Construction of Cone 2-Norm Associated with S-Cone Inner Product

Sadjidon, Mahmud Yunus, Sunarsini, and Lukman Hanafi

Abstract

This paper is devoted to discussing an inner product in cone normed spaces and constructing S-cone inner products to define S-cone inner product spaces, especially in ℓ_{2}-space. Moreover, we also construct cone 2-norm spaces associated with S-cone inner product spaces.

Index Terms-Cone Normed Spaces, S-cone inner product spaces, Cone 2-Norm Spaces

I. Introduction

THE study of 2-norm space continues to grow and learn; among others, the study of 2 -norms by associating its dual space that has been studied in [1][2][3], especially for the ℓ_{2}-space and the inner product space, and also in [4] by studying the cone normed space. Therefore, taking into account in [1][2] is developed a study of the cone 2-norm and some of its properties described in [5][6]. Therefore, concerning inner product space and in [4][5] it has been developed and studied about the S-cone inner product space, then they obtained the construction and definition of S-cone inner product spaces, particularly for ℓ_{2}-space. They also describe its properties, and construct its cone 2 -normed such that is obtained a definition of cone 2-normed associated with a S-cone inner product.

To construct the S-cone inner product space, particularly for ℓ_{2}-space, we need and use the following definitions and notations.

Definition 1. [1] Let X be a real vector space. A norm on X is a function $\|\cdot\|: X \rightarrow \mathbb{R}$ satisfying:
(N1) $\|x\| \geq 0$ for every $x \in X$ and $\|x\|=0$ if and only if $x=0$;
(N2) $\|\alpha x\|=|\alpha|\|x\|$ for every $x \in X$ and $\alpha \in \mathbb{R}$;
(N3) $\|x+y\|=\|x\|+\|y\|$.
A vector space X equipped with a norm $\|\cdot\|$, written as $(X,\|\cdot\|)$, is called normed space.
Definition 2. [1] Let X be a real vector space. An inner product on X is a function $\langle\cdot, \cdot\rangle: X \times X \rightarrow \mathbb{R}$ that satisfies:
(I1) $\langle x, x\rangle \geq 0$ for every $x \in X$; and $\langle x, x\rangle=0$ if and only if $x=0$;
(I2) $\langle x, y\rangle=\langle y, x\rangle$;
(I3) $\langle\alpha x, y\rangle=\alpha\langle x, y\rangle$ for every $x, y \in X$ and $\alpha \in \mathbb{R}$;
(I4) $\langle x+y, z\rangle=\langle x, z\rangle+\langle y, z\rangle$ for every $x, y, z \in X$;
Sadjidon, M. Yunus, Sunarsini, and L. Hanafi are with the Department of Mathematics, Institut Teknologi Sepuluh Nopember, Surabaya 60111, Indonesia e-mail: sadjidon@matematika.its.ac.id

Manuscript received August 3, 2023; accepted November 1, 2023.

A vector space X equipped with an inner product $\langle\cdot] c d o t$,$\rangle ,$ also written as $(X,\langle\cdot, \cdot\rangle)$, is called inner product space.

Definition 3. [4] Let P be a subset of a Banach space E with zero element θ, then P is called cone if:
(i) P is a closed non empty set, and $P \neq\{\theta\}$;
(ii) If a and b are positive real numbers, then $a x+b y \in P$ for every $x, y \in P$;
(iii) $P \cap(-P)=\{\theta\}$.

Additionally, a cone P has a relation \preccurlyeq and $x \preccurlyeq y$ if and only if $y-x \in P$ and $x \prec y$ if and only if $x \prec y$ and $x \neq y$, while $x \ll y$ means $y-x \in \operatorname{int}(P)$ (interior of P). Furthermore, we assume that E is the Banach space and P is a cone in E.

