb{R}$ that satisfies:

- (I1) $\langle x, x \rangle \ge 0$ for every $x \in X$; and $\langle x, x \rangle = 0$ if and only if x = 0;
- (I2) $\langle x, y \rangle = \langle y, x \rangle;$
- (I3) $\langle \alpha x, y \rangle = \alpha \langle x, y \rangle$ for every $x, y \in X$ and $\alpha \in \mathbb{R}$;
- (I4) $\langle x + y, z \rangle = \langle x, z \rangle + \langle y, z \rangle$ for every $x, y, z \in X$;

Sadjidon, M. Yunus, Sunarsini, and L. Hanafi are with the Department of Mathematics, Institut Teknologi Sepuluh Nopember, Surabaya 60111, Indonesia e-mail: sadjidon@matematika.its.ac.id

Manuscript received August 3, 2023; accepted November 1, 2023.

A vector space X equipped with an inner product $\langle \cdot,]cdot \rangle$, also written as $(X, \langle \cdot, \cdot \rangle)$, is called inner product space.

Definition 3. [4] Let P be a subset of a Banach space E with zero element θ , then P is called cone if:

- (i) *P* is a closed non empty set, and $P \neq \{\theta\}$;
- (ii) If a and b are positive real numbers, then $ax + by \in P$ for every $x, y \in P$;
- (iii) $P \cap (-P) = \{\theta\}.$

Additionally, a cone P has a relation \preccurlyeq and $x \preccurlyeq y$ if and only if $y - x \in P$ and $x \prec y$ if and only if $x \prec y$ and $x \neq y$, while $x \ll y$ means $y - x \in int(P)$ (interior of P). Furthermore, we assume that E is the Banach space and P is a cone in E.

Definition 4. [4] A cone normed space is an ordered pair $(X, \|\cdot\|_c)$ where X is a linear space over \mathbb{R} and $\|\cdot\|_c : X \to (E, P, \|\cdot\|)$ is a function satisfying

- (C1) $||x||_c \succeq \theta$ for every $x \in X$;
- (C2) $||x||_c = \theta$ if and only if x = 0;
- (C3) $\|\alpha x\|_c = |\alpha| \|x\|_c$ for every $x \in X$ and $\alpha \in \mathbb{R}$;
- (C4) $||x+y||_c \leq ||x||_c + ||y||_c$ for every $x, y \in X$.

Definition 5. [1] Let x be a d-dimensional real vector space, where $2 \leq d < \infty$. A 2-norm on X is a function $\|\cdot, \cdot\|$: $X \times X \to \mathbb{R}$ satisfying

- (N1) $||x, y|| \ge 0$ for ef=very $x, y \in X$; and ||x, y|| = 0 if and only if x and y are linearly dependent;
- (N2) ||x, y|| = ||y, x|| for every $x, y \in X$;
- (N3) $||x, \alpha y|| = |\alpha| ||x, y||$ for every $x, y \in X$ and $\alpha \in \mathbb{R}$;
- (N4) $||x, y + z|| \le ||x, y|| + ||x, z||$ for every $x, y, z \in X$.

A vector space X equipped with a 2-norm, also written as $(X, \|\cdot, \cdot\|)$, is called 2-norm space.

For historical issues regarding inner product spaces and 2normed spaces, we refer to the existing references; e.g. [7], [1], [8], in which defined a standard norm:

$$\begin{aligned} \|x, y\|^{2} &= \begin{vmatrix} \langle x, x \rangle & \langle x, y \rangle \\ \langle y, x \rangle & \langle y, y \rangle \end{vmatrix} \\ &= \langle x, x \rangle \langle y, y \rangle - \langle x, y \rangle^{2} \\ &= \|x\|^{2} \|y\|^{2} - \langle x, y \rangle^{2} \,. \end{aligned}$$

As in [2], we define the 2-norm by associating its dual space with $\langle x, z \rangle$:

$$\|x,y\| = \sup \left\{ \begin{vmatrix} \langle x,y \rangle & \langle y,z \rangle \\ \langle x,w \rangle & \langle y,w \rangle \end{vmatrix} : z,w \in \ell^2, \|z\|, \|w\| \le 1 \right\}.$$

Geometrically, the 2-norm is the area spanned by two vectors.

