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Integration-Based Method as an Alternative Way
to Estimate Parameters in the IV Bolus

Compartment Model
Diny Zulkarnaen*, Fadilah Ilahi, Muhammad Syifa Irfani, and Dani Suandi

Abstract—An alternative method of integration-based parame-
ter estimation applied in pharmacokinetics problems is proposed
here. The method, introduced by Holder and Rodrigo [1], is used
to estimate the rate of drug elimination and distribution when
it enters the body via intravenous bolus. The estimation results
are then compared with the classical method, the least squares
method for the one-compartment model, and the residual method
for the two-compartment model. Graphical simulations of drug
concentration versus time are also performed in this article to
view not only the dynamics of drug delivery in the body, but
also the comparisons between the approximate solutions and the
arbitrarily generated data points. Comparisons are also presented
when the data points take into account noise in the form of
random values. Based on the estimation and simulation results,
the integration-based method gives good results and even better
than the classical method although when noise is applied to the
data points.

Index Terms—Pharmacokinetics, Compartment Model, Least
Squares, Residual, Integration-based Method.

I. INTRODUCTION

THE Pharmacokinetic compartment model describes the
dynamics of the drug delivery system when drugs enter

the body by certain routes such as oral, IV bolus, intramus-
cular, and rectal. When a drug enters the body, it undergoes
four fundamental processes, namely absorption, distribution,
metabolism and excretion. The last two processes can also be
referred to elimination process. The process of drug delivery
can be modeled mathematically by an ordinary differential
equation (ODE) which represents the rate of change of drug
concentration in the body [2], [3]. The number of ODEs
used in the model tells us about the number of compartment
that the body has. When all organs or body tissues are
considered to have homogenous rapid drug perfusion, then
a one-compartment model with an ODE can be constructed.
However, when the body is supposed to have two differ-
ent classeses of drug perfusion: fast and slow, then a two-
compartment model is more suitable, and so on. From the
model, we can find the a solution to see the dynamics of
drug concentration either analytically, for example using the
superposition method [4] or the Laplace transform [5], [6], [7],
or numerically using finite difference method [8], [9]. Another
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way to represent the drug delivery process is to construct a
mathematical model that takes the form of a fractional-order
system [10], [11], [12], [13].

In addition to finding the exact solution, the parameters
that appear in the model can be estimated based on the
data collection of drug concentration with various times. The
least squares method [14] and residual method [15] are very
well-kown that are commonly used to estimate parameters,
especially for intravenous bolus (IV bolus) administration.
Meanwhile the Wagner-Nelson [16] and Loo-Riegelman [17],
[18] methods are also the most common methods used to
estimate parameters for oral administration for one and two-
compartment models, respectively.

In this paper, we propose an alternative method for parame-
ter estimation called integration-based method, introduced by
Holder and Rodrigo [1], for one and two-compartment models,
where the drug is given via IV bolus route. The method is
implemented using data in the form of drug concentration
versus time so that the parameters in the model can be
obtained. There are two types of data points provided in the
implementation: the data points with smooth pattern, and the
other is the data points with noise. In the end this method
is compared with the classical method of least squares and
residual.

II. THE LEAST SQUARES AND RESIDUAL METHODS

In this section the original one and two-compartment models
are presented [3], [2], [15], in which the drug is given by IV
bolus route. From the given model, we use classical methods
to estimate the parameters that appear in the model. The least
squares method for one-compartment model, and the residual
method for two-compartment model.

