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Abstract—Export activities consist of oil and gas exports and
non-oil and gas exports. Non-oil and gas exports are one of the
sectors that provide the largest foreign exchange contribution to
Indonesia, and the movement of non-oil and gas export values
has an impact on economic growth. Therefore, the purpose of this
research is to create a model used to predict future non-oil and
gas export values. One mathematical model that can be to predict
Indonesia’s non-oil and gas export values is the combination of
the ARIMA model and the stochastic volatility model, also known
as Hybrid ARIMA with stochastic volatility. The Hybrid ARIMA
with stochastic volatility modeling has advantages in creating
models for data with high volatility and is capable of combining
linear patterned data and nonlinear patterned data. In this study,
the best ARIMA (1,1,1) model was obtained with a MAPE value
of 13.2082%. From the residuals of the ARIMA (1,1,1) model,
there were signs of heteroscedasticity, so the GARCH model with
the best GARCH (0,1) model was used. In the GARCH (0,1)
model, it was found that there was an asymmetric influence,
so the EGARCH and GJR-GARCH models were used. The
comparison of EGARCH and GJR-GARCH models was carried
out to address the asymmetric residual data pattern. Based on the
research results, the best model used for prediction is the hybrid
ARIMA (1,1,1) with EGARCH (1,1) model, with a MAPE value
of 9.35158%.

Index Terms—ARIMA, Hybrid ARIMA, MAPE, Non-oil gas
exports,Stochastic Volatility

I. INTRODUCTION

Economic growth is defined as a long-term increase in a
country’s capacity to provide various economic goods to its
population [1] . It serves as evidence of a nation’s level of
success. According to Bank Indonesia, 2018 [2], one of the
activities that contribute to economic growth is exportation.

The expenditure of goods from a country’s domestic circu-
lation, which are sent abroad under government regulations in
exchange for foreign currency, is referred to as exports [3]. In-
donesia is among the countries impacted by the performance of
export activities across various sectors, including non-oil and
gas exports. Non-oil and gas exports contribute significantly to
Indonesia’s foreign exchange earnings. The cumulative value
of Indonesia’s exports decreased by 6.94%, and non-oil and
gas exports experienced a decline of 4.82% [4]. This decline
in non-oil and gas exports has consequences for economic
performance and growth. As a result, non-oil and gas export
values are a crucial factor in Indonesia’s economic growth,
necessitating the modeling of these values.
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Modeling Indonesia’s non-oil and gas export values can
be employed to make forecasts that will inform economic
policy decisions in the country. Forecasting is the process
of estimating the magnitude or quantity of something in the
future, based on past data, and is analyzed scientifically using
statistical methods [5]. Time series analysis is a statistical
method that can be used for forecasting, making it applicable
to the modeling of Indonesia’s non-oil and gas export values.

A time series is a collection of data observations from a
fixed source that occur sequentially based on a time index t,
with precise time intervals [6]. Time series analysis uniquely
records economic behavior over time. According to Wei [7],
there are two classifications of time series based on their form
or function: linear models and nonlinear models. Autoregres-
sive Integrated Moving Average (ARIMA) is used for linear
data modeling.

Autoregressive Integrated Moving Average (ARIMA) is a
suitable forecasting method, as it requires only the variable to
be forecasted, and provides simple, accurate, and rapid results
[8]. The ARIMA method combines Autoregressive (AR) and
Moving Average (MA) models. However, financial sector data,
such as Indonesia’s non-oil and gas export values, which
exhibit random behavior, high volatility, and non-constant vari-
ance, indicate data variation (conditional variance) resulting
in heteroscedasticity [9]. As a result, the ARIMA model is
insufficient for data exhibiting heteroscedasticity, necessitating
the use of a hybrid model.

A hybrid model is an artificial intelligence-based method
designed to address difficulties with data containing both linear
and nonlinear models [10]. Several models can overcome
the limitations of the ARIMA model and are capable of
modeling the volatility in Indonesia’s non-oil and gas export
values, including Generalized Autoregressive Conditional Het-
eroscedasticity (GARCH), Exponential Generalized Autore-
gressive Conditional Heteroscedasticity (EGARCH), and the
Glosten, Jaganathan, and Runkle Generalized Autoregressive
Conditional Heteroscedasticity (GJR-GARCH) model. The
consideration of these three models for integration with the
ARIMA model is based on the patterns generated from the
ARIMA residuals when there is an asymmetric effect on the
squared ARIMA residuals with GARCH residuals. Therefore,
this study will undertake Hybrid ARIMA Modeling with
Stochastic Volatility for Forecasting Non-Oil and Gas Export
Values.
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II. METHODOLOGY

The data used in this study are the values of Indonesia’s non-
oil and gas exports, obtained from the official BPS website
(https://www.bps.go.id), which consist of monthly data of
Indonesia’s non-oil and gas export values as variable (Yt). This
study aims to develop a hybrid ARIMA model with stochastic
volatility for forecasting Indonesia’s non-oil and gas export
values. The method used is time series analysis.

