
INTERNATIONAL JOURNAL OF COMPUTING SCIENCE AND APPLIED MATHEMATICS, VOL. 11, NO. 1, FEBRUARY 2025 9

Solving Traveling Salesman Problem Art Using
Clustered Traveling Salesman Problem

Nadya Sulistia, Irwansyah, and Marwan

Abstract—The Traveling Salesman Problem (TSP) is a well-
known optimization problem that seeks to determine the shortest
possible route that allows a salesman to visit each city exactly
once before returning to the starting point. With advances in TSP
theory and its applications, a novel concept known as TSP Art has
emerged, blending mathematics with artistic expression. In TSP
Art, the optimal solution to the TSP generates an artistic pattern
or figure. However, the complexity of this problem increases with
the number of vertices, making it computationally challenging
to solve. This study proposes an approach using the Clustered
Traveling Salesman Problem (CTSP) to address the TSP Art
problem by organizing vertices into clusters, where each cluster
is visited once, while maintaining an efficient overall tour. The
objective of this research is to solve the TSP Art problem
using the CTSP approach and to calculate the length of the
minimum tours. The Nearest Neighbor and 2-opt algorithms are
applied within each cluster to find the shortest paths, while
Kruskal’s algorithm is employed to connect these paths into
an optimized overall tour. The minimum tour lengths for TSP
Art representations of Mona Lisa, Van Gogh, and Venus are
determined to be 6, 932, 014.19, 6, 878, 519.41, and 8, 210, 589.60
distance unit, respectively.

Index Terms—Clustered Traveling Salesman Problem,
Kruskal’s Algorithm, Nearest Neighbor Algorithm, TSP Art.

I. INTRODUCTION

THE traveling salesman problem (TSP) is a method for
finding the minimum tour in a graph. A graph G consists

of vertex set V (G) and edge set E(G), and the vertices
form ordered pairs called edges. In the TSP, every edge
has a cost or distance associated with it [1]. The goal is
to find the minimum tour that satisfies the condition that
each vertex is visited exactly once before returning to the
starting point. As TSP theory developed, TSP art emerged
as a mathematical concept applied to art, where vertices and
edges form artistic figures. The large number of vertices in
TSP art makes finding a solution more challenging. There are
many TSP art data could be access today. This research is
using Mona Lisa, Van Gogh, and Venus TSP art data from
http://www.math.uwaterloo.ca/tsp/data/art/.

According to Johnson and McGeoch [2], there are two main
methods for solving large-scale Traveling Salesman Prob-
lem (TSP) instances. The first method is the Lin-Kernighan
(LK) algorithm, which focuses on local optimization and
has also been implemented in various modified versions
such as Chained LK and LKH-2. The LKH-2 is particu-
larly effective for finding high-quality tours by iteratively

The authors are with the Department of Mathematics, University of
Mataram, Indonesia, e-mail: sulistianadya@gmail.com, irw@unram.ac.id,
marwan.math@unram.ac.id

Manuscript received March 31, 2024; accepted September 25, 2025.

improving solutions through local adjustments. The second
method uses Genetic Algorithms (GA), specifically hybrid
Memetic Algorithms (MA), which combine GA with the LK
algorithm. Some versions of these methods, such as GA with
Edge Assembly Crossover (GA-EAX), have shown excellent
performance, even for TSP instances with up to 200,000 cities.

Another successful study addressing large-scale TSP prob-
lems with many cities is Honda’s research, which uses a
Parallel Genetic Algorithm with Edge Assembly Crossover
(Parallel GA-EAX). Edge Assembly Crossover (EAX) is a
method designed to generate new solutions by swapping edges
between two parent tours, while also maintaining diversity
within the population. The use of a Parallel Genetic Algorithm
efficiently distributes tasks across multiple processors using
a master/worker model, significantly reducing computational
time without sacrificing accuracy. The algorithm follows a
Two-Stage Approach, the first phase focuses on local edge
exchanges to explore diverse solutions, while the second
phase involves global edge exchanges to further improve
the best solutions found. This research significantly reduces
the running time compared to previous studies by using a
parallel framework that distributes the workload across many
processors and employs a specialized crossover method (EAX)
to maintain solution diversity and improve quality in two
stages [3].