A. One-Compartment IV Bolus Model

Here, we assume that the body has homogeneous rapid
blood flow, so a one-compartment model containing the rate
of drug concentration C(t) is utilized to investigate the drug
delivery process, specified by

dC

dt
= −keC, C(0) = C0. (1)

As can be seen in the model, there is only one parame-
ter appears, that is ke which indicates the elimination rate.
Meanwhile C0, the constant initial drug concentration in the
blood, is assumed to be known. To estimate this parameter,
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the classical method of least squares fitting is employed. The
first step that needs to be done is to find the exact solution of
the model (1). By integrating both sides we can easily obtain
the solution as

C(t) = C0e
−ket. (2)

From here, we linearize the solution to become

lnC(t) = −ket+ lnC0 (3)

with the aim that the least squares method can be applied to
find the slope of (3). By having the slope, we can estimate the
parameter value of the elimination rate by the formula

ke = −
m

∑m
i=1 ti lnCi −

∑m
i=1 ti

∑m
i=1 lnCi

m
∑m

i=1 t
2
i − (

∑m
i=1 ti)

2
, (4)

where m is the number of data points.

B. Two-Compartment IV Bolus Model

When the body is considered to consist of two classes of
blood flow: rapid and slow, then a two-compartment model is
an appropriate choice to describe the drug delivery process.
The compartments with rapid and slow blood perfusion are
called the central and peripheral compartments, respectively.
Thus, the model can be set up as a system of two differential
equations of the rate of drug concentration in the central C1(t)
and peripheral C2(t) compartments, governed as

dC1

dt
= k21C2 − (k12 + ke)C1, C1(0) = C0,

dC2

dt
= k12C1 − k21C2, C2(0) = 0.

(5)

Notice that there are three parameters that appear in this
model, namely k12, k21, and ke, where the first two parameters
denote the respective rate of drug distribution from central
to peripheral and from peripheral to central. Therefore, these
three parameters will be estimated, the residual method is
employed here.

Like in the one-compartment model, the solution of (5) also
needs to be found. One way to produce such a solution is using
the Laplace transform method, and we obtain

C1(t) =
C0

λ2 − λ1

[
(−λ1 + k21)e

−λ1t − (−λ2 + k21)e
−λ2t

]
,

C2(t) =
C0k12
λ2 − λ1

(
e−λ1t − e−λ2t

)
,

(6)

where λ1 < λ2 and

λ1 + λ2 = k12 + k21 + ke,

λ1 λ2 = k21ke.
(7)

Now we have the supporting parameters that need to be
obtained, i.e. λ1 and λ2, before the main parameters can be
obtained. Starting from the solution C1(t) we can estimate λ1

as well as k21 using large time data points, say the last m1 data
points. In other words, when time is large we can consider that
the first term in the solution (6) of C1(t) is close to zero since
λ2 > λ1. This means the solution of C1(t) in (6) becomes

C1(t) =
C0(−λ1 + k21)

λ2 − λ1
e−λ1t, (8)

which can be transformed into the linear equation as

lnC1(t) = −λ1t+ ln

[
C0(−λ1 + k21)

λ2 − λ1

]
. (9)

From this equation we can calculate the slope and the y-
intercept by the least squares method, so that we can estimate
λ1 as

λ1 = −
m1

∑m1

i=1 ti lnC1,i −
∑m1

i=1 ti
∑m1

i=1 lnC1,i

m1

∑m1

i=1 t
2
i − (

∑m1

i=1 ti)
2

. (10)

Since the slope and the y-intercept of the equation (9) has
been estimated, we can approximate the solution in (8).
Consequently, the deviation between the original exact solution
in (8) and the approximate solution in (6) can be calculated
as

R(t) =
C0(λ2 − k21)

λ2 − λ1
e−λ2t.

We can also call R(t) as the residual equation. Linearizing
this equation we can calculate the slope to obtain λ2, and the
y-intercept to obtain λ2 and k21 by using the first m2 data
points with m2 < m as

λ2 = −
m2

∑m2

i=1 ti lnRi −
∑m2

i=1 ti
∑m2

i=1 lnRi

m2

∑m2

i=1 t
2
i − (

∑m2

i=1 ti)
2

, (11)

k21 =λ2 −
(λ2 − λ1)

C0
ey, (12)

where

y =

∑m2

i=1 t
2
i

∑m2

i=1 lnRi −
∑m2

i=1 ti lnRi

∑m2

i=1 ti
m2

∑m2

i=1 t
2
i − (

∑m2

i=1 ti)
2

.

