# Connectivity of The Triple Idempotent Graph of Ring $\mathbb{Z}_{n}$ 

Vika Yugi Kurniawan, Bayu Purboutomo, Sutrima, Nughthoh Arfawi Kurdhi


#### Abstract

Let $R$ be a commutative ring and $I(R)$ denotes a set of all idempotent elements of $R$. The triple idempotent graph of ring $R$, denoted by $T I(R)$, is the undirected simple graph with vertex-set in $R-\{0,1\}$. Two distinct vertices $u$ and $v$ in $T I\left(\mathbb{Z}_{n}\right)$ are adjacent if and only if there exists $w \in R-\{0,1\}$ where $w \neq u$ and $w \neq v$ such as $u v \notin I(R), u w \notin I(R), v w \notin I(R)$ and $u v w \in I(R)$. In this research, we study the connectivity of the triple idempotent graph of ring integer modulo $n$, denoted by $T I\left(\mathbb{Z}_{n}\right)$. The result is that the triple idempotent graph of ring $\mathbb{Z}_{n}$ is a connected graph if $n$ prime and $n \geq 7$.


Index Terms-the triple idempotent graph, ring of integers modulo $n$, connected graph

## I. Introduction

LET $R$ be a commutative ring with unit element $1 \neq 0$. In 1988, Beck [4] introduced the concept of a zero-divisor graph that connect between ring theory and graph theory. In [2], Anderson and Livingston modified zero-divisor graph, denotes by $\Gamma(R)$, with vertices $Z(R)^{*}=Z(R)-\{0\}$ and two distinct vertices $x, y \in Z(R)^{*}$ adjacent if and only if $x y=0$. There was shown that $\Gamma(R)$ is a connected graph with $\operatorname{gr}(\Gamma(R)) \in\{3,4, \infty\}$. In other paper, Akhtar and Lee [3], studied the connectivity of the zero divisor graph $\Gamma(R)$ associated to a finite commutative ring $R$. They investigated the conditions of ring $R$ such that graph $\Gamma(R)$ is a connected graph. Later, many papers that investigated various kind of graphs associated with the ring, see [1], [10], [8], and [11].

Recently in [9], Mohammad and Shuker introduced graph that is called idempotent divisor graph, denoted by $\mathrm{J} I(R)$, with the set of vertices $R^{*}=R-\{0\}$ and two distinct vertices $v_{1}$ and $v_{2}$ adjacent if and only if $v_{1} \cdot v_{2}=e$, for some non-unit idempotent element $e \in R\left(i . e e^{2}=e \neq 1\right)$. Let $I(R)$ be a set of idempotent elements of ring $R$. In this paper, the definition of the triple idempotent graph of a commutative ring R , denoted by $T I(R)$, is the undirected simple graph with vertex-set $R-\{0,1\}$. Two distinct vertices $u$ and $v$ are in $T I(R)$ adjacent if and only if there exist $w \in R-\{0,1\}$ where $w \neq u$ and $w \neq v$ such as $u v \notin I(R), u w \notin I(R), v w \notin I(R)$ and $u v w \in I(R)$. We will investigate the properties that related to connectivity of the triple idempotent graph of ring integer modulo $n$, denoted by $T I\left(\mathbb{Z}_{n}\right)$.

[^0]
## II. Preliminaries

According to Chartrand and Zhang [7], a graph $G$ is a finite nonempty set $V$ of objects is called vertices together with a possibly empty set $E$ of 2-element subsets of $V$ is called edges. The number of vertices in a graph $G$ is the order of $G$ and the number of edges is the size of $G$. A graph of size 0 is called an empty graph. Two distinct vertices $u$ and $v$ said to be adjacent if there is an edge between $u$ and $v$. The degree of a vertex $u$ in a graph $G$ is the number of vertices in $G$ that are adjacent to $u$. If a path between two vertices of graph $G$ can be found, then the graph $G$ is connected.

If $R$ is a ring, $Z(R)$ denotes the set of zero-divisors of $R$ and $I(R)$ denotes the set of idempotent elements of $R$.

