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Applications of Double Group Theory in 2D
Materials

Muhammad Y. H. Widianto1 and Mineo Saito2

Abstract—Group theory is a fundamental mathematical frame-
work valuable for analyzing the band structures in materials
science. The hexagonal structures have unique electronic struc-
tures, especially in 2D materials in group-IV, where the system
is observed as the topological insulator. Meanwhile, in the case
of group-V, it is semiconductors. This paper analyzes group-
IV and group-V band structures based on group theory and
proposes a method to identify the irreducible representation (IR)
in symmorphic systems. It is found that all materials in group-
IV are topological insulators. The evaluation of Z2 invariant v
in group-V found that the phosphorene and bismuthene cases
are v = 0 and v = 1, respectively, and belong to trivial and
topological insulator materials for phosphorene and bismuthene,
respectively.

Index Terms—Group Theory, 2D Materials, Group IV, Group
V

I. INTRODUCTION

Group theory is a branch of mathematics that uses powerful
tools to describe the symmetry and structure of physical
systems. In materials science, the symmetry and transforma-
tions of a crystal lattice or a molecular structure reflect the
arrangement and organization of atoms or ions in an orderly
spatial lattice. Those directly correlate with the materials’
optical, electronic, and mechanical properties.

The crystal symmetry have depends on the rotation, trans-
lation, reflection and inversion that affect physical properties.
The ground state of physical systems is measured by maximum
symmetry due to attraction between its components, and
thus, the ground state of the crystals should be invariant and
respected to all operations of the group. The symmetry corre-
sponds to conserved quantities and allows the classification of
quantum mechanical state, including the representation theory
and degeneracy or level splittings. The wave functions or
operators determine the state; the set of the spectrum of an
operator (eigenvalues) is discrete. Those means to measure
the quantization phenomenon of the operators in discrete[1].

In the cases of 2D materials, group IV and group V have
been attracting scientific interest due to their novelty[2], [3],
[4], [5], [6]. Group IV forms hexagonal symmetries, which
rotate 2π/3 at the z-axis. The hexagonal structure is found in
Group V when the thickness is large[7], [8], [9], [10], [11].
The electronic structure characteristics of group IV have a
Dirac cone; meanwhile, group V is semiconductors[2], [3],
[12], [13], [14], [15], [16]. At the Dirac cone, the spin-
orbit coupling splits the stick bands that affect to induces a
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topological insulator. The materials containing heavy elements
have large SOC and this materials is one of the candidates for
topological materials[17], [18]. Furthermore, both groups are
observed as topological insulators at different conditions.

To understand the electronic properties of 2D materials
group IV and group-V, the band structure is analyzed based on
double group theory. Identifying the irreducible representation
(IR) of symmetric systems, including SOC, requires analyzing
double group theory.

This research uses double group theory to analyze the IR
band in order to study the 2D materials of group IV and group
V. For consideration, the materials are graphene, silicene,
germanene and stanene as group IV and phosphorene and
bismuthene as group V, respectively. The proposed method
to identify IR in non-SOC and SOC bands is discussed. The
Z2 invariants are evaluated to observe the materials, including
topological or trivial insulators.

II. METHOD

The previous studies used the method to identify IR when
non-SOC calculations are applied[15], [16], [19], [20], [21],
[22]. It also reported that the technique for SOC calculations
was used in the cases of symmorphic and non-symmorphic
systems[23], [24]. Since the symmetry is hexagonal symmetry,
the system belongs to symmorphic system.

First, introduced a method to identify the IR of the wave-
functions, ψγ

k,n. γ is two component of spinor Bloch wave-
functions. The band index in the ascending sequence of energy
is n, and the wavevector in the first Brillouin zone is k. When
the wavefunctions have the m-th degeneracy [3,4], we evaluate
Qβ = 1

p

∑n+m−1
a=n

∑
i χ

β(R̂i)
∗
〈
ψa

k | R̂i | ψa
k

〉
, where p is the

order of the group and χβ(R̂i) is the character of the IR β.
i runs over the symmetry operations Ri. The wavefunctions
belong (do not belong) to the β-th IR when Qβ = 1 (Qβ = 0).
The detailed explanation of the group theory in the non-SOC
and SOC systems was observed in the previous papers[20],
[23], [24].