Observe that k21 can be found by the formula (12) since C0 is
given and λ1 as well as λ2 can be calculated by the respective
formulas given in (10) and (11). Then, the parameters ke and
k12 can be estimated sequentially using the formula (7) as

ke =
λ1λ2

k21
, k12 = λ1 + λ2 − k21 − ke (13)

III. THE INTEGRATION-BASED METHOD

The integration-based method, proposed by Holder and
Rodrigo [1], is utilized here as an alternative way to estimate
the parameters that appear in the ODE. It can be used as long
as the parameters to be estimated is linear in ODE. The general
step that needs to be done is to define the weight function
followed by performing the integration to both sides of the
ODE.

A. One-compartment model

To apply the integration-based method to the one-
compartment model (1), the weight function w(t; s) with s > 0
is multiplied to both sides of (1), then integration is performed
between time 0 to T . As a result the equation (1) becomes∫ T

0

w(t; s)dC(t) = −ke

∫ T

0

w(t; s)C(t) dt.

Then, applying the integration by parts on the left-hand side
of the latter equation, we now have
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w(T ; s)C(T )− w(0; s)C(0)−
∫ T

0

w′(t; s)C(t) dt

= −ke

∫ T

0

w(t; s)C(t) dt. (14)

Note that we choose the weight function which takes the form
w(t; s) = e−st since this form has been used by [1], [19].
From the latter equation, we can estimate the elimination rate
by the formula

ke = −
w(T ; s0)C(T )− w(0; s0)C(0)−

∫ T

0
w′(t; s0)C(t) dt∫ T

0
w(t; s0)C(t) dt

(15)
for a given value s0 > 0. Here the integral term in (18) is
calculated numerically (in scilab, we use intspline function)

Remark 1. The idea of using and choosing the weight function
w(t; s) = e−st is that, based on the original article [1],
when this weight function is multiplied and integrated to an
equation, it will be analogous to applying the finite Laplace
transform

∫ T

0
e−stf(t) dt. But one can use another type of

weight function. Since this paper focuses on comparing the
alternative method with the classical method, so to keep on
that focus, we restrict this alternative method to only use one
type of weight function, that is w(t; s) = e−st.

B. Two-compartment model

As previously stated that there are three parameters to be
estimated from the two-compartment model given in (5). The
way to estimate these parameters based on the integration-
based method is estimating the parameters in each ODE
sequentially, not simultaneously. It should be noted that we
use the same weight function for each ODE for consistency,
which is the same function with the one-compartment model,
namely w(t; s) = e−st.

We first select the second ODE to estimate k21 and k12.
Like the one-compartment model, we can transform the second
ODE in (5) to become

w(T ; s)C2(T )− w(0; s)C2(0)−
∫ T

0

w′(t; s)C2(t) dt

= k12

∫ T

0

w(t; s)C1 dt− k21

∫ T

0

w(t; s)C2 dt, (16)

or simply rewrite the equation as

P (s) = k12 Q(s) + k21R(s),

where

P (s) =w(T ; s)C2(T )− w(0; s)C2(0)−
∫ T

0

w′(t; s)C2(t) dt

Q(s) =

∫ T

0

w(t; s)C1 dt, R(s) = −
∫ T

0

w(t; s)C2 dt.

Since there are two parameters to be estimated, we have to
choose two different values of s, say s1 and s2. As a result,
we can construct a matrix from the latter equation, written as[

Q(s1) R(s1)
Q(s2) R(s2)

] [
k12
k21

]
=

[
P (s1)
P (s2)

]
. (17)

Thus, k12 and k21 can be obtained provided the inverse of the
leftmost matrix exists.