Definition 4. [4] A cone normed space is an ordered pair $\left(X,\|\cdot\|_{c}\right)$ where X is a linear space over \mathbb{R} and $\|\cdot\|_{c}: X \rightarrow$ $(E, P,\|\cdot\|)$ is a function satisfying
(C1) $\|x\|_{c} \succcurlyeq \theta$ for every $x \in X$;
(C2) $\|x\|_{c}=\theta$ if and only if $x=0$;
(C3) $\|\alpha x\|_{c}=|\alpha|\|x\|_{c}$ for every $x \in X$ and $\alpha \in \mathbb{R}$;
(C4) $\|x+y\|_{c} \preccurlyeq\|x\|_{c}+\|y\|_{c}$ for every $x, y \in X$.
Definition 5. [1] Let x be a d-dimensional real vektor space, where $2 \leq d<\infty$. A 2-norm on X is a function $\|\cdot, \cdot\|$: $X \times X \rightarrow \mathbb{R}$ satisfying
(N1) $\|x, y\| \geq 0$ for ef=very $x, y \in X$; and $\|x, y\|=0$ if and only if x and y are linearly dependent;
(N2) $\|x, y\|=\|y, x\|$ for every $x, y \in X$;
(N3) $\|x, \alpha y\|=|\alpha|\|x, y\|$ for every $x, y \in X$ and $\alpha \in \mathbb{R}$;
(N4) $\|x, y+z\| \leq\|x, y\|+\|x, z\|$ for every $x, y, z \in X$.
A vector space X equipped with a 2 -norm, also written as $(X,\|\cdot, \cdot\|)$, is called 2-norm space.

For historical issues regarding inner product spaces and 2normed spaces, we refer to the existing references; e.g. [7], [1], [8], in which defined a standard norm:

$$
\begin{aligned}
\|x, y\|^{2} & =\left|\begin{array}{ll}
\langle x, x\rangle & \langle x, y\rangle \\
\langle y, x\rangle & \langle y, y\rangle
\end{array}\right| \\
& =\langle x, x\rangle\langle y, y\rangle-\langle x, y\rangle^{2} \\
& =\|x\|^{2}\|y\|^{2}-\langle x, y\rangle^{2} .
\end{aligned}
$$

As in [2], we define the 2-norm by associating its dual space with $\langle x, z\rangle$:

$$
\|x, y\|=\sup \left\{\left|\begin{array}{ll}
\langle x, y\rangle & \langle y, z\rangle \\
\langle x, w\rangle & \langle y, w\rangle
\end{array}\right|: z, w \in \ell^{2},\|z\|,\|w\| \leq 1\right\} .
$$

Geometrically, the 2-norm is the area spanned by two vectors.

Definition 6. [5] Let X be a 2-normed space, and $(E,\|\cdot\|)$ be a Banach space, and $P \subset E$ be a cone, then cone 2-norm on X is a function $\|\cdot, \cdot\|_{C}: X \times X \rightarrow(E, P,\|\cdot\|)$ satisfying the following properties:
(CN1) $\|x, y\|_{C} \succcurlyeq \theta$ for every $x, y \in X$; and $\|x, y\|_{C}=\theta$ if and only if x and y are linearly dependent;
(CN2) $\|x, y\|_{C}=\|y, x\|_{C}$ for every $x, y \in X$;
(CN3) $\|\alpha x, y\|_{C}=|\alpha|\|x, y\|_{C}$ for every $x, y \in X$ and $\alpha \in$ \mathbb{R};
(CN4) $\|x, y+z\|_{C} \preccurlyeq\|x, y\|_{C}+\|x, z\|_{C}$ for every $x, y, z \in$ X.
A 2-normed space X equipped with cone 2-norm, written as $\left(X,\|\cdot, \cdot\|_{C}\right)$, is called cone 2 -normed space.

II. Results and Discussion

It is straightforward to verify that if $P \subset \mathbb{R}^{n}$ for nonnegative \mathbb{R}, then P is a cone. As stated in [9], a function $\|\cdot\|_{C}: \ell_{2} \rightarrow\left(\mathbb{R}^{n}, P,\|\cdot\|\right)$ defined by $\|x\|_{C}=\sum_{k=1}^{n} e_{k}\|x\|_{\ell_{2}}$ is a cone normed space. Multiplication on a cone norm is defined as follows:

$$
\|x\|_{C}\|x\|_{C}=\left(\|x\|_{C}\right)^{2}=\sum_{k=1}^{n} e_{k}\left(\|x\|_{\ell_{2}}\right)^{2}
$$

Let P be a subset of Banach space E and P is a cone, then we define $\mathcal{P}=P \cup(-P)$, and \mathcal{P} is called S-cone. Thus, from the description of the inner product space and the meaning of S-cone, we can construct and define a S-cone inner product space as in the following definition.