This research, however, uses the clustered traveling sales-
man problem (CTSP). The CTSP is a modification of TSP
that clusters vertices into groups, with each cluster need
to be visited exactly once [4]. In large-scale TSP prob-
lems, handling all cities simultaneously can consume massive
amounts of memory (RAM). Clustering breaks the problem
into smaller groups. By grouping cities into clusters, each
cluster is solved individually, reducing the overall memory
requirement. Furthermore, clustering is computationally more
efficient than handling the entire dataset at once. This speeds
up the algorithm and allows it to handle large-scale problems
more effectively [5]. Moreover, the nearest neighbor and 2-opt
algorithms are used to find the shortest path in each cluster,
and Kruskal’s algorithm is employed to connect these paths
to form the minimum tour.

The nearest neighbor (NN) algorithm is a straightforward
and fast greedy approach. It begins at a city and continues by
selecting the closest unvisited city. Although it may not find
the best possible solution, it can quickly create a path, which is
helpful for large problems with many vertices, where finding
the perfect solution would take too much time [6]. The 2-opt
algorithm swaps vertices in order to improve the optimization
result. Meanwhile, Kruskal’s algorithm gradually constructs

http://www.math.uwaterloo.ca/tsp/data/art/

INTERNATIONAL JOURNAL OF COMPUTING SCIENCE AND APPLIED MATHEMATICS, VOL. 11, NO. 1, FEBRUARY 2025 10

the solution by sorting the edges by cost. Additionally, the
characteristics of Kruskal’ algorithm simplify and improve the
formation of the path [7].

II. CLUSTERED TRAVELING SALESMAN PROBLEM

The traveling salesman problem (TSP) involves finding a
minimum tour that visits N cities, starting from one city and
returning to the same city, with each city visited exactly once
before returning. Additionally, the distance of the tour must
be as short as possible. In the TSP, these cities and roads are
represented as a graph, where each city is a vertex and a road
between two cities is an edge. Each edge has a cost. The TSP
model is defined as follows [8]

minZ =

N∑
i=1

N∑
j=1

cijaij (1)

with constraints
N∑
i=1

aij = 1, j = 1, 2, ..., N (2)

N∑
j=1

aij = 1, i = 1, 2, ..., N (3)

where

aij =

{
1, if (i,j) is chosen to be part of the tour
0, others (4)

and cij is the cost of an edge between vertices i and j. In
order to prevent a loop (an edge connecting a vertex to itself),
a large constant M is assigned to any edge where i = j:

cij = M ,∀i = j (5)

Here, i and j are index for the vertices and N is the number
of vertices. Furthermore, TSP art is a variant of TSP where
the minimum tour forms an object or a painting [9].

The large number of vertices in the TSP art problem makes
finding a solution more complicated and increases the running
time. To address these issues, the clustered traveling salesman
problem (CTSP) is used in this research. CTSP is a variation
of the TSP where vertices are grouped into clusters, and each
cluster must be visited exactly once [4].

Before determining the minimum path, the data should be
clustered. This research uses the K-Means clustering method,
which groups vertices based on their distance to the centroid of
a cluster. A vertex is assigned to the cluster with the smallest
distance to its centroid [10], [11]. An optimum number of
clusters is determined by using the elbow method. In the
elbow method, the optimal number of clusters is determined
by analyzing a graph that shows the ratio of K (number of
clusters) to its distortion (Mean Squared Error) value. The K
value is selected based on the position of the ”elbow” in the
graph [11], [12].

