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Construction of Cone 2-Norm Associated with
S-Cone Inner Product

Sadjidon, Mahmud Yunus, Sunarsini, and Lukman Hanafi

Abstract—This paper is devoted to discussing an inner product
in cone normed spaces and constructing S-cone inner products
to define S-cone inner product spaces, especially in ℓ2-space.
Moreover, we also construct cone 2-norm spaces associated with
S-cone inner product spaces.

Index Terms—Cone Normed Spaces, S-cone inner product
spaces, Cone 2-Norm Spaces

I. INTRODUCTION

THE study of 2-norm space continues to grow and learn;
among others, the study of 2-norms by associating its

dual space that has been studied in [1][2][3], especially for
the ℓ2-space and the inner product space, and also in [4]
by studying the cone normed space. Therefore, taking into
account in [1][2] is developed a study of the cone 2-norm
and some of its properties described in [5][6]. Therefore,
concerning inner product space and in [4][5] it has been
developed and studied about the S-cone inner product space,
then they obtained the construction and definition of S-cone
inner product spaces, particularly for ℓ2-space. They also
describe its properties, and construct its cone 2-normed such
that is obtained a definition of cone 2-normed associated with
a S-cone inner product.

To construct the S-cone inner product space, particularly
for ℓ2-space, we need and use the following definitions and
notations.

Definition 1. [1] Let X be a real vector space. A norm on X
is a function ∥ · ∥ : X → R satisfying:

(N1) ∥x∥ ≥ 0 for every x ∈ X and ∥x∥ = 0 if and only if
x = 0;

(N2) ∥αx∥ = |α| ∥x∥ for every x ∈ X and α ∈ R;
(N3) ∥x+ y∥ = ∥x∥+ ∥y∥.
A vector space X equipped with a norm ∥·∥, written as
(X, ∥·∥), is called normed space.

Definition 2. [1] Let X be a real vector space. An inner
product on X is a function ⟨·, ·⟩ : X ×X → R that satisfies:
(I1) ⟨x, x⟩ ≥ 0 for every x ∈ X; and ⟨x, x⟩ = 0 if and only

if x = 0;
(I2) ⟨x, y⟩ = ⟨y, x⟩;
(I3) ⟨αx, y⟩ = α ⟨x, y⟩ for every x, y ∈ X and α ∈ R;
(I4) ⟨x+ y, z⟩ = ⟨x, z⟩+ ⟨y, z⟩ for every x, y, z ∈ X;
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A vector space X equipped with an inner product ⟨·, ]cdot⟩,
also written as (X, ⟨·, ·⟩), is called inner product space.

Definition 3. [4] Let P be a subset of a Banach space E
with zero element θ, then P is called cone if:

(i) P is a closed non empty set, and P ̸= {θ};
(ii) If a and b are positive real numbers, then ax+ by ∈ P

for every x, y ∈ P ;
(iii) P ∩ (−P ) = {θ}.

Additionally, a cone P has a relation ≼ and x ≼ y if and
only if y − x ∈ P and x ≺ y if and only if x ≺ y and
x ̸= y, while x ≪ y means y − x ∈ int(P ) (interior of P ).
Furthermore, we assume that E is the Banach space and P is
a cone in E.

Definition 4. [4] A cone normed space is an ordered pair
(X, ∥·∥c) where X is a linear space over R and ∥·∥c : X →
(E,P, ∥·∥) is a function satisfying
(C1) ∥x∥c ≽ θ for every x ∈ X;
(C2) ∥x∥c = θ if and only if x = 0;
(C3) ∥αx∥c = |α| ∥x∥c for every x ∈ X and α ∈ R;
(C4) ∥x+ y∥c ≼ ∥x∥c + ∥y∥c for every x, y ∈ X .

Definition 5. [1] Let x be a d-dimensional real vektor space,
where 2 ≤ d < ∞. A 2-norm on X is a function ∥·, ·∥ :
X ×X → R satisfying
(N1) ∥x, y∥ ≥ 0 for ef=very x, y ∈ X; and ∥x, y∥ = 0 if and

only if x and y are linearly dependent;
(N2) ∥x, y∥ = ∥y, x∥ for every x, y ∈ X;
(N3) ∥x, αy∥ = |α| ∥x, y∥ for every x, y ∈ X and α ∈ R;
(N4) ∥x, y + z∥ ≤ ∥x, y∥+ ∥x, z∥ for every x, y, z ∈ X .
A vector space X equipped with a 2-norm, also written as
(X, ∥·, ·∥), is called 2-norm space.