Definition 7. A S-cone inner product space is an order pair $\left(X,\langle\cdot, \cdot\rangle_{C}\right)$ where X a linear space over \mathbb{R} with \mathcal{P} is a S-cone inner product space and $\langle\cdot, \cdot\rangle_{C}: X \times X \rightarrow(E, \mathcal{P},\|\cdot\|)$ is a function satisfying:
(IC1) $\langle x, x\rangle_{C} \succcurlyeq \theta$ for every $x \in X$; and $\langle x, x\rangle_{C}=\theta$ if and only if $x=0$;
(IC2) $\langle x, y\rangle_{C}=\overline{\langle y, x\rangle}_{C}$ for every $x, y \in X$;
(IC3) $\langle\alpha x, y\rangle_{C}=\alpha\langle x, y\rangle_{C}$ for every $x, y \in X$ and $\alpha \in \mathbb{R}$;
(IC4) $\langle x+y, z\rangle_{C} \preccurlyeq\langle x, z\rangle_{C}+\langle y, z\rangle_{C}$ for every $x, y, z \in X$. If X is a real vector space, then $\overline{\langle y, x\rangle}_{C}=\langle y, x\rangle_{C}=\langle x, y\rangle_{C}$.

It is easy to show that ℓ_{2}-space with the standard inner product is a Banach space, and its S-cone inner product is given as follows.

Theorem 1. Let $\left(\ell_{2},\langle\cdot, \cdot\rangle\right)$ be an inner product space with \mathcal{P} is a S-cone, and we define a function

$$
\begin{align*}
\langle\cdot, \cdot\rangle_{C}: \ell_{2} \times \ell_{2} & \rightarrow\left(\mathbb{R}^{n}, \mathcal{P},\|\cdot\|\right) \\
\quad \text { by }\langle x, y\rangle_{C} & =\sum_{k=1}^{n} e_{k}\langle x, y\rangle, \tag{1}
\end{align*}
$$

then $\langle\cdot, \cdot\rangle_{C}$ is a S-cone inner product for ℓ_{2}-space.
Proof. We will show that $\langle\cdot, \cdot\rangle_{C}$ in (1) satisfies the following properties:
(IC1) Since $\langle x, x\rangle \geq 0$, then $\langle x, x\rangle_{C}=\sum_{k=1}^{n} e_{k}\langle x, x\rangle_{C} \succcurlyeq$ θ for every $x \in \ell_{2}$; Furthermore, $\langle x, x\rangle_{C}=$ $\sum_{k=1}^{n} e_{k}\langle x, x\rangle=\theta$ if and only if $\langle x, x\rangle=$ if and only if $x=0$;
(IC2) $\langle x, y\rangle_{C}=\sum_{k=1}^{n} e_{k}\langle x, y\rangle=\sum_{k=1}^{n} e_{k}\langle y, x\rangle=$ $\frac{\langle y, x\rangle_{C}}{}\langle y, x\rangle_{C}$ for every $x, y \in \ell_{2}$. Therefore $\langle x, y\rangle_{C}=$ $\langle y, x\rangle_{C}$;
(IC3) $\langle\alpha x, y\rangle_{C}=\sum_{k=1}^{n} e_{k}\langle\alpha x, y\rangle=\alpha \sum_{k=1}^{n} e_{k}\langle x, y\rangle=$ $\alpha\langle x, y\rangle_{C}$ for every $x, y \in \ell_{2}$ and $\alpha \in \mathbb{R}$;
(IC4) For every $x, y, z \in \ell_{2}$ by triangle inequality of the inner product, we have

$$
\begin{aligned}
\langle x+y, z\rangle_{C} & =\sum_{k=1}^{n} e_{k}\langle x+y, z\rangle \\
& =\sum_{k=1}^{n} e_{k}(\langle x, z\rangle+\langle y, z\rangle) \\
& =\sum_{k=1}^{n} e_{k}\langle x, z\rangle+\sum_{k=1}^{n} e_{k}\langle y, z\rangle \\
& =\langle x, z\rangle_{c}+\langle y, z\rangle_{C}
\end{aligned}
$$

Therefore, we can conclude that the function $\langle\cdot, \cdot\rangle_{C}$ in (1) is a S-cone inner product for ℓ_{2}-space.

In an inner product space, vectors x and x are orthogonal if and only if $\langle x, y\rangle=0$. We define orthogonality in S-cone inner product spaces analogously to those in the inner product space, which is given by the following theorems.

Theorem 2. Let $\left(\ell_{2},\langle\cdot, \cdot\rangle\right)$ be an inner product space with \mathcal{P} is a S-cone, and if we define a S-cone inner product $\langle\cdot, \cdot\rangle_{C}$: $\ell_{2} \times \ell_{2} \rightarrow(\mathbb{R}, \mathcal{P},\|\cdot\|)$ by $\langle x, y\rangle_{C}=\sum_{k=1}^{n} e_{k}\langle x, y\rangle$, then two vectors x and y are orthogonal if and only if $\langle x, y\rangle_{C}=\theta$.