Next step, the first ODE in (5) is employed to estimate ke.
Like the previous step, we obtain the equation

w(T ; s)C1(T )− w(0; s)C1(0)−
∫ T

0

w′(t; s)C1(t) dt

= k21

∫ T

0

w(t; s)C2 dt− k12

∫ T

0

w(t; s)C1 dt−

ke

∫ T

0

w(t; s)C1 dt.

Since k12 and k21 are now known, the last equation can be
represented by

A(s) = B(s) + C(s) + keD(s),

where

A(s) =w(T ; s)C1(T )− w(0; s)C1(0)−
∫ T

0

w′(t; s)C1(t)dt,

B(s) = k21

∫ T

0

w(t; s)C2 dt, C(s) = −k12

∫ T

0

w(t; s)C1dt,

D(s) = −
∫ T

0

w(t; s)C1 dt.

Thus, the parameter ke can be estimated by

ke =
A(s0)−B(s0)− C(s0)

D(s0)
(18)

for given s0 > 0.

IV. SIMULATION

In this simulation, the parameters that appear in the one
and two-compartment models are estimated not only using
the alternative integral-based method but also the classical
method of least squares and residual for the one and two-
compartment models, respectively. The estimation requires
time versus drug concentration data points, where these data
points are generated by the exact solutions given in (2) and (6)
with arbitrarily selected parameter values. Then the generated
data points are used to estimate the parameters using the
integrate-based method as well as the classical methods to
compare them with the parameter values that were set in
the beginning. Furthermore, the generated data points are
given noise and investigate whether there is a significant
difference in estimation between the two methods. Finally,
several graphical simulations are presented to see not only
the dynamics of drug concentration in the body, but also the
comparison between the generated data points and with the
approximate solutions.

One-compartment model

In this part, we do not use randomly selected time-
concentration data points, but rather follow the trend of the
data points based on equation (2) that decreases exponentially.
In other words, we generate data points from the model
solution in (2) by choosing the parameter values (or we can
the exact values) that appear in this equation, namely ke and
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C0. The reason we use this way of generating data points is
that from the data points we have generated, we will obtain
parameter estimates which are calculated in Section II and
Section III. Subsequently, we compare these estimated values
with the pre-selected (exact) values. The closer the estimated
values to the exact parameter values using a certain method,
the more robust the method is.

Here we choose the elimination rate ke = 0.2184/hour
and the initial concentration C0 = 24 mg/ml to generate
the data points by inserting these two values to the exact
solution presented in (2). We use time interval 1 < t < 20
with a one-hour time step, which means we have hourly drug
concentration data points for up to 20 hours.

The generated data points can be seen in Table I.

TABLE I: Generated data points for the one-compartment
model.

t (hr) 1 2 3 ... 18 19 20
C (mg/ml) 19.29 15.51 12.46 ... 0.47 038 0.30

As we can see in the table, the drug concentration is large in
the beginning and then decreases to zero. This happens since
there is no absorption process so that the drug enters the blood
directly, then undergoes elimination process. By the data points
in Table (I), we can now estimate the elimination rate using the
formula given in (4) and in (18) by choosing s0 = 0.01 for the
respective least squares and integration-based methods. The
result for these calculations is ke = 0.2184 for both methods,
which is the same as the original values.

0 20102 4 6 8 12 14 16 18

0

20

10

5

15

data points

integration−based method

least squares fitting

Fig. 1: Comparison between data points and the approximate
solutions for the one-compartment model.

As a result the graphs for the generated data points and the
approximate solutions give the overlapping lines as depicted
in Figure 1.

Two-compartment model

Recall that there are three parameters involved in the two-
compartment model stated in (5). Here, we input the param-
eters k12 = 0.93/hour, k21 = 0.32/hour and ke = 0.22/hour
together with the initial concentration C0 = 20 mg/ml to the
exact solution (6) so that the generated data points can be

generated as shown in Table II. It is important to note that the
rule of generating data points here is the same as the case of
the one-compartment model.