For historical issues regarding inner product spaces and 2-
normed spaces, we refer to the existing references; e.g. [7],
[1], [8], in which defined a standard norm:

∥x, y∥2 =

∣∣∣∣⟨x, x⟩ ⟨x, y⟩
⟨y, x⟩ ⟨y, y⟩

∣∣∣∣
= ⟨x, x⟩ ⟨y, y⟩ − ⟨x, y⟩2

= ∥x∥2 ∥y∥2 − ⟨x, y⟩2 .

As in [2], we define the 2-norm by associating its dual space
with ⟨x, z⟩:

∥x, y∥ = sup

{∣∣∣∣⟨x, y⟩ ⟨y, z⟩
⟨x,w⟩ ⟨y, w⟩

∣∣∣∣ : z, w ∈ ℓ2, ∥z∥, ∥w∥ ≤ 1

}
.

Geometrically, the 2-norm is the area spanned by two vectors.
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Definition 6. [5] Let X be a 2-normed space, and (E, ∥·∥)
be a Banach space, and P ⊂ E be a cone, then cone 2-norm
on X is a function ∥·, ·∥C : X ×X → (E,P, ∥·∥) satisfying
the following properties:

(CN1) ∥x, y∥C ≽ θ for every x, y ∈ X; and ∥x, y∥C = θ if
and only if x and y are linearly dependent;

(CN2) ∥x, y∥C = ∥y, x∥C for every x, y ∈ X;
(CN3) ∥αx, y∥C = |α| ∥x, y∥C for every x, y ∈ X and α ∈

R;
(CN4) ∥x, y + z∥C ≼ ∥x, y∥C + ∥x, z∥C for every x, y, z ∈

X .
A 2-normed space X equipped with cone 2-norm, written as
(X, ∥·, ·∥C), is called cone 2-normed space.

II. RESULTS AND DISCUSSION

It is straightforward to verify that if P ⊂ Rn for non-
negative R, then P is a cone. As stated in [9], a function
∥·∥C : ℓ2 → (Rn, P, ∥·∥) defined by ∥x∥C =

∑n
k=1 ek ∥x∥ℓ2

is a cone normed space. Multiplication on a cone norm is
defined as follows:

∥x∥C ∥x∥C = (∥x∥C)
2
=

n∑
k=1

ek
(
∥x∥ℓ2

)2
.

Let P be a subset of Banach space E and P is a cone, then
we define P = P ∪(−P ), and P is called S-cone. Thus, from
the description of the inner product space and the meaning of
S-cone, we can construct and define a S-cone inner product
space as in the following definition.

Definition 7. A S-cone inner product space is an order pair
(X, ⟨·, ·⟩C) where X a linear space overR with P is a S-cone
inner product space and ⟨·, ·⟩C : X × X → (E,P, ∥·∥) is a
function satisfying:

(IC1) ⟨x, x⟩C ≽ θ for every x ∈ X; and ⟨x, x⟩C = θ if and
only if x = 0;

(IC2) ⟨x, y⟩C = ⟨y, x⟩C for every x, y ∈ X;
(IC3) ⟨αx, y⟩C = α ⟨x, y⟩C for every x, y ∈ X and α ∈ R;
(IC4) ⟨x+ y, z⟩C ≼ ⟨x, z⟩C + ⟨y, z⟩C for every x, y, z ∈ X .

If X is a real vector space, then ⟨y, x⟩C = ⟨y, x⟩C = ⟨x, y⟩C .

It is easy to show that ℓ2-space with the standard inner
product is a Banach space, and its S-cone inner product is
given as follows.

Theorem 1. Let (ℓ2, ⟨·, ·⟩) be an inner product space with P
is a S-cone, and we define a function

⟨·, ·⟩C : ℓ2 × ℓ2 → (Rn,P, ∥·∥)
by ⟨x, y⟩C =

∑n
k=1 ek ⟨x, y⟩ ,

(1)

then ⟨·, ·⟩C is a S-cone inner product for ℓ2-space.