Definition 6. [5] Let X be a 2-normed space, and $(E, \|\cdot\|)$ be a Banach space, and $P \subset E$ be a cone, then cone 2-norm on X is a function $\|\cdot, \cdot\|_C : X \times X \to (E, P, \|\cdot\|)$ satisfying the following properties:

- (CN1) $||x, y||_C \geq \theta$ for every $x, y \in X$; and $||x, y||_C = \theta$ if and only if x and y are linearly dependent;
- (CN2) $||x, y||_C = ||y, x||_C$ for every $x, y \in X$;
- (CN3) $\|\alpha x, y\|_C = |\alpha| \|x, y\|_C$ for every $x, y \in X$ and $\alpha \in \mathbb{R}$;
- (CN4) $||x, y + z||_C \preccurlyeq ||x, y||_C + ||x, z||_C$ for every $x, y, z \in X$.

A 2-normed space X equipped with cone 2-norm, written as $(X, \|\cdot, \cdot\|_C)$, is called cone 2-normed space.

II. RESULTS AND DISCUSSION

It is straightforward to verify that if $P \subset \mathbb{R}^n$ for nonnegative \mathbb{R} , then P is a cone. As stated in [9], a function $\|\cdot\|_C : \ell_2 \to (\mathbb{R}^n, P, \|\cdot\|)$ defined by $\|x\|_C = \sum_{k=1}^n e_k \|x\|_{\ell_2}$ is a cone normed space. Multiplication on a cone norm is defined as follows:

$$||x||_{C} ||x||_{C} = (||x||_{C})^{2} = \sum_{k=1}^{n} e_{k} (||x||_{\ell_{2}})^{2}.$$

Let P be a subset of Banach space E and P is a cone, then we define $\mathcal{P} = P \cup (-P)$, and \mathcal{P} is called S-cone. Thus, from the description of the inner product space and the meaning of S-cone, we can construct and define a S-cone inner product space as in the following definition.

Definition 7. A S-cone inner product space is an order pair $(X, \langle \cdot, \cdot \rangle_C)$ where X a linear space over \mathbb{R} with \mathcal{P} is a S-cone inner product space and $\langle \cdot, \cdot \rangle_C : X \times X \to (E, \mathcal{P}, \|\cdot\|)$ is a function satisfying:

- (IC1) $\langle x, x \rangle_C \succcurlyeq \theta$ for every $x \in X$; and $\langle x, x \rangle_C = \theta$ if and only if x = 0;
- (IC2) $\langle x, y \rangle_C = \langle y, x \rangle_C$ for every $x, y \in X$;
- (IC3) $\langle \alpha x, y \rangle_C = \alpha \langle x, y \rangle_C$ for every $x, y \in X$ and $\alpha \in \mathbb{R}$;
- (IC4) $\langle x+y,z\rangle_C \preccurlyeq \langle x,z\rangle_C + \langle y,z\rangle_C$ for every $x,y,z \in X$.
- If X is a real vector space, then $\overline{\langle y, x \rangle}_C = \langle y, x \rangle_C = \langle x, y \rangle_C$.

It is easy to show that ℓ_2 -space with the standard inner product is a Banach space, and its S-cone inner product is given as follows.

Theorem 1. Let $(\ell_2, \langle \cdot, \cdot \rangle)$ be an inner product space with \mathcal{P} is a S-cone, and we define a function

$$\begin{array}{l} \langle \cdot, \cdot \rangle_C : \ell_2 \times \ell_2 \to (\mathbb{R}^n, \mathcal{P}, \| \cdot \|) \\ \text{by } \langle x, y \rangle_C = \sum_{k=1}^n e_k \langle x, y \rangle, \end{array}$$
(1)

then $\langle \cdot, \cdot \rangle_C$ is a S-cone inner product for ℓ_2 -space.