Definition 1. Graph triple idempotent of commutative ring $R$, denoted by $T I(R)$, is the undirected simple graph with vertexset $R-\{0,1\}$, and two different vertices $u$ and $v$ are in $\operatorname{TI}(R)$ adjacent if and only if there exists $w \in R-\{0,1\}$ where $w \neq u$ and $w \neq v$ such that u.v $\notin I(R)$, u.w $\notin I(R)$, v.w $\notin I(R)$ and u.v.w $\in I(R)$, where $I(R)$ is a set of all idempotent elements of $R$.

In the following, given an example of $\operatorname{TI}\left(\mathbb{Z}_{9}\right)$.
Example 2. Let $\mathbb{Z}_{9}$, with $\mathbb{Z}_{9}=\{\overline{0}, \overline{1}, \overline{2}, \overline{3}, \overline{4}, \overline{5}, \overline{6}, \overline{7}, \overline{8}\}$ and $I\left(\mathbb{Z}_{9}\right)=\{\overline{0}, \overline{1}\}$. By the Definition 1 , the set of vertex $V\left(T I\left(\mathbb{Z}_{9}\right)\right)=\{\overline{2}, \overline{3}, \overline{4}, \overline{5}, \overline{6}, \overline{7}, \overline{8}\}$ and the set of edge $E\left(T I\left(\mathbb{Z}_{9}\right)\right)=\left\{e_{\overline{2}, \overline{4}}, e_{\overline{\overline{2}}, \overline{8}}, e_{\overline{4}, \overline{8}}, e_{\overline{5}, \overline{7}}, e_{\overline{5}, \overline{8}}, e_{\overline{7}, \overline{8}}\right\}$. Graph $T I\left(\mathbb{Z}_{9}\right)$ illustrated in the Figure 1.


Fig. 1: Graph $T I\left(\mathbb{Z}_{9}\right)$

## III. Result

In this section, the results of investigations regarding the conditions for connectivity of $\operatorname{TI}\left(\mathbb{Z}_{n}\right)$ are given. The following is a theorem regarding the condition for the $\operatorname{TI}\left(\mathbb{Z}_{n}\right)$ to be an empty graph.

Theorem 3. Let $\mathbb{Z}_{n}$. If $n \leq 6$, then $T I\left(\mathbb{Z}_{n}\right)$ is an empty graph.

## Proof. The proof given by 3 cases below.

1) For $n=3,4$.

Since $\left|V\left(T I\left(\mathbb{Z}_{n}\right)\right)\right|<3$, then there are not found any adjacency such that for $T I\left(\mathbb{Z}_{n}\right)$ has no edge or $\operatorname{TI}\left(\mathbb{Z}_{n}\right)$ is an empty graph.
2) For $n=5$.

There are found $V\left(T I\left(\mathbb{Z}_{5}\right)\right)=\{\overline{2}, \overline{3}, \overline{4}\}$ and $I\left(\mathbb{Z}_{5}\right)=$ $\{\overline{0}, \overline{1}\}$. Since $\left|V\left(T I\left(\mathbb{Z}_{5}\right)\right)\right|=3$ and $\mathbb{Z}_{5}$ is a commutative ring such that there is only one possible combination of vertices $u, v, w$ i.e. $u=\overline{2}, v=\overline{3}, w=\overline{4}$. As a result of $u v=\overline{1}, \overline{1} \in I\left(\mathbb{Z}_{5}\right)$, then $u, v, w$ are not adjacent. Therefore $T I\left(\mathbb{Z}_{5}\right)$ has no edge or $T I\left(\mathbb{Z}_{5}\right)$ is an empty graph.
3) For $n=6$.