The above methods are implemented to identify IR in
the First-principles calculation PHASE/0 code[25]. First, the
self-consistent calculation of the electronic structure of the
crystal is calculated based on density functional theory using
PHASE/0 code until the ground state occurs in both cases
(non-SOC and SOC calculations). Then, calculate the band
structure by considering the first Brillouin zone. Analyze
the band structure results computed from PHASE/0 with
Band_Symm using group theory to identify the IRs to which
the state belongs. TSPACE package is used to indices the IR
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Fig. 1. Band structures of graphene obtained from (a) non-SOC and (b) SOC
calculations.

of the k-group and the symmetry operations, etc, during the
calculation[26].

III. RESULT AND DISCUSSION

Graphene forms flat hexagonal structure and belong to
D1

6h (P6/mmm) space group. The calculate lattice constant
in the ground state is 2.485Å and this result is close to
the previous studies. The bond angle and bond length for
non-SOC calculation are 119.2Å and 1.428Å, respectively.
SOC bond length and bond angle are 119.6Å and 1.425Å.
Those geometry parameters show that the structure are stable
in both cases; the calculation vary 0.001Å and 0.01◦ for bond
length and bond angle, respectively. Our results of geometry
parameters are close to the previous studies[19], [23].

In the cases of silicene, germanene, and stanene, the struc-
ture are stable in buckled structure and those belong to D3

3d

(P3m1). The lattice constant is calculated 3.83Å for silicene,
4.06Å for germanene, and 4.68Å for stanene. The ground
state of the bond length is 2.23Å, 2.34Å, and 2.69Å for sil-
icene, germanene, and stanene, respectively. Those geometry
structures are close to the previous study[23].

The SOC calculation splits the Dirac cone in the graphene
case. Band E” (K6) level split into the E1/2 (K7) and E3/2 (K9)
levels, which the two bands E1/2 and E3/2 are the product
of double group. It is found that E3/2 (K9) level have lower
energy than E1/2 (K7) level. It is found that the lower level
(K9) is occupied by two electrons. Graphene becomes an
insulator because of the small energy splitting (0.5 meV). On
the other hand, the SOC splits the highest occupied E2g (Γ+

6 )
level of non-SOC into the E3/2g (Γ+

9 ) and E5/2g (Γ+
8 ) levels

at the Γ point; Γ+
9 level is higher 11 meV than Γ+

8 as shown
in Fig. 1.

2D materials of Silicene, germanene and stanene have the
ground state structure buckled, and the Dirac cone belongs
to the two-dimensional E level. The E level splits into two
parts. The two bands belong to two different one-dimensional
IR, e3/2(1) (K4) and e3/2(2) (K5), the time-reversal symmetry
pairs these bands. On the other hand, the higher two levels
belong to the two-dimensional IR, E1/2 (K6). The non-SOC
highest occupied level at the Γ point belong to Eg (Γ+

3 ). and
the SOC splits the level into two parts. The lower two levels
belong to the two-dimensional IR E1/2g (Γ+

6 ) and the higher

two levels belong to two different one-dimensional IR, e3/2g
(1) (Γ+

4 ) and e3/2g (2) (Γ+
5 ), which are paired.

We find that the above mentioned split due to the SOC
becomes large as the atom becomes heavy. The splits at the K
(Γ) point are 0.5 meV (11 meV), 2 meV (50 meV), 40 meV
(200 meV) and 135 meV (400 meV) for graphene, silicene,
germanene and stanene, respectively.

In the case of group-V, phosphorene and bismuthene have
hexagonal structure with buckling structure as group-IV sil-
icene, germanene and stanene which is called β structure.
This symmetry belong to D3

3d (P3m1) and it is found that
the optimize lattice constant is 4.267Å for bismuthene and
3.271Å for phosphorene.

In phosphorene case, the two bands of non-SOC from top to
bottom in order occupied state belong to A2u and Eg , respec-
tively. In SOC case, A2u (Γ−

2 ) band become E1/2u (Γ−
6 ) band

and Eg band split become e3/2g(1)(2)Γ+
4 +Γ+

5 and E1/2g (Γ+
6 )

bands. e3/2g(1)(2)Γ+
4 + Γ+

5 band have higher energy than
E1/2g (Γ+

6 ) band. The split energy of e3/2g(1)(2)Γ+
4 + Γ+

5

and E1/2g (Γ+
6 ) bands is small (47 meV).