Given the set of vertices V (G), with N total vertices
and K clusters, define V = {v1, v2, . . . , vN} and C =

{C1, C2, . . . , CK}, where Ck represents k-th cluster, k ∈
1, 2, . . . ,K, and K ≤ N . Let µk be the centroid of Ck, and
µk = (µk(x), µk(y)), then

µk(x) =
1

|Ck|
∑

xj∈Ck

Vj (6)

µk(y) =
1

|Ck|
∑

yj∈Ck

Vj (7)

After the data clustered into K clusters, the distance
between each pair of vertices (cij) is calculated using the
Euclidean distance formula. Given vertices vi = (xi, yi) and
vj = (xj , yj), we have

cij =
√
(xi − xj)2 + (yi − yj)2 (8)

These distances are then used to determine the minimum
path within each cluster using the nearest neighbor and 2-opt
algorithms. Once the minimum path for each cluster is found,
the next step is to connect all these paths into a minimum
tour. The connection must link different clusters, and cycles
must be avoided to ensure no vertex is visited more than once,
as this would violate the conditions of a minimum tour. To
prevent cycles, the start and end points of the minimum path
in each cluster are assigned a large distance to avoid being
chosen as connectors. The connectors between clusters are
determined using Kruskal’s algorithm, ensuring all vertices are
finally connected.

The steps for solving TSP art in this research are as follows
• Cluster the data into K clusters using K-Means Cluster-

ing [13] [12].
1) Determine the number of clusters (K).
2) Define the initial positions of the centroids.
3) Calculate the distance between each vertex and the

centroids using the Euclidean distance.
4) Assign each vertex to the cluster with the smallest

distance to its centroid.
5) Update the centroid position by calculating the

average distance of each cluster’s members.
6) Repeat step 3 through 5.
7) Stop when the centroid positions no longer change.

• Determine the optimal number of clusters (K) using
elbow method [14].

1) Start with K = 1, determine the centroid positions,
and calculate the distortion value.

distortion =
1

N

K∑
k=1

|Ck|∑
i=1

(Vi − µk)
2 (9)

2) Increase K to K + 1 and repeat the clustering
process.

3) Using the K-Means clustering, the vertices must be
clustered into K clusters.

4) Calculate the new distortion.
5) Repeat steps (2)-(4)
6) Plot the number of clusters (K) on the x-axis and

distortion on the y-axis.
7) Choose the K value at the elbow point of the graph.

INTERNATIONAL JOURNAL OF COMPUTING SCIENCE AND APPLIED MATHEMATICS, VOL. 11, NO. 1, FEBRUARY 2025 11

• Cluster the data into the optimal number of clusters found
in the previous step using K-Means clustering.

• Calculate the cost of each vertex pair within the same
cluster using Euclidean distance.

• Determine the minimum path for each cluster using the
nearest neighbor and 2-opt algorithms.

• Each minimum path of every cluster has an initial and
an end point, which will be connected to the initial or
end point of another cluster. In this step, the connector is
determined using Kruskal’s algorithm.

• We have found a good solution based on the nearest
neighbor, 2-opt, and Kruskal’s algorithms.

III. RESULTS AND DISCUSSIONS

Before determining the minimum path, the data should be
clustered. The Figure 1 shows the plot of number of clusters
versus its corresponding distortion values.

Fig. 1: Number of clusters versus distortion values

The figure indicates that the optimal number of clusters (K)
for Mona Lisa’s data is 7. The Figure 2 shows the data after
clustering. There are 7 black points representing the centroid
of each cluster. Each color represents one cluster.

After clustering the data, the minimum path for each cluster
is determined using the nearest neighbor and 2-opt algorithms.
Before calculating the minimum path, the cost of each edge
is determined using the Euclidean distance (see equation 8).
The cost of each edge is stored in a matrix called the distance
matrix. The diagonal elements of the matrix are given a large
constant, M , to prevent them from being chosen, which avoids
loops (cij where i = j).