There are found $V\left(\operatorname{TI}\left(\mathbb{Z}_{6}\right)\right)=\{\overline{2}, \overline{3}, \overline{4}, \overline{5}\}$ and $I\left(\mathbb{Z}_{6}\right)=$ $\{\overline{0}, \overline{1}, \overline{3}, \overline{4}\}$. Since $\left|V\left(T I\left(\mathbb{Z}_{6}\right)\right)\right|=4$, same as before, then there are four possible combinations of vertices $u, v, w$. First, for vertex $u=\overline{2}, v=\overline{3}, w=\overline{4}$. As result of $u v=\overline{0}$ $\overline{0} \in I\left(\mathbb{Z}_{6}\right)$, then $u, v, w$ are not adjacent. In the same way, for the others combination as well. Therefore, $\operatorname{TI}\left(\mathbb{Z}_{6}\right)$ has no edge or $T I\left(\mathbb{Z}_{6}\right)$ is an empty graph.
So, it is proven that for $\mathbb{Z}_{n}$ where $n \leq 6$, the $\operatorname{TI}\left(\mathbb{Z}_{n}\right)$ is an empty graph.

The illustrations of graph $T I\left(\mathbb{Z}_{n}\right)$ where $n \leq 6$ are shown in Figure 2.


Fig. 2: Graph $T I\left(\mathbb{Z}_{n}\right)$ where $n \leq 6$

There is a lemma that related to divisibility properties for any non-zero element in a field $F$.

Lemma 4. Let $F$ be a field. For every $a, b \in F$ where $a \neq 0$ and $b \neq 0$ then $a \mid b$ and $b \mid a$.

Proof. Let non zero element $a, b \in F$. We will show that $a \mid b$ and $b \mid a$. Because of F is a field, clearly there exist $b^{-1}$ such that $a=a . e=a . b \cdot b^{-1}$. Using commutative and closed properties, then $a . b . b^{-1}=a . b^{-1} . b=c . b$ with $c=a . b^{-1}, c \in F$. Therefore, surely $b \mid a$. As the same way, for $a \mid b$. So, for every non zero element $a, b \in F$ then $a \mid b$ and $b \mid a$.

In the following, a lemma is given regarding cases of vertices that are not adjacent to each other in $\operatorname{TI}\left(\mathbb{Z}_{n}\right)$.

Lemma 5. Let $\mathbb{Z}_{n}$ where $n$ is prime and $n \geq 7$. For every $u, v \in V\left(T I\left(\mathbb{Z}_{n}\right)\right), u$ not adjacent to $v$ if $u v=1$ or $u v=x \neq 1$ where $x=u^{-1}$ or $x=v^{-1}$.

Proof. Let $u, v \in V\left(T I\left(\mathbb{Z}_{n}\right)\right)$ be distinct and arbitrary vertices. Then, clearly that $\mathbb{Z}_{n}$ where $n$ prime are field, such that $I\left(\mathbb{Z}_{n}\right)=$ $\{0,1\}$ where element 0 and 1 in $\mathbb{Z}_{n}$ are related to $\overline{0}$ and $\overline{1}$. Since, the field has no zero divisor element, then adjacency condition can be reduced to $u v \neq 1, v w \neq 1, u w \neq 1$ and $u v w=$ 1. There will be showed 2 cases where $u$ is not adjacent to $v$.

1) Case $1 u v=1$.

By Definition 1 , if $u v=1,1 \in I\left(\mathbb{Z}_{n}\right)$, then it will be contradiction with one of adjacency conditions of $\operatorname{TI}\left(\mathbb{Z}_{n}\right)$. Therefore, $u$ is not adjacent to $v$.
2) Case $2 u v=x \neq 1$, where $x=u^{-1}$ or $x=v^{-1}$.

For $u v=u^{-1}$, if both side multiply with $u$, then $u \cdot v \cdot u=1$. Seen that needed two elements of $u$ in the left side so that triple vertices multiplication that involved $u$ and $v$ is equal to 1 . By Definition 1, it will be contradiction with one of adjacency conditions where $u \neq v \neq w$ respectively. Therefore, $u$ is not adjacent to $v$. In the same ways for $u v=v^{-1}$.

As an illustration of the lemma 5, the following is an example of an explanation of the cases that two vertices is not adjacent to each other in $\mathbb{Z}_{11}$.