In Bismuthene case, the non-SOC band is the similar as
phosphorene case. Contrary in SOC case, the Eg (Γ+

6 ) band
have large split energy (800 meV). Thus, the e3/2g(1)(2)Γ+

4 +
Γ+
5 become unoccupied state and E1/2u (Γ−

6 ) moving down
to occupied state. Because the inversion symmetry of the
energetically order at the Γ-point, the lowest unoccupied
belong to e3/2g(1)(2)Γ+

4 + Γ+
5 and E1/2u (Γ−

6 ) become the
highest occupied band.

A. Z2 invariant

To evaluate the materials have topological insulator proper-
ties, it is necessary to calculate the Z2 invariant v of group-IV
and group-V systems having the inversion symmetry[27], [28],
[29], [30]:

(−1)v =
∏
j

∆j . (1)

In Eq. 1, i runs over the time-reversal invariant momenta at
the k-points, which is in hexagonal FBZ is Γ and three M
points. ∆j is calculated as follows:

∆j =

Mocc./2∏
b=1

ξ2b(kj). (2)

ξ2b(ki) and Mocc. are the parity of the 2b-th band at the
point kj and the number of the occupied bands, respectively.
Group-IV and Group-V system are identified as a topological
insulator when the calculated result of v = 1.

In the band structure analysis, the Bethe symbols are used.
The sign + and - according to parities of even and odd,
respectively, whereas in Mulliken symbols of g is even and
u is odd. This sign was previously used in the theoretical
studies[23], [24].

To identify IR of the bands, the evaluation of the Z2

invariant v necessary. It confirms that v = 1 for 2D materials
group-IV[27], [28], [31]. Since phosphorene is semiconductors
with band gap 2.08 eV, the SOC calculations are shown that
this system is remain semiconductor due to small split (47
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meV) at Γ-point[24]. The calculate v=0 consider to trivial
insulator. On the contrary, the calculation of Z2 invariant in the
case of bismuthene is v = 1. This is due to the large split band
which is reversed the lowest unoccupied and highest occupied
bands. Therefore, the Z2 invariant of 1 is because the strong
SOC in heavy materials of group-V.

IV. CONCLUSION

To identify IR of the SOC wavefunctions using computers,
a method based on double group theory succeeded in imple-
menting it to analyze the band structures of two-dimensional
systems group-IV and group-V. In the cases of group-IV, the
two-dimensional IR are found in the Dirac cone of planar
E” and buckled structures E. The SOC split those bands in
planar graphene into E1/2 and E3/2 and E3/2 have lower
energy than E1/2. The SOC calculation of buckled structure
group-IV split the Dirac cone into lower levels of e3/2(1) and
e3/2(2) and E1/2. The two levels, e3/2(1) and e3/2(2), have
the same energy due to time-reversal symmetry. On the other
hand, the SOC split the Eg level of group-V into e3/2g(1) and
e3/2g(2) and E1/2 which is the former has high energy than
the latter. The large split energy in bismuthene case is shown
to reverse the Eg level and e3/2g(1) and e3/2g(2) become
unoccupied state. The evaluation of Z2 invariant v of group-
IV is found that all materials are topological insulators. In
the case of group-V, the trivial and topological insulators are
detected in phosphorene and bismuthene cases, respectively.
The topological insulator in group-V is observed that the large
SOC affect the reverse band and the calculation of v=1 as a
topological insulator..

ACKNOWLEDGMENT

The computation in this study uses the MINUSONE com-
puter in the Programming and Visual Computing Laboratory
of the ITS Mathematics Department.

REFERENCES

[1] V. I. Senashov, IOP Conference Series: Materials Science and Engi-
neering, vol. 1230, no. 1, p. 012018, mar 2022.

[2] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V.
Dubonos, I. V. Grigorieva, and A. A. Firsov, Science, vol. 306, no. 5696,
pp. 666–669, 2004.

[3] A. Geim and K. Novoselov, Nat. Mater., vol. 6, p. 183–191, 2007.
[4] P. Vogt, P. De Padova, C. Quaresima, J. Avila, E. Frantzeskakis, M. C.

Asensio, A. Resta, B. Ealet, and G. Le Lay, Phys. Rev. Lett., vol. 108,
p. 155501, Apr 2012.

[5] L. Li, Y. Yu, G. J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, H. Xian Chen,
and Y. Zhang, Nat. Nanotechnol., vol. 9, p. 372, 2014.

[6] M. N. Brunetti, O. L. Berman, and R. Y. Kezerashvili, Phys. Rev. B,
vol. 100, p. 155433, Oct 2019.

[7] Y. Tanaka, M. Saito, and F. Ishii, Jpn J. Appl. Phys., vol. 57, no. 12, p.
125201, 2018.
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