Proof. Since vectors x and y are orthogonal in an inner product space, i.e. $\langle x, y\rangle=0$, we have

$$
\langle x, y\rangle_{C}=\sum_{k=1}^{n} e_{k}\langle x, y\rangle=\sum_{k=1}^{n} e_{k} \cdot 0=\theta
$$

On the other hand, if $\langle x, y\rangle_{C}=\theta$, then we get $\langle x, y\rangle_{C}=$ $\sum_{k=1}^{n} e_{k}\langle x, y\rangle=\theta$. This result implies that $\langle x, y\rangle=0$.
Theorem 3. Let $\left(\ell_{2},\langle\cdot, \cdot\rangle\right)$ be an inner product space and the S-cone inner product on ℓ_{2}-space is defined by $\langle x, y\rangle_{C}=$ $\sum_{k=1}^{n} e_{k}\langle x, y\rangle$, then
(i) $\langle x, x\rangle_{C}=\|x\|_{C}\|x\|_{C}$;
(ii) $\langle x, y\rangle_{C} \preccurlyeq\|x\|_{C}\| \|_{C}$.

Proof.
(i) Since $\langle x, y\rangle_{C}=\sum_{k=1}^{n} e_{k}\langle x, y\rangle$, we have that $\langle x, x\rangle_{C}=\sum_{k=1}^{n} e_{k}\langle x, x\rangle=\sum_{k=1}^{n} e_{k}\|x\|^{2}=$ $\sum_{k=1}^{n} e_{k}\|x\|\|x\|$. Therefore, the multiplication $\|x\|_{C}\|x\|_{C}=\sum_{k=1}^{n} e_{k}\|x\|\|x\|$, and it means that $\langle x, x\rangle_{C}=\sum_{k=1}^{n} e_{k}\|x\|\|x\|=\|x\|_{C}\|x\|_{C}$.
(ii) By triangle inequality of the inner product, we have

$$
\begin{aligned}
\langle x, y\rangle_{C}^{2} & =\sum_{k=1}^{n} e_{k}\langle x, y\rangle^{2} \preccurlyeq \sum_{k=1}^{n}\langle x, x\rangle\langle y, y\rangle \\
& =\sum_{k=1}^{n} e_{k}\left(\|x\|^{2}\|y\|^{2}\right)=\|x\|_{C}^{2}\|y\|_{C}^{2} \\
& =\left(\|x\|_{C}\|y\|_{C}\right)^{2}
\end{aligned}
$$

Thus, we have that $\langle x, y\rangle_{C} \preccurlyeq\|x\|_{c}\|y\|_{C}$.

Theorem 4. Let $\left(\ell_{2},\langle\cdot, \cdot\rangle\right)$ be an inner product space and the S-cone inner product on ℓ_{2}-space is defined by $\langle x, y\rangle_{C}=$ $\sum_{k=1}^{n} e_{k}\langle x, y\rangle$, then
(i) $\langle x, y\rangle_{C}+\langle w, z\rangle_{C}=\sum_{k=1}^{n} e_{k}(\langle x, y\rangle+\langle w, z\rangle)$.
(ii) $\langle\alpha x, y\rangle_{C}=\alpha\langle x, y\rangle_{C}$.
(iii) If φ is an angle between vectors x and y in ℓ_{2}-space, then $\langle x, y\rangle_{C}=\|x\|_{C}\|y\|_{C} \cos \varphi$.
Proof.
(i) $\langle x, y\rangle_{C}+\langle w, z\rangle_{C}=\sum_{k=1}^{n} e_{k}\langle x, y\rangle+\sum_{k=1}^{n} e_{k}\langle w, z\rangle=$ $\sum_{k=1}^{n} e_{k}(\langle x, y\rangle+\langle w, z\rangle)$.
(ii) $\langle\alpha x, y\rangle_{C}=\sum_{k=1}^{n} e_{k}\langle\alpha x, y\rangle=\sum_{k=1}^{n} e_{k} \alpha\langle x, y\rangle=$ $\alpha \sum_{k=1}^{n} e_{k}\langle x, y\rangle=\alpha\langle x, y\rangle_{C}$.
(iii) Since $\langle x, y\rangle=\|x\|\|y\| \cos \varphi$, then

$$
\begin{aligned}
\langle x, y\rangle_{C} & =\sum_{k=1}^{n} e_{k}\langle x, y\rangle=\sum_{k=1}^{n} e_{k}\|x\|\|y\| \cos \varphi \\
& =\cos \varphi \sum_{k=1}^{n} e_{k}\|x\|\|y\|=\|x\|_{C}\|y\|_{C} \cos \varphi
\end{aligned}
$$