Proof. We will show that $\langle \cdot, \cdot \rangle_C$ in (1) satisfies the following properties:

(IC1) Since $\langle x, x \rangle \geq 0$, then $\langle x, x \rangle_C = \sum_{k=1}^n e_k \langle x, x \rangle_C \geq \theta$ for every $x \in \ell_2$; Furthermore, $\langle x, x \rangle_C = \sum_{k=1}^n e_k \langle x, x \rangle = \theta$ if and only if $\langle x, x \rangle = if$ and only if x = 0;

- (IC2) $\langle x, y \rangle_C = \sum_{k=1}^n e_k \langle x, y \rangle = \sum_{k=1}^n e_k \langle y, x \rangle = \frac{\langle y, x \rangle_C}{\langle y, x \rangle_C}$ for every $x, y \in \ell_2$. Therefore $\langle x, y \rangle_C = \frac{\langle y, x \rangle_C}{\langle y, x \rangle_C}$;
- (IC3) $\langle \alpha x, y \rangle_C = \sum_{k=1}^n e_k \langle \alpha x, y \rangle = \alpha \sum_{k=1}^n e_k \langle x, y \rangle = \alpha \langle x, y \rangle_C$ for every $x, y \in \ell_2$ and $\alpha \in \mathbb{R}$;
- (IC4) For every $x, y, z \in \ell_2$ by triangle inequality of the inner product, we have

$$\begin{split} \langle x+y,z\rangle_C &= \sum_{k=1}^n e_k \,\langle x+y,z\rangle \\ &= \sum_{k=1}^n e_k (\langle x,z\rangle + \langle y,z\rangle) \\ &= \sum_{k=1}^n e_k \,\langle x,z\rangle + \sum_{k=1}^n e_k \,\langle y,z\rangle \\ &= \langle x,z\rangle_c + \langle y,z\rangle_C \,. \end{split}$$

Therefore, we can conclude that the function $\langle \cdot, \cdot \rangle_C$ in (1) is a S-cone inner product for ℓ_2 -space.

In an inner product space, vectors x and x are orthogonal if and only if $\langle x, y \rangle = 0$. We define orthogonality in S-cone inner product spaces analogously to those in the inner product space, which is given by the following theorems.

Theorem 2. Let $(\ell_2, \langle \cdot, \cdot \rangle)$ be an inner product space with \mathcal{P} is a S-cone, and if we define a S-cone inner product $\langle \cdot, \cdot \rangle_C$: $\ell_2 \times \ell_2 \to (\mathbb{R}, \mathcal{P}, \|\cdot\|)$ by $\langle x, y \rangle_C = \sum_{k=1}^n e_k \langle x, y \rangle$, then two vectors x and y are orthogonal if and only if $\langle x, y \rangle_C = \theta$.

Proof. Since vectors x and y are orthogonal in an inner product space, i.e. $\langle x, y \rangle = 0$, we have

$$\langle x, y \rangle_C = \sum_{k=1}^n e_k \langle x, y \rangle = \sum_{k=1}^n e_k \cdot 0 = \theta.$$

On the other hand, if $\langle x, y \rangle_C = \theta$, then we get $\langle x, y \rangle_C = \sum_{k=1}^n e_k \langle x, y \rangle = \theta$. This result implies that $\langle x, y \rangle = 0$. \Box

Theorem 3. Let $(\ell_2, \langle \cdot, \cdot \rangle)$ be an inner product space and the *S*-cone inner product on ℓ_2 -space is defined by $\langle x, y \rangle_C = \sum_{k=1}^n e_k \langle x, y \rangle$, then

- (i) $\langle x, x \rangle_C = \|x\|_C \|x\|_C$;
- (ii) $\langle x, y \rangle_C \preccurlyeq \|x\|_C \|\|_C$.

