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Abstract—This research discusses solving the problem of
infiltration of furrow irrigation channels in heterogeneous soil
containing five soil layers using the Dual Reciprocity Boundary
Element Method (DRBEM) numerical method. The mathematical
infiltration model in furrow irrigation channels takes the form
of the Richard Equation, which is transformed into a modified
Helmholtz equation with mixed boundary conditions. Solving
with DRBEM shows that in heterogeneous and homogeneous
soils, the soil type influences the suction potential and water
content values. Different soil depths in heterogeneous soil produce
variations and jumps in suction potential and water content
values in each soil layer.

Index Terms—DRBEM; Richard’s Equation; Modified
Helmholtz Equation; Heterogeneous Soil

I. INTRODUCTION

WATER is a natural resource that has an important role
in everyday life. Water availability is always constant

due to the hydrological cycle [1]. The large need for water
means its availability is limited. This is caused by climate
change and increasing population [2]. Good management is
needed to overcome this. In this case, it can be done with an
irrigation system. The irrigation system is the most important
factor in determining harvest success. The working principle
of irrigation is to collect water and distribute it to agricultural
land. There are 4 types of irrigation systems: surface irrigation,
drip irrigation, subsurface irrigation, and bulk irrigation [3].
One application of surface irrigation is furrow irrigation.
Apart from the limited water available, other problems are
soil salinity and infiltration in the root zone. Areas close to
the furrow will be more saturated than areas far from the
furrow. Therefore, research is needed to find out. However,
this research requires a long time and is expensive because the
infiltration process involves soil water content, so the process
is difficult to carry out. So an alternative is given by creating
a mathematical model [4].

Therefore, several researchers used DRBEM to solve mathe-
matical infiltration models in furrow irrigation channels. Azis
et al. [5] examined the Matrix Flux Potential (MFP) values
in three-channel shapes, namely flat, circular, and rectangular
channels. The research results show that the MFP values for
flat and circular channel shapes are almost identical. The MFP
value for the rectangular channel shape is greater than the other
two channel shapes.
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Majid et al. [6] investigated trapezoidal irrigation channels
on homogeneous soil and concluded that coarser soil generally
has higher suction power and produces lower water absorption
than fine soil.

Ana et al. [7] examined the suction power and water
content values in six-channel shapes, namely flat channels,
non-flat watertight channels (rectangular channels, trapezoidal
channels), and non-flat channels without watertight (rectan-
gular channels, semicircular channels, trapezoidal channels).
The research results show that the suction power value is
proportional to the water content value. Sequentially, the order
of channel shapes based on highest to lowest water content is
non-flat channels without watertight, non-flat channels that are
watertight, and flat channels.

Whisler et al. [8] conducted research using heterogeneous
scales of hydraulic conductivity with depth. The results ob-
tained depend on the increase in hydraulic conductivity and
depth. Solekhudin [9] investigated trapezoidal irrigation chan-
nels in heterogeneous soil with 3 soil layers with different
depths. The results show a jump in the suction potential value
in each soil layer.

Huinong, Ningxia Autonomous Region in Northwest China
consists of 5 types of soil with different depths arranged in
layers [10]. China has the most dense population in the world,
so the needs for daily living are very large, especially in terms
of consumption. To obtain satisfactory harvest results, agricul-
tural land with sufficient irrigation is required. Due to limited
water availability, climate change, soil salinity problems, and
increasing population, water availability has become finite
and irrigation systems have been created. Because of these
inhibiting factors, research is needed to find out. Transport
of water and dissolved substances is needed to overcome this
[10].

Based on previous research, DRBEM has been proven
effective in solving water absorption problems. So this re-
search aims to find a solution to the problem of infiltration
of furrow irrigation channels in heterogeneous soil using the
DRBEM numerical method. The heterogeneous soil studied is
in the Huinong region, Ningxia Autonomous Region Province,
Northwest China, consisting of five different soil layers.