Proof. We will show that ⟨·, ·⟩C in (1) satisfies the following
properties:

(IC1) Since ⟨x, x⟩ ≥ 0, then ⟨x, x⟩C =
∑n

k=1 ek ⟨x, x⟩C ≽
θ for every x ∈ ℓ2; Furthermore, ⟨x, x⟩C =∑n

k=1 ek ⟨x, x⟩ = θ if and only if ⟨x, x⟩ = if and only
if x = 0;

(IC2) ⟨x, y⟩C =
∑n

k=1 ek ⟨x, y⟩ =
∑n

k=1 ek ⟨y, x⟩ =

⟨y, x⟩C ⟨y, x⟩C for every x, y ∈ ℓ2. Therefore ⟨x, y⟩C =
⟨y, x⟩C ;

(IC3) ⟨αx, y⟩C =
∑n

k=1 ek ⟨αx, y⟩ = α
∑n

k=1 ek ⟨x, y⟩ =
α ⟨x, y⟩C for every x, y ∈ ℓ2 and α ∈ R;

(IC4) For every x, y, z ∈ ℓ2 by triangle inequality of the inner
product, we have

⟨x+ y, z⟩C =

n∑
k=1

ek ⟨x+ y, z⟩

=

n∑
k=1

ek(⟨x, z⟩+ ⟨y, z⟩)

=

n∑
k=1

ek ⟨x, z⟩+
n∑

k=1

ek ⟨y, z⟩

= ⟨x, z⟩c + ⟨y, z⟩C .

Therefore, we can conclude that the function ⟨·, ·⟩C in
(1) is a S-cone inner product for ℓ2-space. □

In an inner product space, vectors x and x are orthogonal
if and only if ⟨x, y⟩ = 0. We define orthogonality in S-cone
inner product spaces analogously to those in the inner product
space, which is given by the following theorems.

Theorem 2. Let (ℓ2, ⟨·, ·⟩) be an inner product space with P
is a S-cone, and if we define a S-cone inner product ⟨·, ·⟩C :
ℓ2 × ℓ2 → (R,P, ∥·∥) by ⟨x, y⟩C =

∑n
k=1 ek ⟨x, y⟩, then two

vectors x and y are orthogonal if and only if ⟨x, y⟩C = θ.

Proof. Since vectors x and y are orthogonal in an inner
product space, i.e. ⟨x, y⟩ = 0, we have

⟨x, y⟩C =

n∑
k=1

ek ⟨x, y⟩ =
n∑

k=1

ek · 0 = θ.

On the other hand, if ⟨x, y⟩C = θ, then we get ⟨x, y⟩C =∑n
k=1 ek ⟨x, y⟩ = θ. This result implies that ⟨x, y⟩ = 0. □

Theorem 3. Let (ℓ2, ⟨·, ·⟩) be an inner product space and the
S-cone inner product on ℓ2-space is defined by ⟨x, y⟩C =∑n

k=1 ek ⟨x, y⟩, then
(i) ⟨x, x⟩C = ∥x∥C ∥x∥C;

(ii) ⟨x, y⟩C ≼ ∥x∥C ∥∥C .

Proof.
(i) Since ⟨x, y⟩C =

∑n
k=1 ek ⟨x, y⟩, we have that

⟨x, x⟩C =
∑n

k=1 ek ⟨x, x⟩ =
∑n

k=1 ek ∥x∥
2

=∑n
k=1 ek ∥x∥ ∥x∥. Therefore, the multiplication

∥x∥C ∥x∥C =
∑n

k=1 ek ∥x∥ ∥x∥, and it means that
⟨x, x⟩C =

∑n
k=1 ek ∥x∥ ∥x∥ = ∥x∥C ∥x∥C .

(ii) By triangle inequality of the inner product, we have

⟨x, y⟩2C =

n∑
k=1

ek ⟨x, y⟩2 ≼
n∑

k=1

⟨x, x⟩ ⟨y, y⟩

=

n∑
k=1

ek(∥x∥2 ∥y∥2) = ∥x∥2C ∥y∥2C

= (∥x∥C ∥y∥C)
2.