Proof.

- (i) Since $\langle x, y \rangle_C = \sum_{k=1}^n e_k \langle x, y \rangle$, we have that $\langle x, x \rangle_C = \sum_{k=1}^n e_k \langle x, x \rangle = \sum_{k=1}^n e_k \|x\|^2 = \sum_{k=1}^n e_k \|x\| \|x\|$. Therefore, the multiplication $\|x\|_C \|x\|_C = \sum_{k=1}^n e_k \|x\| \|x\|$, and it means that $\langle x, x \rangle_C = \sum_{k=1}^n e_k \|x\| \|x\| = \|x\|_C \|x\|_C$. (ii) Purticipation
- (ii) By triangle inequality of the inner product, we have

$$\langle x, y \rangle_C^2 = \sum_{k=1}^n e_k \langle x, y \rangle^2 \preccurlyeq \sum_{k=1}^n \langle x, x \rangle \langle y, y \rangle$$

= $\sum_{k=1}^n e_k (\|x\|^2 \|y\|^2) = \|x\|_C^2 \|y\|_C^2$
= $(\|x\|_C \|y\|_C)^2.$

Thus, we have that $\langle x, y \rangle_C \preccurlyeq ||x||_c ||y||_C$.

Theorem 4. Let $(\ell_2, \langle \cdot, \cdot \rangle)$ be an inner product space and the S-cone inner product on ℓ_2 -space is defined by $\langle x, y \rangle_C$ = $\sum_{k=1}^{n} e_k \langle x, y \rangle$, then

- (i) $\langle x, y \rangle_C + \langle w, z \rangle_C = \sum_{k=1}^n e_k (\langle x, y \rangle + \langle w, z \rangle).$ (ii) $\langle \alpha x, y \rangle_C = \alpha \langle x, y \rangle_C.$
- (iii) If φ is an angle between vectors x and y in ℓ_2 -space, then $\langle x, y \rangle_C = \|x\|_C \|y\|_C \cos \varphi$.

Proof.

(i)
$$\langle x, y \rangle_C + \langle w, z \rangle_C = \sum_{k=1}^n e_k \langle x, y \rangle + \sum_{k=1}^n e_k \langle w, z \rangle = \sum_{k=1}^n e_k (\langle x, y \rangle + \langle w, z \rangle).$$

- (ii) $\overline{\langle \alpha x, y \rangle}_C = \sum_{k=1}^n e_k \langle \alpha x, y \rangle = \sum_{k=1}^n e_k \alpha \langle x, y \rangle = \alpha \sum_{k=1}^n e_k \alpha \langle x, y \rangle = \alpha \langle x, y \rangle_C.$ (iii) Since $\langle x, y \rangle = \|x\| \|y\| \cos \varphi$, then

$$\langle x, y \rangle_C = \sum_{k=1}^n e_k \langle x, y \rangle = \sum_{k=1}^n e_k ||x|| ||y|| \cos \varphi$$

= $\cos \varphi \sum_{k=1}^n e_k ||x|| ||y|| = ||x||_C ||y||_C \cos \varphi.$
Therefore, we get $\langle x, y \rangle_C = ||x||_C ||y||_C \cos \varphi.$

Therefore, we get $\langle x, y \rangle_C = ||x||_C ||y||_C \cos \varphi$.

From the discussion of the cone norm and S-cone inner product, we obtain its properties, among others: additive, multiplication with a scalar and multiplication between two cones. Furthermore, we construct and define a cone 2-norm associated with the S-cone inner product.

Let ℓ_2 -space be a 2-normed space. A function $\|\cdot, \cdot\|_C$: $\ell^2 \times \ell_2 \rightarrow (\mathbb{R}^n, P, \|\cdot\|)$, be defined by $\|x, y\|_C =$ $\sum_{k=1}^{n} e_k \|x, y\|_{\ell_2}$, is a cone 2-normed space. In this case, we call ℓ_2 -space as cone 2-normed spaces. The reason for the name can be explained as follows.