A. Autoregressive Integrated Moving Average (ARIMA)

Autoregressive Integrated Moving Average (ARIMA) is one
of the appropriate methods used for forecasting because it only
requires the variable to be forecasted in a simple, accurate,
and fast manner [8]. In the 1970s, the ARIMA model gained
popularity for its ability to solve problems in various broad
situations in the field of econometrics. Model Autoregressive
Integrated Moving Average (ARIMA) is a short-term forecast-
ing model that has good forecasting accuracy. The difference
between the ARIMA method and the ARMA method lies in
stationarity, where the ARMA model requires the data to be
stationary and does not consider the presence of non-stationary
processes. However, the ARIMA method is capable of ad-
dressing non-stationary data issues through transformation or
differencing processes. Therefore, the equation for the ARIMA
model (p,d,q) is as follows:

φp(B)(1−B)dYt = θq(B)

Where

Yt = Observation data at time-t
φ = Parameter (AR)
θ = Parameter (MA)
(1−B)d = Differencing Operator of orde-d
p = Orde AR
q = Orde MA

To validate the best ARIMA model, the Akaike Information
Criteria (AIC) is utilized. Model selection through the AIC
method involves choosing the lowest AIC value, indicating the
suitable model for a given estimated equation, enabling fur-
ther measurement of forecasting accuracy using MAPE. The
goodness-of-fit testing of the obtained ARIMA model is based
on whether there is evidence of heteroskedasticity. This is done
to ensure that the usage of the ARIMA model is suitable for
predictions or whether it’s necessary to employ a combined
model to reduce errors from the ARIMA model. In time series
data, the presence of heteroskedasticity can be determined
by observing residual patterns and also by conducting the
ARCH-LM test. The ARCH-LM test can detect whether time
series data exhibit signs of heteroskedasticity by examining the
result values. If there is evidence of heteroskedasticity, it can
be proceeded by constructing a model of the residuals that
indicate the presence of heteroskedasticity using the ARCH
model. If the ARCH model is insufficient in addressing the
heteroskedasticity issue in the time series data, the process is
extended by utilizing the GARCH model.

B. GARCH Model

High volatility results in a non-constant moving variance.
In time series modeling, the assumption is that the variance
should be constant (homoscedasticity). To address this issue,
[11] introduced the Autoregressive Conditional Heteroscedas-
ticity (ARCH) model. The ARCH method can handle serial
correlation and cases of heteroscedasticity.

For the ARCH model, heteroscedasticity occurs because
there is high volatility in the time series data. The ARCH
model (p) can be expressed in the form of two equations, as
follows:

σ
2
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Determining the ARCH model requires large values to
obtain an appropriate model for time series data. The use of
the Generalized Autoregressive Condition-al Heteroscedastic-
ity (GARCH) model is employed to address the issue of large
values in determining the ARCH model [12]. The GARCH
model is an extension of the ARCH model. The GARCH
equation can be expressed in the form of two equations, as
follows:
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Where

σ2
t = Variance at time-t

α = Parameter ARCH
β = Parameter GARCH
εt = Error at time-t

The GARCH model can be used for data that exhibits
the same volatility characteristics, or in other words, equal
positive and negative shocks or spikes. This means that it can
capture asymmetry in financial data resulting from changes in
volatility [13]. To test for the presence of asymmetry effects
in the data, a Cross-correlation test or cross-correlation is
employed by examining the correlation between the squared
standard residuals from the ARIMA model and the residuals
from the GARCH model. If the correlation value is not equal
to zero, it can be concluded that there is an asymmetry effect
in the data [14].