Therefore, we get $\langle x, y\rangle_{C}=\|x\|_{C}\|y\|_{C} \cos \varphi$.
From the discussion of the cone norm and S-cone inner product, we obtain its properties, among others: additive, multiplication with a scalar and multiplication between two cones. Furthermore, we construct and define a cone 2-norm associated with the S-cone inner product.

Let ℓ_{2}-space be a 2 -normed space. A function $\|\cdot, \cdot\|_{C}$: $\ell^{2} \times \ell_{2} \rightarrow\left(\mathbb{R}^{n}, P,\|\cdot\|\right)$, be defined by $\|x, y\|_{C}=$ $\sum_{k=1}^{n} e_{k}\|x, y\|_{\ell_{2}}$, is a cone 2 -normed space. In this case, we call ℓ_{2}-space as cone 2 -normed spaces. The reason for the name can be explained as follows.
For every $x, y, z \in \ell_{2}$ and $\alpha \in \mathbb{R}$, the following statements hold:
(CN1) $\|x, y\|_{C}=\sum_{k=1}^{n} e_{k}\|x, y\|_{\ell_{2}} \succcurlyeq \theta$ for all $x, y \in X$, because $\|x, y\|_{\ell_{2}} \geq 0$.
(CN2) $\|x, y\|_{C}=\sum_{k=1}^{n} e_{k}\|x, y\|_{\ell_{2}}=\theta$ if and only if $\|x, y\|_{\ell_{2}}=0$ as 2 -normed space, then $\|x, y\|_{\ell_{2}}=0$ if and only if x and y are linearly dependent.
(CN3) $\|x, y\|_{C}=\sum_{k=1}^{n} e_{k}\|x, y\|_{\ell_{2}}=\sum_{k=1}^{n} e_{k}\|y, x\|_{\ell_{2}}=$ $\|y, x\|_{C}$.
(CN4) Since $\|x, y+z\| \leq\|x, y\|+\|y, z\|$, then

$$
\begin{aligned}
\|x, y+z\|_{C} & =\sum_{k=1}^{n} e_{k}\|x, y+z\|_{\ell_{2}} \\
& \preccurlyeq \sum_{k=1}^{n}\left(\|x, y\|_{\ell_{2}}+\|x, z\|_{\ell_{2}}\right) \\
& =\sum_{k=1}^{n} e_{k}\|x, y\|_{\ell_{2}}+\sum_{k=1}^{n}\|x, z\|_{\ell_{2}} \\
& =\|x, y\|_{C}+\|x, z\|_{C}
\end{aligned}
$$

Which means that $\langle x+y, z\rangle_{C} \preccurlyeq\langle z, z\rangle_{C}+\langle y, z\rangle_{C}$.
Therefore, an ℓ_{2}-space is a cone 2 -normed space.
Theorem 5. Let $\left(\ell_{2},\langle\cdot, \cdot\rangle\right)$ be a S-cone inner product on ℓ_{2} space, then

$$
\|x, y\|_{C}^{2}=\sum_{k=1}^{n} e_{k}\|x, y\|_{\ell_{2}}=\|x\|_{C}^{2}\|y\|_{C}^{2}-\left(\langle x, y\rangle_{C}\right)^{2}
$$

And also

$$
\|x, y\|_{C}^{2}=\left|\begin{array}{ll}
\langle x, x\rangle_{C} & \langle x, y\rangle_{C} \\
\langle y, x\rangle_{C} & \langle y, y\rangle_{C}
\end{array}\right|
$$