For every $x, y, z \in \ell_2$ and $\alpha \in \mathbb{R}$, the following statements hold:

- (CN1) $||x,y||_C = \sum_{k=1}^n e_k ||x,y||_{\ell_2} \succeq \theta$ for all $x,y \in X$, because $||x,y||_{\ell_2} \ge 0$. (CN2) $||x,y||_{\ell_2} = \sum_{k=1}^n e_k ||x,y||_{\ell_2} = \theta$ if and only if
- (CN2) $||x,y||_C = \sum_{k=1}^{n} e_k ||x,y||_{\ell_2} = \theta$ if and only if $||x,y||_{\ell_2} = 0$ as 2-normed space, then $||x,y||_{\ell_2} = 0$ if and only if x and y are linearly dependent.
- (CN3) $||x,y||_C = \sum_{k=1}^n e_k ||x,y||_{\ell_2} = \sum_{k=1}^n e_k ||y,x||_{\ell_2} =$ $\|y, x\|_C$.
- (CN4) Since $||x, y + z|| \le ||x, y|| + ||y, z||$, then

$$\begin{aligned} \|x, y + z\|_{C} &= \sum_{k=1}^{n} e_{k} \|x, y + z\|_{\ell_{2}} \\ &\preccurlyeq \sum_{k=1}^{n} \left(\|x, y\|_{\ell_{2}} + \|x, z\|_{\ell_{2}} \right) \\ &= \sum_{k=1}^{n} e_{k} \|x, y\|_{\ell_{2}} + \sum_{k=1}^{n} \|x, z\|_{\ell_{2}} \\ &= \|x, y\|_{C} + \|x, z\|_{C} \,. \end{aligned}$$

Which means that $\langle x + y, z \rangle_C \preccurlyeq \langle z, z \rangle_C + \langle y, z \rangle_C$. Therefore, an ℓ_2 -space is a cone 2-normed space.

Theorem 5. Let $(\ell_2, \langle \cdot, \cdot \rangle)$ be a S-cone inner product on ℓ_2 space, then

$$||x,y||_{C}^{2} = \sum_{k=1}^{n} e_{k} ||x,y||_{\ell_{2}} = ||x||_{C}^{2} ||y||_{C}^{2} - (\langle x,y \rangle_{C})^{2}.$$

And also

$$\|x,y\|_{C}^{2} = \begin{vmatrix} \langle x,x \rangle_{C} & \langle x,y \rangle_{C} \\ \langle y,x \rangle_{C} & \langle y,y \rangle_{C} \end{vmatrix}$$

Proof. From the definition of the $\|\cdot, \cdot\|_C$, we have

$$\begin{split} \langle \|x,y\|_{C} \rangle^{2} &= \sum_{k=1}^{n} e_{k} (\|x,y\|_{\ell_{2}})^{2} = \sum_{k=1}^{n} e_{k} \begin{vmatrix} \langle x,x \rangle & \langle x,y \rangle \\ \langle y,x \rangle & \langle y,y \rangle \end{vmatrix} \\ &= \sum_{k=1}^{n} e_{k} [\langle x,x \rangle \langle y,y \rangle - (\langle x,y \rangle)^{2}] \\ &= \sum_{k=1}^{n} e_{k} \langle x,x \rangle \langle y,y \rangle - \sum_{k=1}^{n} e_{k} (\langle x,y \rangle)^{2} \\ &= \langle x,x \rangle_{C} \langle y,y \rangle_{C} - (\langle x,y \rangle_{C})^{2} \\ &= \|x\|_{C}^{2} \|y\|_{C}^{2} - (\langle x,y \rangle_{C})^{2}. \end{split}$$