TABLE II: Generated data points for the two-compartment
model.

t (hr) 1 2 3 ... 18 19 20
C1 (mg/ml) 7.63 4.15 3.63 ... 1.62 1.54 1.46
C2 (mg/ml) 9.63 11.49 11.50 ... 5.56 5.29 5.03

Notice that, unlike the central compartment, where the
concentration C1 decreases over time, the drug concentration
in the peripheral compartment C2 increases first, then at some
point starts to decrease towards zero. This occurs because
the amount of drug in the peripheral compartment yield drug
supply from the central compartment. Then when the drug
concentration in the central compartment starts to decrease,
the supply also decreases which results in the reduction of
drug concentration in the peripheral compartment.

TABLE III: Exact and estimated parameter values for the two-
compartment model.

Methods k12 k21 ke
Exact 0.9312 0.3256 0.2218
Integration-based 0.9038 0.3173 0.2215
Residual 0.9475 0.2810 0.2585

The generated data points given in Table II are then imple-
mented to estimate the parameters using the residual and the
integration-based methods. The estimation values can be seen
in Table III. These estimations involve the formulas presented
in (12) and (13) for the residual method, and the formulas
in (17) and (18) for the integration-based method. When we
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Fig. 2: Comparison between data points and the approximate
solutions for the two-compartment model.

compare the estimates of k12, the residual method gives the
better approximation. While for the other two parameters, the
integration-based method gives better results than the residual
method.

Now, when a graphical simulation is made and it can be
observed in Figure 2, the least squares method gives a better
approximation for the drug concentration in the peripheral
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compartment. In contrast, the integration-based method pro-
vides better approximation for the drug concentration in the
central compartment.

TABLE IV: Exact and estimated parameter values for two-
compartment model with noise data set.

Methods k12 k21 ke
Exact 0.9312 0.3256 0.2218
Integration-based 0.9071 0.3296 0.2279
Residual 0.0117 0.0840 0.0815

In actual experiments, the data collection of drug concentra-
tions over time may have an unsmooth graph due to measure-
ment errors or other factors that make data collection values
imprecise. Therefore, we make a noise from the generated data
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Fig. 3: Comparisons between data points with noise and the
approximate solutions for the two-compartment model.

points by adding random values to the drug concentrations for
C1 and C2. Then, both methods are reapplied using the new
data points to perform parameter estimate. The results can be
seen in Table IV and Figure 3.

From Table IV, it can be seen clearly that the integration-
based method gives a much better estimate than the residual
method. The cause of the inconsistent results that we can
analyze from the residual method is the semilog graph which
forces the data points to be linear as given in equation (9),
whereas the truth is the data points are now no longer smooth
so that for the noise case they no longer form a linear trend
as shown in Figure 4b. We can compare the semilog graph
when the noise is not present as depicted in Figure 4a which
is linear since the data points are smooth. This forced linearity
produces unexpected results from the residual method, where
the approximation of drug concentration in both the central
and peripheral compartments lie too far from the data points,
pictured as broken lines in Figure 3.

V. CONCLUSION

The integration-based method can be used as an alterna-
tive way to estimate parameters in pharmacokinetic prob-
lems specifically in one and two-compartment model. This
method gives as same precision as the classic method of
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0.5
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Fig. 4: Semilog graph of large-time data points, (a) without
noise and (b) with noise, for the two-compartment model.

least squares fitting in estimating parameters for the one-
compartment model. As for two-compartment model, the
method integration-based method provides better estimates
than the classical residual. This is based in the closeness of the
estimated parameter values to their original values as given in
Table II, that is the integration-based method produces two
better parameter estimates, while the residual method only
produces one better parameter estimate.

When the data points are perturbed by a noise, it turns out
that the integration-based method gives consistent estimates,
unlike the residual method which gives estimates that are
much different than the data points without noise (see the
comparison in Table II and Table IV). As a result, the
drug concentration dynamics are far from the generated data
points as depicted in Figure 3. With these statements we can
conclude that the alternative method, namely the integration-
based method gives good approximation and even better than
the classical method despite the perturbation in the data points.
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