The starting point is chosen based on the first vertex in
the clustered data, denoted as v0. From the starting point, the
next vertex to visit is chosen based on the minimum cost (cij)
among all edges adjacent to the starting point. This is done by
examining row v0. Base on that row in the distance matrix. The
minimum cost is found for a specific vertex, vd, making c0d the
minimum cost, and edge e0d is the first edge in the minimum
path. Once e0d is selected, vertices v0 and vd should not be
visited again. To prevent this, the columns corresponding to
v0 and vd are assigned (M). The same process is repeated for
vertex vd, finding the adjacent vertex with the next minimum

Fig. 2: Clustered data

cost, vd′ . Thus, edge edd′ becomes part of the minimum path.
Again, the columns for vd and vd′ are assigned (M). This
process continues until |Ck| − 1 edges are found to form the
minimum path for each cluster, where |Ck| represents number
of elements in cluster Ck. The 2-opt algorithm used to improve
the results from nearest neighbor heuristic. The result of the
calculation is shown in Table I.

TABLE I: Minimum distance in each cluster

Cluster (k) Minimum distance
0 942, 576.76
1 1, 019, 512.67
2 744, 869.05
3 766, 935.38
4 945, 455.40
5 885, 896.206
6 700, 853.47

The Figure 3 shows the initial and end points of the
minimum path for each cluster, represented by black points.

Those points are used to connect one cluster to another,
forming a minimum tour. Each vertex is assigned an index.
Indices 0 to 6 represent the initial points for clusters 0 through
6, respectively, while indices 7 to 13 represent the end points
for clusters 0 through 6, respectively.

In order to select the connector edge for each cluster,
Kruskal’s algorithm is applied. Two conditions must be satis-
fied when choosing these connectors. First, the cost of a loop
must be a large constant, denoted as M . Second, the initial
and end points of the same cluster cannot be connected, as this
would create a local cycle in a cluster. To avoid this, assign
M as the cost for the initial and end points of the same cluster
as follows:

wij =

{
M, for |i− j| mod K = 0
cij , others (10)

Here, wij is the cost of a connector or edge consisting of
vertices vi and vj), where i and j are indices ranging from 1

INTERNATIONAL JOURNAL OF COMPUTING SCIENCE AND APPLIED MATHEMATICS, VOL. 11, NO. 1, FEBRUARY 2025 12

Fig. 3: Minimum path in each cluster with its initial and end
points

to U , and U is the number of end points.

Fig. 4: Clusters connection

The cost of each connector can be seen in Table II. The total

TABLE II: Connector’s cost

Connector Connector’s Cost
0 941.862517
1 3, 436.688086
2 4, 748.446588
3 5, 049.083283
4 5, 791.527605
5 7, 422.693649
6 14, 408.554993

cost of these connectors is 41, 798.85672072333 unit distance.

The total minimum path cost for all clusters is 6, 006, 098.93
unit distance. Therefore, the minimum tour is 6, 047, 897.79
unit distance (for the tour in Figure 4).

Fig. 5: Final result

In Figure 5, the black points marking the initial and end
points were removed, and the color of each cluster was
changed to the same color to show the final result of the Mona
Lisa TSP art.

The same steps are applied to calculate the minimum tour
for the Van Gogh and Venus datasets, yielding distances
recorded in Table III. Moreover, Table III shows the com-
parison between our results and current best results recorded
in https://www.math.uwaterloo.ca/tsp/data/art/

TABLE III: Comparison to current best tour

Datasets Our results Current best
Mona Lisa 6,047,897.79 5,757,191
Van Gogh 6,878,519.41 6,543,609

Venus 7,138,938.72 6,810,665

IV. CONCLUSION

To solve TSP art using CTSP, this research suggests cluster-
ing all vertices with the K-Means algorithm and determining
the optimal number of clusters using the Elbow method. Each
vertex is grouped accordingly, and the minimum path within
each cluster is calculated using the nearest neighbor algorithm.
Finally, the initial and end points of these paths are connected
using Kruskal’s algorithm, and thus, the minimum tour is
determined.