II. METHOD

DRBEM is a method for solving the two-dimensional
Helmholtz equation with known boundary conditions. The
Helmholtz equation has a domain R, a closed region bounded
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by a simple curve C. The general form of the two-dimensional
Helmholtz equation is

∂2ϕ(x, y)

∂x2
+
∂2ϕ(x, y)

∂y2
+ k2ϕ(x, y) = g(x, y) (1)

where k is a constant. with boundary conditions

ϕ = f1(x, y), (x, y) ∈ C1 (2)
∂ϕ

∂n
= f2(x, y), (x, y) ∈ C2 (3)

with C1 and C2 is a non-intersecting curve such that C1∪C2 =
C.

A fundamental solution is needed to solve the equation (1),
However, the solution is difficult and not unique [11]. So
the alternative is to solve it with DRBEM because it does
not require a fundamental solution of the Helmholtz Equa-
tion but simply uses a fundamental solution of the Laplace
Equation[14]. The solution with DRBEM is

1) Reciprocal Relation∫
C

(
Φ
∂ϕ

∂n
− ϕ

∂Φ

∂n

)
ds =

∫∫
R

Φ
(
g − k2ϕ

)
dxdy

2) Boundary Integral Equation in Helmholtz Equation

λ(ξ, η)ϕ(ξ, η) =∫
C

(
ϕ(x, y)

∂Φ(x, y; ξ, η)

∂n
− Φ(x, y; ξ, η)

∂ϕ(x, y)

∂n

)
ds

+

∫∫
R

Φ(x, y; ξ, η)
(
g(x, y)− k2ϕ(x, y)

)
dxdy

with

λ(ξ, η) =

 0, if (ξ, η) /∈ R ∪ C
1
2 , if (ξ, η) lies on a smooth of C
1, if (ξ, η) ∈ R

3) Integral Domain Approach with ρ(x, y; a, b) = 1 +
r2(x, y; a, b)+ r3(x, y; a, b)∫∫

R

Φ(x, y; ξ, η)
(
g(x, y)− k2ϕ(x, y)

)
dxdy

≈
M∑
m=1

β(m)

∫∫
R

Φ(x, y; ξ, η)ρ
(
x, y; a(m), b(m)

)
dxdy

4) Boundary Integral Equations in Line Integrals

λ(ξ, η)ϕ(ξ, η) =
M∑
j=1

µ(nj)
[
g
(
a(j), b(j)

)
− k2ϕ

(
a(j), b(j)

)]
∫
C

(
ϕ(x, y)

∂Φ(x, y; ξ, η)

∂n
− Φ(x, y; ξ, η)

∂ϕ(x, y)

∂n

)
ds

for (ξ, η) ∈ R ∪ C.
5) Substitution of Collocation Points into Boundary Inte-

gral Equations with System of Linear Equation

λ
(
x̄(n), ȳ(n)

)
ϕ
(
x̄(n), ȳ(n)

)
=

N+L∑
j=1

µ(nj)
[
g
(
x̄(j), ȳ(j)

)
− k2ϕ

(
x̄(j), ȳ(j)

)]
+

N∑
k=1

[
ϕ̄(k)f2

(k)
(
x̄(n), ȳ(n)

)
− p̄(k)f

(k)
1

(
x̄(n), ȳ(n)

)]
for n = 1, 2, . . . , N + L with

µ(nj) =
N+L∑
m=1

ω
(
x̄(j), ȳ(j); x̄(m), ȳ(m)

)
ψ
(
x̄(n), ȳ(n); x̄(m), ȳ(m)

)
f1

(k)
(
x̄(n), ȳ(n)

)
=

1

4π

∫
C(k)

ln

((
x− x̄(n)

)2

+
(
y − ȳ(n)

)2
)
ds

f2
(k)

(
x̄(n), ȳ(n)

)
=

1

4π

∫
C(k)

∂

∂n

[
ln

((
x− x̄(n)

)2

+
(
y − ȳ(n)

)2
)
ds

]
6) Substitute the solution of linear sytem into the Boundary

Integral equation to obtain an equation that can be used
to evaluate the PDE at all points in the domain

λ(a, b)ϕ(a, b) =

N+L∑
j=1

µ(j)
[
g
(
x̄(j), ȳ(j)

)
− k2ϕ̄(j)

]