C. Exponential GARCH Model

Exponential GARCH or EGARCH is a modification of
the GARCH model first introduced by Nelson (1991). The
Exponential GARCH model, or EGARCH, is a modification
of the GARCH model first introduced by Nelson (1991). The
advantage of the EGARCH model is that it does not require the
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data to be stationary, unlike the ARCH, GARCH, and GJR-
GARCH models which have stationarity requirements. The
equation for the EGARCH model is as follows:
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From the equation above, it can be seen that there is a ln
conditional variance on the left-hand side, indicating that the
asymmetric effect is exponential. In the EGARCH equation,
the use of ln indicates the non-negativity of the variance. If
the value of γ j ̸= 0, it signifies the presence of asymmetry in
the data, indicating that γ j is significant. The presence of a
leverage effect is marked by the hypothesis γ < 0.

D. GJR-GARCH Model
Glosten, jahathan, and runkle GARCH or another name are

GJR-GARCH and TARCH. That is one of model that was first
time known as TARCH (Zakoin;1990). Glosten, Jahathan, and
Runkle (1993) make this model more specific that modified
by GARCH model which the stationary must be fulfilled. The
similarity of the GJR-GARCH model is:
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Where I is a dummy variable with the condition that It−1 = 1
if εt−1 < 0, and It−1 = 0 if εt−1 > 0 [15]. For the GJR-GARCH
model, the asymmetry effect occurs when Yi ̸= 0, indicating
that γ is significantly different from zero.

E. Hybrid ARIMA with Stochastic Volatility
A hybrid model in research combines linear and nonlinear

models for a given dataset. The purpose of using hybrids
is to incorporate nonlinear models without discarding linear
ones. One application of hybrid models involves combining
the ARIMA model with stochastic volatility models. This leads
to the emergence of the Stochastic Volatility Hybrid ARIMA
equation as follows:

Ŷ hybrid
t = L̂ARIMA

t +EV S
t

Where
L̂ARIMA

t = φp(B)(1−B)dYt = θq(B)
EV S

t = σ2
t , (GARCH, EGARCH, or GJR-GARCH)

The equation above shows that represents the linear com-
ponent, while represents the nonlinear component. After per-
forming predictions and obtaining results using the Stochastic
Volatility Hybrid ARIMA, an evaluation of forecasting accu-
racy will be conducted.

F. Forecast Accuracy

To select the best model, forecasting accuracy is crucial.
The accuracy of a forecasting method is evaluated based on
the forecast errors. In this study, error measures and relative
measures are used, including Mean Absolute Percentage Error
(MAPE). MAPE is used to indicate the magnitude of errors
in forecasting by comparing them to the previous values of
the series [16]. The equation for calculating MAPE is as
follows: PEt (Percentage Error) It is the percentage error, and
n represents the number of errors.

MAPE =
1
n

n

∑
t=1

|PEt |

PEt (Percentage Error) It is the percentage error, and n
represents the number of errors

PEt =

(
Yt −Ft

Yt

)
100%

where

Yt = Observation on period of-t
Ft = forecast on period of-t

For more details, the research was carried out using research
steps as follows Figure 1

Fig. 1: flowchart
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III. FINDING AND DISCUSSION

A. ARIMA Modelling
By using the in-sample data, a time series plot of Indonesia’s

non-oil and gas export values (Yt) is created, which is the
first step to be taken before developing an ARIMA model, to
understand the patterns formed in the data, resulting in the
following time series plot:

Fig. 2: The Non-oil and Gas Export Values

From Figure 2, it can be observed that the non-oil and gas
export values data show an increasing trend or non-constant
fluctuations. Additionally, the fluctuations in Indonesia’s non-
oil and gas export values occur due to unavoidable volatility in
the financial market, which is sensitive to changes. From the
time series plot above, it can be concluded that the data is not
stationary concerning the mean and variance. Through using
Box-Cox as result that the rounded value (λ ) is obtained at
0.00 using a 95% confidence level with an upper limit value of
-0.41 and a lower limit of 0.34, so that the data is not stationary
for the variance, so a natural logarithmic transformation is
performed. The natural logarithmic transformation of the data
looks again at the Box-Cox using ln Yt .