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewer
for their valuable suggestions and insightful comments, which
have significantly improved the quality of this work.

https://www.math.uwaterloo.ca/tsp/data/art/

INTERNATIONAL JOURNAL OF COMPUTING SCIENCE AND APPLIED MATHEMATICS, VOL. 11, NO. 1, FEBRUARY 2025 13

REFERENCES

[1] J. A. Bondy and U. S. R. Murty, Graph theory. Springer Publishing
Company, Incorporated, 2008.

[2] D. S. Johnson and L. A. McGeoch, “The traveling salesman problem: a
case study,” Local search in combinatorial optimization, pp. 215–310,
1997.

[3] K. Honda, Y. Nagata, and I. Ono, “A parallel genetic algorithm with edge
assembly crossover for 100,000-city scale tsps,” in 2013 IEEE congress
on evolutionary computation. IEEE, 2013, pp. 1278–1285.

[4] Y. Lu, J.-K. Hao, and Q. Wu, “Solving the clustered traveling salesman
problem via tsp methods,” arXiv preprint arXiv:2007.05254, 2020.

[5] H. Xu and H. Lan, “An adaptive layered clustering framework with
improved genetic algorithm for solving large-scale traveling salesman
problems,” Electronics, vol. 12, no. 7, p. 1681, 2023.

[6] B. A. AlSalibi, M. B. Jelodar, and I. Venkat, “A comparative study
between the nearest neighbor and genetic algorithms: A revisit to the
traveling salesman problem,” International Journal of Computer Science
and Electronics Engineering (IJCSEE), vol. 1, no. 1, pp. 110–123, 2013.

[7] K. Salahddine et al., “The implementation of kruskal’s algorithm for
minimum spanning tree in a graph,” in E3S Web of Conferences, vol.
297. EDP Sciences, 2021, p. 01062.

[8] H. A. Taha and H. A. Taha, Operations research: an introduction.
Prentice hall Upper Saddle River, NJ, 2003, vol. 7.

[9] R. Bosch and A. Herman, “Continuous line drawings via the traveling
salesman problem,” Operations research letters, vol. 32, no. 4, pp. 302–
303, 2004.

[10] A. Agrawal and H. Gupta, “Global k-means (gkm) clustering algorithm:
a survey,” International journal of computer applications, vol. 79, no. 2,
2013.

[11] D. Sharifrazi, R. Alizadehsani, J. H. Joloudari, S. S. Band, S. Hussain,
Z. A. Sani, F. Hasanzadeh, A. Shoeibi, A. Dehzangi, M. Sookhak et al.,
“Cnn-kcl: Automatic myocarditis diagnosis using convolutional neural
network combined with k-means clustering,” Mathematical Biosciences
and Engineering, vol. 19, no. 3, pp. 2381–2402, 2022.

[12] C. Shi, B. Wei, S. Wei, W. Wang, H. Liu, and J. Liu, “A quantitative
discriminant method of elbow point for the optimal number of clusters
in clustering algorithm,” Eurasip Journal on Wireless Communications
and Networking, vol. 2021, pp. 1–16, 2021.

[13] A. Sucipto, “Klasterisasi calon mahasiswa baru menggunakan algoritma
k-means,” Science Tech: Jurnal Ilmu Pengetahuan dan Teknologi, vol. 5,
no. 2, pp. 50–56, 2019.

[14] P. Bholowalia and A. Kumar, “Ebk-means: A clustering technique
based on elbow method and k-means in wsn,” International Journal
of Computer Applications, vol. 105, no. 9, 2014.

	Introduction
	Clustered Traveling Salesman Problem
	Results and Discussions
	Conclusion
	References