Thus, we have that ⟨x, y⟩C ≼ ∥x∥c ∥y∥C . □
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Theorem 4. Let (ℓ2, ⟨·, ·⟩) be an inner product space and the
S-cone inner product on ℓ2-space is defined by ⟨x, y⟩C =∑n

k=1 ek ⟨x, y⟩, then
(i) ⟨x, y⟩C + ⟨w, z⟩C =

∑n
k=1 ek(⟨x, y⟩+ ⟨w, z⟩).

(ii) ⟨αx, y⟩C = α ⟨x, y⟩C .
(iii) If φ is an angle between vectors x and y in ℓ2-space,

then ⟨x, y⟩C = ∥x∥C ∥y∥C cosφ.

Proof.
(i) ⟨x, y⟩C+⟨w, z⟩C =

∑n
k=1 ek ⟨x, y⟩+

∑n
k=1 ek ⟨w, z⟩ =∑n

k=1 ek(⟨x, y⟩+ ⟨w, z⟩).
(ii) ⟨αx, y⟩C =

∑n
k=1 ek ⟨αx, y⟩ =

∑n
k=1 ekα ⟨x, y⟩ =

α
∑n

k=1 ek ⟨x, y⟩ = α ⟨x, y⟩C .
(iii) Since ⟨x, y⟩ = ∥x∥ ∥y∥ cosφ, then

⟨x, y⟩C =

n∑
k=1

ek ⟨x, y⟩ =
n∑

k=1

ek ∥x∥ ∥y∥ cosφ

= cosφ

n∑
k=1

ek ∥x∥ ∥y∥ = ∥x∥C ∥y∥C cosφ.

Therefore, we get ⟨x, y⟩C = ∥x∥C ∥y∥C cosφ. □

From the discussion of the cone norm and S-cone inner
product, we obtain its properties, among others: additive,
multiplication with a scalar and multiplication between two
cones. Furthermore, we construct and define a cone 2-norm
associated with the S-cone inner product.

Let ℓ2-space be a 2-normed space. A function ∥·, ·∥C :
ℓ2 × ℓ2 → (Rn, P, ∥·∥), be defined by ∥x, y∥C =∑n

k=1 ek ∥x, y∥ℓ2 , is a cone 2-normed space. In this case, we
call ℓ2-space as cone 2-normed spaces. The reason for the
name can be explained as follows.
For every x, y, z ∈ ℓ2 and α ∈ R, the following statements
hold:
(CN1) ∥x, y∥C =

∑n
k=1 ek ∥x, y∥ℓ2 ≽ θ for all x, y ∈ X ,

because ∥x, y∥ℓ2 ≥ 0.
(CN2) ∥x, y∥C =

∑n
k=1 ek ∥x, y∥ℓ2 = θ if and only if

∥x, y∥ℓ2 = 0 as 2-normed space, then ∥x, y∥ℓ2 = 0
if and only if x and y are linearly dependent.

(CN3) ∥x, y∥C =
∑n

k=1 ek ∥x, y∥ℓ2 =
∑n

k=1 ek ∥y, x∥ℓ2 =
∥y, x∥C .

(CN4) Since ∥x, y + z∥ ≤ ∥x, y∥+ ∥y, z∥, then

∥x, y + z∥C =

n∑
k=1

ek ∥x, y + z∥ℓ2

≼
n∑

k=1

(
∥x, y∥ℓ2 + ∥x, z∥ℓ2

)
=

n∑
k=1

ek ∥x, y∥ℓ2 +
n∑

k=1

∥x, z∥ℓ2

= ∥x, y∥C + ∥x, z∥C .

Which means that ⟨x+ y, z⟩C ≼ ⟨z, z⟩C + ⟨y, z⟩C .
Therefore, an ℓ2-space is a cone 2-normed space.

Theorem 5. Let (ℓ2, ⟨·, ·⟩) be a S-cone inner product on ℓ2-
space, then

∥x, y∥2C =

n∑
k=1

ek ∥x, y∥ℓ2 = ∥x∥2C ∥y∥2C − (⟨x, y⟩C)
2.