Proof. From the definition of the $\|\cdot, \cdot\|_{C}$, we have

$$
\begin{aligned}
\left(\|x, y\|_{C}\right)^{2} & =\sum_{k=1}^{n} e_{k}\left(\|x, y\|_{\ell_{2}}\right)^{2}=\sum_{k=1}^{n} e_{k}\left|\begin{array}{ll}
\langle x, x\rangle & \langle x, y\rangle \\
\langle y, x\rangle & \langle y, y\rangle
\end{array}\right| \\
& =\sum_{k=1}^{n} e_{k}\left[\langle x, x\rangle\langle y, y\rangle-(\langle x, y\rangle)^{2}\right] \\
& =\sum_{k=1}^{n} e_{k}\langle x, x\rangle\langle y, y\rangle-\sum_{k=1}^{n} e_{k}(\langle x, y\rangle)^{2} \\
& =\langle x, x\rangle_{C}\langle y, y\rangle_{C}-\left(\langle x, y\rangle_{C}\right)^{2} \\
& =\|x\|_{C}^{2}\|y\|_{C}^{2}-\left(\langle x, y\rangle_{C}\right)^{2} .
\end{aligned}
$$

Therefore, we have

$$
\|x, y\|_{C}^{2}=\sum_{k=1}^{n} e_{k}\|x, y\|_{\ell_{2}}=\|x\|_{C}^{2}\|y\|_{C}^{2}-\left(\langle x, y\rangle_{C}\right)^{2}
$$

In addition,

$$
\begin{aligned}
\left(\langle x, y\rangle_{C}\right)^{2} & =\sum_{k=1}^{n} e_{k}\langle x, x\rangle\langle y, y\rangle-\sum_{k=1}^{n} e_{k}\langle x, y\rangle^{2} \\
& =\sum_{k=1}^{n} e_{k}\langle x, x\rangle\langle y, y\rangle-\sum_{k=1}^{n} e_{k}\langle x, y\rangle\langle y, x\rangle \\
& =\|x\|_{C}^{2}\|y\|_{C}^{2}-\langle x, y\rangle_{C}\langle y, x\rangle_{C} .
\end{aligned}
$$

Since $\|x\|_{C}^{2}=\|x, x\|_{C}$ and $\|y\|_{C}^{2}=\langle y, y\rangle_{C}$ then

$$
\begin{aligned}
\|x, y\|_{C}^{2} & =\|x\|_{C}^{2}\|y\|_{C}^{2}-\langle x, y\rangle_{C}\langle y, x\rangle_{C} \\
& =\langle x, x\rangle_{C}\langle y, y\rangle_{C}-\langle x, y\rangle_{C}\langle y, x\rangle_{C} .
\end{aligned}
$$

Here we have $\|x, y\|_{C}^{2}=\left|\begin{array}{ll}\langle x, x\rangle_{C} & \langle x, y\rangle_{C} \\ \langle y, x\rangle_{C} & \langle y, y\rangle_{C}\end{array}\right|$.
Example 1. Let $\left(\ell_{2},\langle\cdot, \cdot\rangle\right)$ be an inner product space with \mathcal{P} a S-cone in \mathbb{R}^{2}. If we define a function

$$
\begin{array}{r}
\langle\cdot, \cdot\rangle_{C}: \ell_{2} \times \ell_{2} \rightarrow\left(\mathbb{R}^{2}, \mathcal{P},\|\cdot\|\right) \\
\text { by }\langle x, y\rangle_{C}=(\langle x, y\rangle,\langle x, y\rangle) \tag{2}
\end{array}
$$

then $\langle\cdot, \cdot\rangle_{C}$ is a S-cone inner product in ℓ_{2}-space.
We show that $\langle\cdot, \cdot\rangle_{C}$ satisfies the following properties:
(IC1) Since $\langle x, x\rangle \geq 0$, then $\langle x, x\rangle_{C}=(\langle x, x\rangle,\langle x, x\rangle) \succcurlyeq$ θ for every $x \in \ell_{2}$. Furthermore, $\langle x, x\rangle_{C}=$ $(\langle x, x\rangle,\langle x, x\rangle)=\theta$ if and ony if $\langle x, x\rangle=0$ if and only if $x=0$.
(IC2) $\langle x, y\rangle_{C}=(\langle x, y\rangle,\langle y, x\rangle)=(\overline{\langle y, x\rangle}, \overline{\langle y, x\rangle})=\overline{\langle y, x\rangle}{ }_{C}$ for every $x, y \in \ell_{2}$.
Thus, we have $\langle x, y\rangle_{C}=\overline{\langle y, x\rangle}_{C}$.
(IC3) From the property of multiplication by scalar, we have

$$
\begin{aligned}
\langle\alpha x, y\rangle_{C}= & (\langle\alpha x, y\rangle,\langle\alpha x, y\rangle)=\alpha(\langle x, y\rangle,\langle x, y\rangle) \\
= & \alpha\langle x, y\rangle_{C} \\
& \quad \text { for every } x, y \in \ell_{2} \quad \text { and } \alpha \in \mathbb{R} .
\end{aligned}
$$