According to Wei [7] if a data obtains a rounded value
(λ ) of 0.50, it is necessary to carry out a root transformation
process (

√
lnYt). For data cases like this, it is used lnYt as

initial data so that only one transformation is used in making
a linear model from the ARIMA method. Seeing the changes
obtained after the transformation of the resulting root (

√
lnYt)

data is stationary concerning the variance, then proceed with
analyzing whether the data is stationary concerning the mean.
For stationary concerning the mean ADF test carried out. From
ADF test the stationary data of average is done by a process of
differencing. ARIMA model can be made through an analysis
ACF and PACF plots:

From Figure 3. plot ± 2√
n the red line is the critical value for

knowing autocorrelation and the blue line is interval time (lag).
it can be seen that there is a cut off at first lag, because it is
calculated from the initial five lags only one lag is significant.
In the ACF plot,it can be seen that after the initial five lags
there are several significant lags but do not form a seasonal
pattern so it is sufficient to use the ARIMA process. After
viewing the ACF plot it continues by analyzing the pattern of
PACF plot.

From Figures 3 and 4, the ACF and PACF plots, it can be
seen that the generated data pattern for ACF experiences a cut-

Fig. 3: ACF plot after first differencing

Fig. 4: PACF plot after first differencing

off at the first lag, and for PACF experiences a cut-off at the
first lag as well. Therefore, it can be inferred that the pattern
contains ARIMA (1,1,0), ARIMA (0,1,1), and ARIMA (1,1,1)
models. The selection of the best ARIMA model is performed
using the smallest AIC value.

TABLE I: ARIMA Model Selection

Model Estimation P-Value Description AIC

ARIMA (0,1,1) Significant 0,0075
θ1 0,4982 0,0000

ARIMA (1,1,0) Significant 0,0075
φ1 -0,4925 0,0000

ARIMA (1,1,1)
Significant 0,0074θ1 -0,294 0,0022

φ1 0,266 0,041

In Table I above, it can be seen that ARIMA (1,1,1) is a
significant model and has the smallest AIC value among the
ARIMA (0,1,1) and ARIMA (1,1,0) models, even though all
three models tested are significant. After obtaining the best
model, the prediction of the ARIMA model is then carried
out.

B. Prediction of ARIMA

The ARIMA prediction is carried out after obtaining the
best ARIMA model. For instance, predicting the value of
Indonesia’s non-oil and gas exports from August 2021 (Ŷ212)
with the number of time origins used (n)=211, by substituting
the value of t with t = 212 as follows:
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lnY212 = lnY211 +φ1 lnY211 −φ1 lnY210 + e+θe211

ln Yt = lnYt−1 −0,294lnYt−1 +0,294lnYt−2 + et +0,266et−1

By using the same steps for the period from September
2021 to July 2022, a comparison between the actual data and
prediction results yields a MAPE value of 13.20824%. Using
the residuals from the ARIMA (1,1,1) model, we can test
whether there are signs of heteroskedasticity.

C. ARCH-LM Test

The test used to determine whether there is an ARCH effect
or not is the Lagrange Multiplier test, With the statistic test:

LM = NR2

From the LM test result, the value obtained is 24,991
with a χ2

(a;1) value is 3,841, where=0,05. This means that
the LM value > χ2

(a;1), which implies that there are signs
of heteroskedasticity in the residuals of the ARIMA (1,1,1)
model. In conclusion, the residuals from the ARIMA (1,1,1)
model can be modeled using the ARCH or GARCH method.

D. GARCH Modelling

In the squared residuals of the ARIMA model from the
ARCH-LM test, there are signs of heteroscedasticity. There-
fore, the ARIMA residuals are used to create a GARCH model
with the following possible models:

TABLE II: GARCH Model Selection

Model Parameter Estimation P-Value Description

GARCH (1,0) α0 0,0005759 0,00000 Significant
α1 0,210620 0,007217 Not Significant

GARCH (0,1) α0 0,000010 0,000736 Significant
α1 0,999000 0,000000 Significant

GARCH (1,1)
α0 0,000010 0,000736 Significant
α1 0,000000 1,000000 Not Significant
β1 0,999000 1,000000 Significant

GARCH (2,0)
α0 0,005408 0,0000 Significant
α1 0,189039 0,10289 Not Significant
α2 0,068394 0,28035 Not Significant

GARCH (0,2)
α0 0,000013 0,00000 Significant
β1 0,154832 0,00000 Significant
β2 0,844168 0,00000 Significant

GARCH (1,2)

α0 0,000013 0,34368 Not Significant
α1 0,000000 1,00000 Not Significant
β1 0,157811 0,00000 Significant
β2 0,841189 0,00000 Significant

GARCH (2,1)

α0 0,000011 0,00000 Significant
α1 0,000000 1,00000 Not Significant
β1 0,000000 1,00000 Not Significant
β2 0,999000 0,00000 Significant