And also
∥x, y∥2C =

∣∣∣∣⟨x, x⟩C ⟨x, y⟩C
⟨y, x⟩C ⟨y, y⟩C

∣∣∣∣
Proof. From the definition of the ∥·, ·∥C , we have

(∥x, y∥C)
2 =

n∑
k=1

ek(∥x, y∥ℓ2)
2 =

n∑
k=1

ek

∣∣∣∣⟨x, x⟩ ⟨x, y⟩
⟨y, x⟩ ⟨y, y⟩

∣∣∣∣
=

n∑
k=1

ek[⟨x, x⟩ ⟨y, y⟩ − (⟨x, y⟩)2]

=

n∑
k=1

ek ⟨x, x⟩ ⟨y, y⟩ −
n∑

k=1

ek(⟨x, y⟩)2

= ⟨x, x⟩C ⟨y, y⟩C − (⟨x, y⟩C)
2

= ∥x∥2C ∥y∥2C − (⟨x, y⟩C)
2.

Therefore, we have

∥x, y∥2C =

n∑
k=1

ek ∥x, y∥ℓ2 = ∥x∥2C ∥y∥2C − (⟨x, y⟩C)
2.

In addition,

(⟨x, y⟩C)
2 =

n∑
k=1

ek ⟨x, x⟩ ⟨y, y⟩ −
n∑

k=1

ek ⟨x, y⟩2

=

n∑
k=1

ek ⟨x, x⟩ ⟨y, y⟩ −
n∑

k=1

ek ⟨x, y⟩ ⟨y, x⟩

= ∥x∥2C ∥y∥2C − ⟨x, y⟩C ⟨y, x⟩C .

Since ∥x∥2C = ∥x, x∥C and ∥y∥2C = ⟨y, y⟩C then

∥x, y∥2C = ∥x∥2C ∥y∥2C − ⟨x, y⟩C ⟨y, x⟩C
= ⟨x, x⟩C ⟨y, y⟩C − ⟨x, y⟩C ⟨y, x⟩C .

Here we have ∥x, y∥2C =

∣∣∣∣⟨x, x⟩C ⟨x, y⟩C
⟨y, x⟩C ⟨y, y⟩C

∣∣∣∣.
Example 1. Let (ℓ2, ⟨·, ·⟩) be an inner product space with P
a S-cone in R2. If we define a function

⟨·, ·⟩C : ℓ2 × ℓ2 → (R2,P, ∥·∥)
by ⟨x, y⟩C = (⟨x, y⟩ , ⟨x, y⟩), (2)

then ⟨·, ·⟩C is a S-cone inner product in ℓ2-space.
We show that ⟨·, ·⟩C satisfies the following properties:

(IC1) Since ⟨x, x⟩ ≥ 0, then ⟨x, x⟩C = (⟨x, x⟩ , ⟨x, x⟩) ≽
θ for every x ∈ ℓ2. Furthermore, ⟨x, x⟩C =
(⟨x, x⟩ , ⟨x, x⟩) = θ if and ony if ⟨x, x⟩ = 0 if and
only if x = 0.

(IC2) ⟨x, y⟩C = (⟨x, y⟩ , ⟨y, x⟩) =
(
⟨y, x⟩, ⟨y, x⟩

)
= ⟨y, x⟩C

for every x, y ∈ ℓ2.
Thus, we have ⟨x, y⟩C = ⟨y, x⟩C .

(IC3) From the property of multiplication by scalar, we have

⟨αx, y⟩C = (⟨αx, y⟩ , ⟨αx, y⟩) = α(⟨x, y⟩ , ⟨x, y⟩)
= α ⟨x, y⟩C

for every x, y ∈ ℓ2 and α ∈ R.

(IC4) Using triangle inequality of innter product, for every
x, y, z ∈ ℓ2, we have

⟨x+ y, z⟩C = (⟨x+ y, z⟩ , ⟨x+ y, z⟩)
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≼ (⟨x, z⟩+ ⟨y, z⟩ , ⟨x, z⟩+ ⟨y, z⟩)
= (⟨x, z⟩ , ⟨x, z⟩) + (⟨y, z⟩ , ⟨y, z⟩)
= ⟨x, z⟩C + ⟨y, z⟩C

Then, we conclude that ⟨·, ·⟩ in (2) is a S-cone inner product
in ℓ2.