(IC4) Using triangle inequality of innter product, for every $x, y, z \in \ell_{2}$, we have

$$
\langle x+y, z\rangle_{C}=(\langle x+y, z\rangle,\langle x+y, z\rangle)
$$

$$
\begin{aligned}
& \preccurlyeq(\langle x, z\rangle+\langle y, z\rangle,\langle x, z\rangle+\langle y, z\rangle) \\
& =(\langle x, z\rangle,\langle x, z\rangle)+(\langle y, z\rangle,\langle y, z\rangle) \\
& =\langle x, z\rangle_{C}+\langle y, z\rangle_{C}
\end{aligned}
$$

Then, we conclude that $\langle\cdot, \cdot\rangle$ in (2) is a S-cone inner product in ℓ_{2}.

Example 2. Let $\left(\ell_{2},\|\cdot, \cdot\|\right)$ be a standard 2-norm space and $\left(\ell_{2},\langle\cdot, \cdot\rangle\right)$ is a S-cone inner product space as in Example 1. A function $\|\cdot, \cdot\|_{C}: \ell_{2} \times \ell_{2} \rightarrow\left(\mathbb{R}^{2}, P,\|\cdot\|\right)$ defined by

$$
\begin{equation*}
\|x, y\|_{C}=\left(\|x, y\|_{\ell_{2}},\|x, y\|_{\ell_{2}}\right) \tag{3}
\end{equation*}
$$

is a cone 2 -norm in ℓ_{2}-space.
We see that it is defined as the standard norms:

$$
\begin{aligned}
\|x, y\|^{2} & =\left|\begin{array}{ll}
\langle x, x\rangle & \langle x, y\rangle \\
\langle y, x\rangle & \langle y, y\rangle
\end{array}\right|=\langle x, x\rangle\langle y, y\rangle-\langle x, y\rangle^{2} \\
& =\|x\|^{2}\|y\|^{2}-\langle x, y\rangle^{2}
\end{aligned}
$$

and implies that

$$
\begin{aligned}
& \left(\|x, y\|_{C}\right)^{2}\|x, y\|_{C}\|x, y\|_{C} \\
& =\left(\|x, y\|_{\ell_{2}},\|x, y\|_{\ell_{2}}\right) \cdot\left(\|x, y\|_{\ell_{2}},\|x, y\|_{\ell_{2}}\right) \\
& =\left(\|x, y\|_{\ell_{2}}^{2},\|x, y\|_{\ell_{2}}^{2}\right) \\
& =\left(\langle x, x\rangle\langle y, y\rangle-\langle x, y\rangle^{2},\langle x, x\rangle\langle y, y\rangle-\langle x, y\rangle^{2}\right) \\
& =(\langle x, x\rangle\langle y, y\rangle-\langle x, y\rangle\langle y, x\rangle,\langle x, x\rangle\langle y, y\rangle-\langle x, y\rangle\langle y, x\rangle) \\
& =(\langle x, x\rangle\langle y, y\rangle,\langle x, x\rangle\langle y, y\rangle)-(\langle x, y\rangle\langle y, x\rangle,\langle x, y\rangle\langle y, x\rangle) \\
& =\langle x, x\rangle_{C}\langle y, y\rangle_{C}-\langle x, y\rangle_{C}\langle y, x\rangle_{C} .
\end{aligned}
$$

Therefore $\|x, y\|_{C}^{2}=\langle x, x\rangle_{C}\langle y, y\rangle_{C}-\langle x, y\rangle_{C}\langle y, x\rangle_{C}$.
In other word, it means that $\|x, y\|_{C}^{2}=\left|\begin{array}{ll}\langle x, x\rangle_{C} & \langle x, y\rangle_{C} \\ \langle y, x\rangle_{C} & \langle y, y\rangle_{C}\end{array}\right|$.
Now, we arrive at the main result of this paper, formulated in the following theorem.
Theorem 6. Let $\|x, y\|_{C}=\sum_{k=1}^{n} e_{k}\|x, y\|_{\ell_{2}}$ be a cone 2norm and φ an angle between vectors x and y in ℓ_{2}-space, then

$$
\|x, y\|_{C}^{2}=\left(1-\cos ^{2} \varphi\right)\|x\|_{C}^{2}\|y\|_{C}^{2}
$$