GARCH (2,2)

α0 0,000013 0,39201 Not Significant
α1 0,000000 1,00000 Not Significant
α2 0,000000 1,00000 Not Significant
β1 0,143370 0,00000 Significant
β2 0,855630 0,00000 Significant

Through the significance test of the parameters in the table
2, it is found that the GARCH (0,1) and GARCH (0,2) models
are significant. Therefore, the best model needs to be selected
using the smallest AIC value as follows:

TABLE III: AIC Value of Garch

No. Model AIC

1 GARCH(0,1) -2,6874
2 GARCH(0,2) -2,6872

From Table 3, it can be seen that a model GARCH (0.1) has
the smallest AIC value, so it can be used for further testing.
In the follow-up tests, it will identify if there are asymmetric
effects. There is or not an asymmetric effect characterized by
a correlation that is not equal to zero.

E. Asymmetric Testing

In financial data, an asymmetric effect occurs because there
is a positive or negative correlation between the present time
value and future volatility values, which can result in the
GARCH model needing to be more precise in modeling.
To test whether there is an asymmetrical effect on the data,
the Correlation test is used with the correlation between the
standard squared residuals from ARIMA and the residuals
from the GARCH model, where if the correlation value is
not equal to zero, then it can be concluded that there is an
asymmetric effect on the data. In asymmetric testing, a cross-
correlation test is used, where the squared residuals of ARIMA
(1,1,1) are correlated with the residuals of GARCH (0,1).

Fig. 5: CCF Plot

From Figure 5 above, it is known that the squared ARIMA
(1,1,1) residual and GARCH (0,1) residual models contain
asymmetric effects, where the cross-correlation plot produces
cross-correlation results. Therefore, it is necessary to use
modified methods of GARCH, such as EGARCH and GJR-
GARCH, to create models for data experiencing asymmetric
effects.

F. EGARCH Model

The use of the EGARCH model is one method that can
model the asymmetric effects that occur in time series data,
so several possible EGARCH models can be used as follows:
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TABLE IV: EGARCH Model Selection

Model Parameter Estimation P-Value Description

EGARCH (1,1)

α0 -0,1229 0,000736 Significant
α1 -0,0514 0,000000 Significant
β1 0,9753 0,000000 Significant
γ1 -0,1836 0,000000 Significant

EGARCH (1,2)

α0 -0,209637 0,000000 Significant
α1 -0,50654 0,000000 Significant
β1 0,601031 0,000000 Significant
β2 0,356302 0,000000 Significant
γ1 -0,206116 0,000000 Significant

EGARCH (2,1)

α0 -0,223122 0,000000 Significant
α1 0,019252 0,000000 Significant
α2 -0,067247 0,000000 Significant
β1 0,955972 0,000000 Significant
γ1 0,073507 0,000000 Significant
γ2 -0,275930 0,000000 Significant

EGARCH (2,2)

α0 -0,5130599 0,110073 Not Significant
α1 0,049999 0,453136 Not Significant
α2 -0,152500 0,034917 Significant
β1 0,184208 0,000033 Significant
β2 0,712357 0,000000 Significant
γ1 0,200551 0,211283 Not Significant
γ2 -0,117625 0,190278 Not Significant

In Table 4, it can be seen that EGARCH (1,1), EGARCH
(1,2), and EGARCH (2,1) have significant estimation values.
Before concluding the best EGARCH model, observations on
the GJR-GARCH model were carried out.

G. GJR-GARCH Model

GJR-GARCH model is one of the same model as EGARCH
that is used for data that have asymmetric effect, but the GJR-
GARCH method must qualified to be stationary in the process,
which is different from EGARCH. For this data case, GJR-
GARCH can use the:

TABLE V: GJR-GARCH Model

Model Parameter Estimation P-Value Description

GJR-EGARCH (1,1)

α0 0,000385 0,009239 Significant
α1 0,000000 1,0000 Not Significant
β1 0,925486 0,000000 Significant
γ1 0,036367 0,273499 Not Significant

GJR-EGARCH (1,2)

α0 0,000480 0,010653 Significant
α1 0,000000 1,0000 Not Significant
β1 0,590296 0,213128 Not Significant
β2 0,312080 0,5168199 Not Significant
γ1 0,053621 0,262351 Not Significant

GJR-EGARCH (2,1)