+

N∑
k=1

[
ϕ̄(k)f

(k)
2 (a, b)− p̄(k)f1

(k)(a, b)
]

with

µ(j) =

N+L∑
m=1

ω
(
x̄(j), ȳ(j); x̄(m), ȳ(m)

)
ψ
(
a, b; x̄(m), ȳ(m)

)
λ(a, b) =

{
1
2 if (a, b) lies on a smooth of C
1 if (a, b) ∈ R

f1
(k)(a, b) =

1

4π

∫
C(k)

ln
(
(x− a)2 + (y − b)2

)
ds

f2
(k)(a, b) =

1

4π

∫
C(k)

∂

∂n

[
ln
(
(x− a)2 + (y − b)2

)
ds
]

III. RESULT AND DISCUSSION

A. Problem Formulation

This research used five types of soil with different depths
and arranged in layers. The type of soil used is Regosol soil
which has a rough texture with sand content > 60%. Podsol
soil has a texture that is not rough and feels slippery[13].
Andosol soil with a finer texture [12]. Sandy Loam and Loamy
Sandy represent Regosol soil, Loam A and Loam B represent
Podsol soil and Silty Loam represents Andosol soil. Given
parameter values for each soil type on Table I.

With assumption [4], the coordinates that will be used are
OXY Z where O is the center of the channel, and OZ is
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the depth with a positive value. The cross-sectional shape of
the irrigation channel does not change along the OY and is
symmetrical for X = ±k(L+ D), k = 0,±1,±2, . . ., so that
the water flow pattern can be assumed to be two-dimensional
as in Figure 1. K0 is the saturated hydraulic conductivity, α

TABLE I: Soil Parameter [10]

Depth Soil K0 α n
(cm)

(
cm d−1

) (
cm−1

)
0− 40 Sandy Loam 14 0.02 1.35
40− 80 Loam A 13 0.015 1.39
80− 120 Loam B 10 0.018 1.35
120− 160 Silty Loam 7 0.013 1.26
160− 200 Loamy Sandy 10 0.02 1.25

indicates the roughness of the soil type, θr is the residual water
content, θs is the saturated water content and n is the pore size
distribution

(a) Cross-section of the Furrow Irrigation Channel

(b) Infiltration Domain in Fur-
row Irrigation Channel

Fig. 1: Furrow Irrigation Channel

B. Mathematical Models

The following Richard’s equation governs steady infiltration
in furrow irrigation channels.

∂θ

∂T
=

∂

∂X

(
K(θ)

∂ψ

∂X

)
+

∂

∂Z

(
K(θ)

∂ψ

∂Z

)
− ∂K(θ)

∂Z

where K is hydraulic conductivity, ψ is suction potential, and
θ is water content.Because Richard’s equation is a non-linear
differential equation, it will be transformed into a linear form
as follows.

1) Kirchoff Transformation

Θ =

∫ ψ

−∞
K(s)ds (4)

where Θ is Matrix Flux Potential (MFP) and obtained

∂Θ

∂X
= K

∂ψ

∂X
∂Θ

∂Z
= K

∂ψ

∂Z

2) The exponential model of hydraulic conductivity is
defined

K = K0e
αψ, α > 0 (5)

Because it is heterogeneous, assume that αi, i =
1, 2, ..., 5 are the values of α in the i-th layer. Based
on [9], the value of α can be written

α∗ =
α1 + α2 + α3 + α4 + α5

5

Substitution (5) to (4) obtained

Θ ⇔ K = Θα∗

3) Transformation to dimensionless variables

x =
α∗

2
X, z =

α∗

2
Z, Φ =

πΘ

v0L′

u =
2π

v0α∗L
U, v =

2π

v0α∗L
V, f =

2π

v0α∗L
F

where v0 is the initial flux and L is half the length of
the irrigation channel

4) Transformation with equations

Φ = ϕez

Thus, we obtain the governing equation of the water infiltra-
tion in the furrow irrigation channel in the following linear
equation.

∂2ϕ

∂x2
+
∂2ϕ

∂z2
= ϕ

Based on [4], the value of ψ is obtained as the suction potential
for irrigation canal infiltration.