Proof. Since $\|x, y\|_{C}=\sum_{k=1}^{n} e_{k}\|x, y\|_{\ell_{2}}$ is a cone 2-norm, then we have $\|x, y\|_{C}^{2}=\left|\begin{array}{cc}\langle x, x\rangle_{C} & \langle x, y\rangle_{C} \\ \langle y, x\rangle_{C} & \langle y, y\rangle_{C}\end{array}\right|$. It means that

$$
\begin{aligned}
\|x, y\|_{C}^{2} & =\|x\|_{C}^{2}\|y\|_{C}^{2}=\langle x, y\rangle_{C}\langle y, x\rangle_{C} \\
& =\sum_{k=1}^{n} e_{k}\|x\|^{2}\|y\|^{2}-\sum_{k=1}^{n} e_{k}\langle x, y\rangle\langle y, x\rangle \\
& =\sum_{k=1}^{n} e_{k}\left(\|x\|^{2}\| \|^{2}-\langle x, y\rangle^{2}\right) \\
& =\left(1-\cos ^{2} \varphi\right)\langle x, x\rangle_{C}\langle y, y\rangle_{C} \\
& =\left(1-\cos ^{2} \varphi\right)\|x\|_{C}^{2}\|y\|_{C}^{2}
\end{aligned}
$$

Corollary 1. et $\|x, y\|_{C}=\sum_{k=1}^{n} e_{k}\|x, y\|_{\ell_{2}}$ be a cone 2norm and φ an angle between vectors x and y in ℓ_{2}-space. Then $\|x, y\|_{C}=\|x\|_{C}\|y\|_{C} \sin \varphi$.

In a S-cone inner product space, two vectors x and y are orthogonal if and only if $\langle x, y\rangle_{C}=\theta$. It implies that $\langle x, y\rangle_{C}=\|x\|_{C}\|y\|_{C} \cos \varphi=\theta$, and also $\|x, y\|_{C}^{2}=\|x\|_{C}^{2}\|y\|_{C}^{2}-\langle x, y\rangle_{C}^{2}$, and we have $\|x, y\|_{C}^{2}=\|x\|_{C}^{2}\|y\|_{C}^{2}-\theta=\|x\|_{C}^{2}\|y\|_{C}^{2}$. As a conclusion, we have $\|x, y\|_{C}=\|x\|_{C}\|y\|_{C}$.

Acknowledgement. This research is supported by the Laboratory of Applied Analysis and Algebra, Departement of Mathematics, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia.

REFERENCES

[1] H. Gunawan, "The space of p-summable sequence and its natural n norm," Bull. Austral. Math. Soc., vol. 64, pp. 137-147, 2001.
[2] Sadjidon and H. Gunawan, "Konstruksi ruang 2-norm sebagai luasan yang direntang oleh dua vektor," Limits: Journal of Mathematics and Its Applications, vol. 4, no. 2, pp. 45-51, 2007.
[3] A. Niknam, S. S. Gamchi, and M. Janfada, "Some results on tvs-cone normed spaces and algebraic cone metric spaces," Iranian Journal of Mathematical Sciences and Informatics, vol. 9, no. 1, pp. 71-80, 2014.
[4] M. A. Gordji, M. Rameszani, K. H, and B. H, "Cone normed spaces," Caspian Journal of Mathematical Sciences, vol. 1, pp. 7-12, 2012.
[5] Sadjidon, M. Yunus, and Sunarsini, "Construction of some orthogonalities in cone 2-normed space," Pure Mathematical Sciences, vol. 5, no. 1, pp. 59-64, 2016.
[6] A. Sahiner and T. Yigit, "2-cone banach spaces and fixed point theorems," Proceeding of International Conference of Numerical Analysis and Applied Mathematics, Kos Greece, vol. 1479, pp. 975-978, 2012.
[7] C. R. Diminnie, "A new orthogonality relation for normed linear spaces," Math Nacr, vol. 114, no. 1, pp. 197-203, 1983.
[8] A. Khan and A. Siddiqui, "B-orthogonality in 2-normed space," Bull. Calcutta Math. Soc., vol. 74, 1982.
[9] H. Gunawan, Mashadi, S. Gemawati, Nursupiamin, and I. Sihwaningrum, "Orthogonality in 2-normed spaces," Univ. Beograd Publ. Elektrotechn. Fak. Ser. Mat., vol. 17, pp. 176-83, 2006.