α0 0,0001399 0,080724 Not Significant
α1 0,000000 1,00000 Not Significant
α2 0,000000 1,00000 Not Significant
β1 0,964584 0,000000 Significant
γ1 0,213853 0,063915 Not Significant
γ2 -0,184678 0,107568 Not Significant

GJR-EGARCH (2,2)

α0 0,000139 0,092877 Not Significant
α1 0,00000 1,00000 Not Significant
α2 0,00000 1,00000 Not Significant
β1 0,964584 0,00000 Significant
β2 0,0000 0,999991 Not Significant
γ1 0,213853 0,064062 Not Significant
γ2 -0,184678 0,107676 Not Significant

In Table 5. for the estimation of the GJR-GARCH model it
can be seen that there is no significant model, so the model
that can be used to make predictions is the EGARCH model.
Next, using the Akaike Information Criteria (AIC), the AIC
results for EGARCH (1,1) are obtained as shown below:

TABLE VI: AIC Value of EGARCH

No. Model AIC

1 EGARCH(1,1) -0,07277
2 EGARCH(1,2) 1,28440
3 EGARCH(2,1) 1,27730

From Table 6, it can be seen that the EGARCH (1,1) model
has the smallest AIC value of -0.07277, which means that the
EGARCH (1,1) model indicates the appropriate model to be
used for making predictions.

H. EGARCH Prediction

The prediction results for the EGARCH (1,1) model, using
the t-value replaced with t in the following equation:

lnσ
2
t = −0,1229−0,0514

∣∣∣∣ εt−1

σt−1

∣∣∣∣−0,1836
εt−1

σt−1

+0,9753ln
(
σ

2
t−1

)
(1)

They have an impacted sign effect of -0,1836. A sign effect
means a negative impact on volatility, resulting in a decline of
0,1836. However, side effects are affected by utility impacts,
which means that volatility affects the t − 1. Therefore, the
prediction results are obtained for the EGARCH model for
the next 12 periods. Then, a hybrid process is performed to
achieve the optimal prediction results.

I. Hybrid ARIMA-EGARCH

After obtaining the prediction results using the ARIMA
method and the EGARCH method, the models are combined
as follows:

Ŷ hybrid
t = ln Yt−1 −0,294ln Yt−1 +0,294ln Yt−2

+ et +0,266et−1 −0,1229

−0,0514
∣∣∣∣ εt−1

σt−1
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−0,1836

εt−1

σt−1
+0,9753ln

(
σ

2
t−1

)
the forecast results for 12 periods from August 2021 to July

2022 are as follows:

TABLE VII: Hybrid ARIMA-EGARCH Prediction

Period Actual Data Prediction Residual

August 2021 20360,3 19175 1185,34
September 2021 19672,8 19544,7 128,12

October 2021 21004,4 19630,9 1373,53
November 2021 21512 19799,1 1712,94
December 2021 21266,1 19944,2 1321,89
January 2022 18272,5 20097,6 -1825,1
February 2022 9469,2 20249,9 -780,67
March 2022 25092,4 20403,7 4688,69
April 2022 25889 20558,7 5330,27
May 2022 20013,7 20714,6 -700,87
June 2022 24600,8 20871,6 3729,22
July 2022 24198,4 21029,8 3168,62

Table 7 above, obtained prediction results with the hybrid
ARIMA-EGARCH method for export grade data Indonesian
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oil and gas from August 2021 until July 2022. the predic-
tion result of the hybrid ARIMA-EGARCH method, we can
calculate of MAPE grade to know the accuracy grade of the
prediction result.

J. Hybrid ARIMA-EGARCH Forecasting Accuracy

Next, the forecasting accuracy calculation is performed
using the MAPE (Mean Absolute Percentage Error) as follows:

MAPE = 9,35158%

Because the forecasting accuracy obtained is very accurate,
being less than 10%, it shows that it can reduce the initial
ARIMA error, which was 13.20824%, so the model can be
used for predicting non-oil export values.

IV. CONCLUSION

Based on the results of research for data on the fluctuating
value of Indonesian non-oil and gas exports, a combined
Arima model was used. the use of a hybrid model can reduce
the errors that exist in the ARIMA model by considering
asymmetric effects to choose the best model that can be
combined with the ARIMA model. In this study, the best
model was obtained, Hybrid ARIMA-EGARCH with a MAPE
value of 9,35158% which shows that the prediction results
obtained are very accurate and can later be used to predict the
value of non-oil and gas exports in the future.
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