Therefore, we have

$$||x,y||_{C}^{2} = \sum_{k=1}^{n} e_{k} ||x,y||_{\ell_{2}} = ||x||_{C}^{2} ||y||_{C}^{2} - (\langle x,y \rangle_{C})^{2}.$$

In addition,

$$\begin{split} (\langle x, y \rangle_C)^2 &= \sum_{k=1}^n e_k \langle x, x \rangle \langle y, y \rangle - \sum_{k=1}^n e_k \langle x, y \rangle^2 \\ &= \sum_{k=1}^n e_k \langle x, x \rangle \langle y, y \rangle - \sum_{k=1}^n e_k \langle x, y \rangle \langle y, x \rangle \\ &= \|x\|_C^2 \|y\|_C^2 - \langle x, y \rangle_C \langle y, x \rangle_C \,. \end{split}$$

Since
$$||x||_C^2 = ||x, x||_C$$
 and $||y||_C^2 = \langle y, y \rangle_C$ then
 $||x, y||_C^2 = ||x||_C^2 ||y||_C^2 - \langle x, y \rangle_C \langle y, x \rangle_C$
 $= \langle x, x \rangle_C \langle y, y \rangle_C - \langle x, y \rangle_C \langle y, x \rangle_C$.

Here we have $||x, y||_C^2 = \begin{vmatrix} \langle x, x \rangle_C & \langle x, y \rangle_C \\ \langle y, x \rangle_C & \langle y, y \rangle_C \end{vmatrix}$.

Example 1. Let $(\ell_2, \langle \cdot, \cdot \rangle)$ be an inner product space with \mathcal{P} a S-cone in \mathbb{R}^2 . If we define a function

$$\begin{aligned} \langle \cdot, \cdot \rangle_C &: \ell_2 \times \ell_2 \to (\mathbb{R}^2, \mathcal{P}, \|\cdot\|) \\ \text{by } &\langle x, y \rangle_C = (\langle x, y \rangle, \langle x, y \rangle), \end{aligned}$$
 (2)

then $\langle \cdot, \cdot \rangle_C$ is a S-cone inner product in ℓ_2 -space.

We show that $\langle \cdot, \cdot \rangle_C$ satisfies the following properties:

- (IC1) Since $\langle x,x\rangle \geq 0$, then $\langle x,x\rangle_C = (\langle x,x\rangle, \langle x,x\rangle) \succcurlyeq$ θ for every $x \in \ell_2$. Furthermore, $\langle x, x \rangle_C$ $(\langle x, x \rangle, \langle x, x \rangle) = \theta$ if and ony if $\langle x, x \rangle = 0$ if and only if x = 0.
- $(\text{IC2}) \ \langle x, y \rangle_C = (\langle x, y \rangle, \langle y, x \rangle) = (\overline{\langle y, x \rangle}, \overline{\langle y, x \rangle}) = \overline{\langle y, x \rangle}_C$ for every $x, y \in \ell_2$. Thus, we have $\langle x, y \rangle_C = \langle y, \overline{x} \rangle_C$.

$$\begin{split} \langle \alpha x, y \rangle_C &= (\langle \alpha x, y \rangle, \langle \alpha x, y \rangle) = \alpha(\langle x, y \rangle, \langle x, y \rangle) \\ &= \alpha \langle x, y \rangle_C \\ & \text{for every } x, y \in \ell_2 \quad \text{and } \alpha \in \mathbb{R}. \end{split}$$

(IC4) Using triangle inequality of innter product, for every $x, y, z \in \ell_2$, we have

$$\langle x+y,z\rangle_C = (\langle x+y,z\rangle, \langle x+y,z\rangle)$$

$$\begin{array}{l} \preccurlyeq (\langle x, z \rangle + \langle y, z \rangle, \langle x, z \rangle + \langle y, z \rangle) \\ = (\langle x, z \rangle, \langle x, z \rangle) + (\langle y, z \rangle, \langle y, z \rangle) \\ = \langle x, z \rangle_C + \langle y, z \rangle_C \end{array}$$

Then, we conclude that $\langle \cdot, \cdot \rangle$ in (2) is a S-cone inner product in ℓ_2 .