ψ =
1

α∗ ln

(
α∗ϕezv0L

πK0

)
And the relationship between suction potential and water
content is obtained [13].

θ =

(
1

1 + (α∗ψ)
n

)m
(θs − θr) + θr (6)
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Based on the assumptions, there is no incoming water flow
except at the surface of the irrigation channel, then F = 0
for X = 0, X = L +D, and Z = 0. Assume that at infinite
depth, the MFP rate approaches zero so that ∂θ

∂X → 0 for
∂θ
∂Z → 0 for Z → ∞. So the boundary conditions for the
mathematical model of water infiltration in irrigation channels
in dimensionless variables are as follows.

∂ϕ

∂n
=

2π

αL
e−z + ϕn2, on C1 : the channel surface,

∂ϕ

∂n
= −ϕ, on C2 : the ground surface outside the channel,

∂ϕ

∂n
= 0, on C3 : for x = 0 and z ≥ 0,

∂ϕ

∂n
= 0, on C4 : for x =

α

2
(L+D) and z ≥ 0,

∂ϕ

∂n
= −ϕ, on C5 : for 0 ≤ x ≤ α

2
(L+D) and z = c.

C. Discussion

This study compares the results obtained when the soil
in Table 1 is used in homogeneous and heterogeneous soil.
The mathematical model obtained in the previous section
is then solved using DRBEM, which has been explained in
the methodology section. The simulation is carried out using
Matlab R2015a software.

(a) Suction Potential

(b) Water Content

Fig. 2: Graph ψ and θ along X = 10

(a) Suction Potential

(b) Water Content

Fig. 3: Graph ψ and θ along X = 30

Figures 2 to 6 show the values of suction potential and water
content evaluated at X = 10, 30, 50, 70, 90; 0 ≤ Z ≤ 200,
inhomogeneous soil. Based on Figure 2 and Figure 3, graph
ψ and θ along the axes X = 10 and X = 30 indicate that
the soil is below the water channel and the values of ψ and θ
decrease as the depth increases. It can be concluded that the
suction potential value is assumed to be directly proportional
to the water content. The water content in shallow locations
will be greater than in deeper locations in the soil below the
channel. This is because water seeps into deeper soil below
the channel.

Based on Figure 4 - Figure 6, The values of ψ and θ along
the lines X = 50, X = 70 and X = 90 indicate that the soil
not under irrigation channels. This is because as the depth
increases, the graphs of ψ and θ move towards the point of
convergence. However, the relationship pattern for each type
of soil is different. The θ value at a shallow location will be
smaller than at a deep location where the soil is not under the
channel. It can be concluded that the water enters the ground
surface because the water only enters through channels.

Next, we will discuss the 5 layers of heterogeneous soil
presented in Figure 7. The value of ψ for X = 10 in each soil
layer has the highest value compared to other X . Meanwhile,
X = 90 in each soil layer has the lowest value compared
to other X values. So it can be said that the highest value of
suction potential (ψ) is closest to the channel while the lowest
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(a) Suction Potential

(b) Water Content

Fig. 4: Graph ψ and θ along X = 50

value of suction potential (ψ) is at the location farthest from
the ground surface.

Based on Figure 7, in the first, second, and third soil layers
for X = 10, X = 30, X = 50, X = 70, and X = 90, there are
variations in the values of ψ and θ for different depth point.
Meanwhile, in the fourth layer, there is no clear variation in
the values of ψ and θ, and in the fifth layer, there is almost
no variation in the values of ψ and θ.

There is a jump in the value of ψ for 0 ≤ Z ≤ 40, to
40 ≤ Z ≤ 80, because there are differences in soil types
in the two layers. Likewise, with the jump in ψ values for
80 ≤ Z ≤ 120, 120 ≤ Z ≤ 160 and 160 ≤ Z ≤ 200 It can
be concluded that the first soil layer produces the highest ψ
value and the fourth soil layer produces the lowest ψ value.

Based on Figure 7, the largest water content is in the fourth
soil layer (Silty Loam), meaning that this type of soil can hold
water so that water does not seep into the soil layer beneath it
but to the side of the channel. Meanwhile, the smallest water
content is in the first soil layer, this is because sandy soil
has a high water suction capacity so that water in the first soil
layer will seep into the second soil layer. From the explanation
above, it can be concluded that ψ is directly proportional to
θ. In heterogeneous soil, if the n and K0 values are greater,
the suction potential value will also be greater.