Example 2. Let (ℓ2, ∥·, ·∥) be a standard 2-norm space and
(ℓ2, ⟨·, ·⟩)is a S-cone inner product space as in Example 1. A
function ∥·, ·∥C : ℓ2 × ℓ2 → (R2, P, ∥·∥) defined by

∥x, y∥C =
(
∥x, y∥ℓ2 , ∥x, y∥ℓ2

)
(3)

is a cone 2-norm in ℓ2-space.
We see that it is defined as the standard norms:

∥x, y∥2 =

∣∣∣∣⟨x, x⟩ ⟨x, y⟩
⟨y, x⟩ ⟨y, y⟩

∣∣∣∣ = ⟨x, x⟩ ⟨y, y⟩ − ⟨x, y⟩2

= ∥x∥2 ∥y∥2 − ⟨x, y⟩2 ,

and implies that

(∥x, y∥C)
2 ∥x, y∥C ∥x, y∥C

= (∥x, y∥ℓ2 , ∥x, y∥ℓ2) · (∥x, y∥ℓ2 , ∥x, y∥ℓ2)
=

(
∥x, y∥2ℓ2 , ∥x, y∥

2
ℓ2

)
= (⟨x, x⟩ ⟨y, y⟩ − ⟨x, y⟩2 , ⟨x, x⟩ ⟨y, y⟩ − ⟨x, y⟩2)
= (⟨x, x⟩ ⟨y, y⟩ − ⟨x, y⟩ ⟨y, x⟩ , ⟨x, x⟩ ⟨y, y⟩ − ⟨x, y⟩ ⟨y, x⟩)
= (⟨x, x⟩ ⟨y, y⟩ , ⟨x, x⟩ ⟨y, y⟩)− (⟨x, y⟩ ⟨y, x⟩ , ⟨x, y⟩ ⟨y, x⟩)
= ⟨x, x⟩C ⟨y, y⟩C − ⟨x, y⟩C ⟨y, x⟩C .

Therefore ∥x, y∥2C = ⟨x, x⟩C ⟨y, y⟩C − ⟨x, y⟩C ⟨y, x⟩C .

In other word, it means that ∥x, y∥2C =

∣∣∣∣⟨x, x⟩C ⟨x, y⟩C
⟨y, x⟩C ⟨y, y⟩C

∣∣∣∣.
Now, we arrive at the main result of this paper, formulated

in the following theorem.

Theorem 6. Let ∥x, y∥C =
∑n

k=1 ek ∥x, y∥ℓ2 be a cone 2-
norm and φ an angle between vectors x and y in ℓ2-space,
then

∥x, y∥2C = (1− cos2 φ) ∥x∥2C ∥y∥2C .

Proof. Since ∥x, y∥C =
∑n

k=1 ek ∥x, y∥ℓ2 is a cone 2-norm,

then we have ∥x, y∥2C =

∣∣∣∣⟨x, x⟩C ⟨x, y⟩C
⟨y, x⟩C ⟨y, y⟩C

∣∣∣∣. It means that

∥x, y∥2C = ∥x∥2C ∥y∥2C = ⟨x, y⟩C ⟨y, x⟩C

=

n∑
k=1

ek ∥x∥2 ∥y∥2 −
n∑

k=1

ek ⟨x, y⟩ ⟨y, x⟩

=

n∑
k=1

ek
(
∥x∥2 ∥∥2 − ⟨x, y⟩2

)
= (1− cos2 φ) ⟨x, x⟩C ⟨y, y⟩C
= (1− cos2 φ) ∥x∥2C ∥y∥2C .

Corollary 1. et ∥x, y∥C =
∑n

k=1 ek ∥x, y∥ℓ2 be a cone 2-
norm and φ an angle between vectors x and y in ℓ2-space.
Then ∥x, y∥C = ∥x∥C ∥y∥C sinφ.

In a S-cone inner product space, two vectors x
and y are orthogonal if and only if ⟨x, y⟩C = θ. It
implies that ⟨x, y⟩C = ∥x∥C ∥y∥C cosφ = θ, and
also ∥x, y∥2C = ∥x∥2C ∥y∥2C − ⟨x, y⟩2C , and we have
∥x, y∥2C = ∥x∥2C ∥y∥2C − θ = ∥x∥2C ∥y∥2C . As a conclusion,
we have ∥x, y∥C = ∥x∥C ∥y∥C .
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