Example 2. Let $(\ell_2, \|\cdot, \cdot\|)$ be a standard 2-norm space and $(\ell_2, \langle \cdot, \cdot \rangle)$ is a *S*-cone inner product space as in Example 1. A function $\|\cdot, \cdot\|_C : \ell_2 \times \ell_2 \to (\mathbb{R}^2, P, \|\cdot\|)$ defined by

$$\|x, y\|_{C} = \left(\|x, y\|_{\ell_{2}}, \|x, y\|_{\ell_{2}}\right)$$
(3)

is a cone 2-norm in ℓ_2 -space.

We see that it is defined as the standard norms:

$$\begin{aligned} \|x,y\|^{2} &= \begin{vmatrix} \langle x,x \rangle & \langle x,y \rangle \\ \langle y,x \rangle & \langle y,y \rangle \end{vmatrix} = \langle x,x \rangle \langle y,y \rangle - \langle x,y \rangle^{2} \\ &= \|x\|^{2} \|y\|^{2} - \langle x,y \rangle^{2}, \end{aligned}$$

and implies that

$$\begin{split} &(\|x,y\|_{C})^{2} \|x,y\|_{C} \|x,y\|_{C} \\ &= (\|x,y\|_{\ell_{2}},\|x,y\|_{\ell_{2}}) \cdot (\|x,y\|_{\ell_{2}},\|x,y\|_{\ell_{2}}) \\ &= \left(\|x,y\|_{\ell_{2}}^{2},\|x,y\|_{\ell_{2}}^{2}\right) \\ &= \left(\langle x,x \rangle \langle y,y \rangle - \langle x,y \rangle^{2}, \langle x,x \rangle \langle y,y \rangle - \langle x,y \rangle^{2}\right) \\ &= \left(\langle x,x \rangle \langle y,y \rangle - \langle x,y \rangle \langle y,x \rangle, \langle x,x \rangle \langle y,y \rangle - \langle x,y \rangle \langle y,x \rangle\right) \\ &= \left(\langle x,x \rangle \langle y,y \rangle, \langle x,x \rangle \langle y,y \rangle - \langle x,y \rangle \langle y,x \rangle, \langle x,y \rangle \langle y,x \rangle\right) \\ &= \left(\langle x,x \rangle \langle y,y \rangle, \langle x,x \rangle \langle y,y \rangle - \langle x,y \rangle \langle y,x \rangle, \langle x,y \rangle \langle y,x \rangle\right) \\ &= \langle x,x \rangle_{C} \langle y,y \rangle_{C} - \langle x,y \rangle_{C} \langle y,x \rangle_{C} \,. \end{split}$$

Therefore $||x,y||_C^2 = \langle x,x \rangle_C \langle y,y \rangle_C - \langle x,y \rangle_C \langle y,x \rangle_C$. In other word, it means that $||x,y||_C^2 = \begin{vmatrix} \langle x,x \rangle_C & \langle x,y \rangle_C \\ \langle y,x \rangle_C & \langle y,y \rangle_C \end{vmatrix}$.

Now, we arrive at the main result of this paper, formulated in the following theorem.

Theorem 6. Let $||x, y||_C = \sum_{k=1}^n e_k ||x, y||_{\ell_2}$ be a cone 2norm and φ an angle between vectors x and y in ℓ_2 -space, then

$$||x, y||_{C}^{2} = (1 - \cos^{2} \varphi) ||x||_{C}^{2} ||y||_{C}^{2}$$

Proof. Since $||x, y||_C = \sum_{k=1}^n e_k ||x, y||_{\ell_2}$ is a cone 2-norm, then we have $||x, y||_C^2 = \begin{vmatrix} \langle x, x \rangle_C & \langle x, y \rangle_C \\ \langle y, x \rangle_C & \langle y, y \rangle_C \end{vmatrix}$. It means that