A surface plot is given to see the distribution of values. ψ
and θ. Based on Figure 8 - Figure 12, The highest suction

(a) Suction Potential

(b) Water Content

Fig. 5: Graph ψ and θ along X = 70

potential value is at the bottom of the channel, and the smallest
value is at the ground surface outside the channel at the farthest
distance from the center of the channel. It can be seen that
the distribution pattern of suction potential values is almost
the same. It can be seen that the suction potential value in this
domain is Sandy Loam between −40 cm to −90 cm, Loam
A between −50 cm to −100 cm, Loam B between −40 cm
to −80 cm, Silty Loam between −60 cm to 110 cm Loamy
Sandy between −40 cm to -85 cm.

The water content values in this domain are Sandy Loam
between 30% to 36%, Loam A between 31% to 37%, Loam B
between 29% to 34%, Silty Loam between 38% to 40% and
Loamy Sandy between 34% to 37%. This indicates that the
soil types containing the most water are Silty Loam, Loamy
Sandy, Loam A, Sandy Loam, and Loam B.

Next, a surface plot is given on heterogeneous soil. Based on
Figure 13, the first layer of soil below the channel has a large
ψ value, whereas when it is on the ground surface outside the
channel, it has a low ψ value. This is the same as the second
and third soil layers. The fourth soil layer has the lowest ψ and
largest θ values compared to other soil layers. This strengthens
the assumption that the suction potential value is proportional
to the water content.

The suction potential values in this domain are Sandy Loam
between −30 cm to 75 cm, Loam A between −65 cm to
−90 cm, Loam B between −50 cm to −60 cm, Silty Loam
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(a) Suction Potential

(b) Water Content

Fig. 6: Graph ψ and θ along X = 90

between −96 cm to −100 cm Loamy sandy between −40 cm
to −41 cm. The water content values in this domain are Sandy
Loam between 32% to 36.5%, Loam A between 31% to
33.5%, Loam B between 31% to 32%, Silty Loam between
37% to 37.5% and Loamy Sandy between 36% to 36.5%.

IV. CONCLUSION

DRBEM can solve the problem of infiltration of furrow
irrigation channels in heterogeneous soil by using a governing
equation, namely the Richard equation, which is transformed
into a modified Helmholtz equation with mixed boundary
conditions.

In heterogeneous soil, the results show an influence of soil
type on suction potential and water content. Soil with many
pores and large hydraulic conductivity will produce a large
suction potential. The results of homogeneous soil show that
soil type influences suction potential and water content. Soil
with a large α will produce a large suction potential. This is
directly proportional to water content.

The depth of heterogeneous soil for each different soil type
also influences the soil’s suction capacity and water content.
When at a depth of 0 cm to 40 cm, a depth of 40 cm to 80 cm
and a depth of 80 cm to 120 cm, the soil has varying suction
potential and water content values. However, when the soil
depth increases, namely at a depth of 120 cm to 160 cm, the
variation in values is still visible but small, and at a depth of

(a) Suction Potential

(b) Water Content

Fig. 7: Graph of ψ and θ in Heterogeneous Soil

(a) Suction Potential (b) Water Content

Fig. 8: Surface Plot ψ and θ on Sandy Loam
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(a) Suction Potential (b) Water Content

Fig. 9: Surface Plot ψ and θ on Loam A

(a) Suction Potential (b) Water Content

Fig. 10: Surface Plot ψ and θ on Loam B

(a) Suction Potential (b) Water Content

Fig. 11: Graph of ψ and θ in Silty Loam

(a) Suction Potential (b) Water Content

Fig. 12: Graph of ψ and θ in Loamy Sandy

(a) Suction Potential (b) Water Content

Fig. 13: Surface Plot ψ and θ on Heterogeneous Soil

160 cm to 200 cm there is almost no variation in the suction
potential and water content values. Differences in soil types
in heterogeneous soil result in jumps in values between soil
layers.
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