$$\begin{split} \|x, y\|_{C}^{2} &= \|x\|_{C}^{2} \|y\|_{C}^{2} = \langle x, y \rangle_{C} \langle y, x \rangle_{C} \\ &= \sum_{k=1}^{n} e_{k} \|x\|^{2} \|y\|^{2} - \sum_{k=1}^{n} e_{k} \langle x, y \rangle \langle y, x \rangle \\ &= \sum_{k=1}^{n} e_{k} \left(\|x\|^{2} \|\|^{2} - \langle x, y \rangle^{2} \right) \\ &= (1 - \cos^{2} \varphi) \langle x, x \rangle_{C} \langle y, y \rangle_{C} \\ &= (1 - \cos^{2} \varphi) \|x\|_{C}^{2} \|y\|_{C}^{2} \,. \end{split}$$

Corollary 1. et $||x, y||_C = \sum_{k=1}^n e_k ||x, y||_{\ell_2}$ be a cone 2norm and φ an angle between vectors x and y in ℓ_2 -space. Then $||x, y||_C = ||x||_C ||y||_C \sin \varphi$. In a S-cone inner product space, two vectors x and y are orthogonal if and only if $\langle x, y \rangle_C = \theta$. It implies that $\langle x, y \rangle_C = \|x\|_C \|y\|_C \cos \varphi = \theta$, and also $\|x, y\|_C^2 = \|x\|_C^2 \|y\|_C^2 - \langle x, y \rangle_C^2$, and we have $\|x, y\|_C^2 = \|x\|_C^2 \|y\|_C^2 - \theta = \|x\|_C^2 \|y\|_C^2$. As a conclusion, we have $\|x, y\|_C = \|x\|_C \|y\|_C$.

Acknowledgement. This research is supported by the Laboratory of Applied Analysis and Algebra, Departement of Mathematics, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia.

REFERENCES

- H. Gunawan, "The space of p-summable sequence and its natural nnorm," Bull. Austral. Math. Soc., vol. 64, pp. 137–147, 2001.
- [2] Sadjidon and H. Gunawan, "Konstruksi ruang 2-norm sebagai luasan yang direntang oleh dua vektor," *Limits: Journal of Mathematics and Its Applications*, vol. 4, no. 2, pp. 45–51, 2007.
- [3] A. Niknam, S. S. Gamchi, and M. Janfada, "Some results on tvs-cone normed spaces and algebraic cone metric spaces," *Iranian Journal of Mathematical Sciences and Informatics*, vol. 9, no. 1, pp. 71–80, 2014.
- [4] M. A. Gordji, M. Rameszani, K. H, and B. H, "Cone normed spaces," *Caspian Journal of Mathematical Sciences*, vol. 1, pp. 7–12, 2012.
- [5] Sadjidon, M. Yunus, and Sunarsini, "Construction of some orthogonalities in cone 2-normed space," *Pure Mathematical Sciences*, vol. 5, no. 1, pp. 59–64, 2016.
- [6] A. Sahiner and T. Yigit, "2-cone banach spaces and fixed point theorems," Proceeding of International Conference of Numerical Analysis and Applied Mathematics, Kos Greece, vol. 1479, pp. 975–978, 2012.
- [7] C. R. Diminnie, "A new orthogonality relation for normed linear spaces," *Math Nacr*, vol. 114, no. 1, pp. 197–203, 1983.
- [8] A. Khan and A. Siddiqui, "B-orthogonality in 2-normed space," Bull. Calcutta Math. Soc., vol. 74, 1982.
- [9] H. Gunawan, Mashadi, S. Gemawati, Nursupiamin, and I. Sihwaningrum, "Orthogonality in 2-normed spaces," Univ. Beograd Publ. Elektrotechn. Fak. Ser. Mat., vol. 17, pp. 176–83, 2006.