Example 6. Let $\mathbb{Z}_{11}$. The set of vertex element and the set of idempotent element, $V\left(\operatorname{TI}\left(\mathbb{Z}_{11}\right)\right)=\{\overline{2}, \overline{3}, \overline{4}, \overline{5}, \overline{6}, \overline{7}, \overline{8}, \overline{9}, \overline{1} 0\}$ and $I\left(T I\left(\mathbb{Z}_{11}\right)\right)=\{\overline{0}, \overline{1}\}$. We provide an example explanation by showing that any two vertices that are not adjacent in $\mathbb{Z}_{11}$, can be included in one of the two cases in the Lemma 5 above. Given below adjacency matrix of $\mathbb{Z}_{11}$ in the Table $I$.

TABLE I: Adjacency Matrix of $\operatorname{TI}\left(\mathbb{Z}_{11}\right)$

|  | $\overline{2}$ | $\overline{3}$ | $\overline{4}$ | $\overline{5}$ | $\overline{6}$ | $\overline{\overline{7}}$ | $\overline{8}$ | $\overline{9}$ | $\overline{1} \overline{0}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\overline{2}$ | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 1 |
| $\overline{3}$ | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 1 |
| $\overline{4}$ | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 1 |
| $\overline{5}$ | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 1 |
| $\overline{6}$ | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 |
| $\overline{7}$ | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 |
| $\overline{8}$ | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 1 |
| $\overline{9}$ | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 |
| $\overline{10}$ | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 |

Seen that $\overline{2}$ is not adjacent to $\overline{3}$. This is because $\overline{2} \cdot \overline{3}=\overline{6}=\overline{2}^{-1}$ such that include in case 2. Then, vertex $\overline{2}$ is also not adjacent to $\overline{6}$ because $\overline{2} . \overline{6}=\overline{1}$ such that include in case 1 . Now, vertex $\overline{3}$ is not adjacent to $\overline{4}$ because $\overline{3} \cdot \overline{4}=\overline{1}$ such that include in case 1. Also, vertex $\overline{3}$ is not adjacent to $\overline{5}$ because $\overline{3} . \overline{5}=\overline{4}=\overline{3}^{-1}$ such that include in case 2. In the same ways, for the others vertices that not adjacent each other in $\operatorname{TI}\left(\mathbb{Z}_{11}\right)$ and always can be included to one of the two cases in Lemma 5. The $\operatorname{TI}\left(\mathbb{Z}_{11}\right)$ is showed in Figure 3.

The following result show that for $\mathbb{Z}_{n}$ where $n$ prime and $n \geq 7, \operatorname{TI}\left(\mathbb{Z}_{n}\right)$ is a connected graph.


Fig. 3: Graph $T I\left(\mathbb{Z}_{11}\right)$

Theorem 7. Let $\mathbb{Z}_{n}$. If $n$ prime and $n \geq 7$, then $\operatorname{TI}\left(\mathbb{Z}_{n}\right)$ is a connected graph.

Proof. Let $u, v \in V\left(T I\left(\mathbb{Z}_{n}\right)\right)$ be arbitrary. Then, by Lemma 5 adjacency condition can be reduced to $u v \neq 1, v w \neq 1, u w \neq 1$ and $u v w=1$. If $u$ and $v$ are adjacent, then there is a direct path $u-v$. If $u$ and $v$ are not adjacent, then by Lemma 5 there are divided to 2 cases.

1) Case 1. If $u v=1$. Let $w \in V\left(T I\left(\mathbb{Z}_{n}\right)\right)$. There exist $w^{-1} \in$ $V\left(T I\left(\mathbb{Z}_{n}\right)\right)$ where $w \cdot w^{-1}=1$. Since $u \in V\left(T I\left(\mathbb{Z}_{n}\right)\right)$, then by Lemma $4, w^{-1}=u \cdot x$ such that $w \cdot u \cdot x=w \cdot w^{-1}=1$. Therefore, $u$ adjacent to $w$. In the same way for $v$, such that $v$ adjacent to $w$. Since $u$ and $v$ are adjacent to $w$, then there is a path $u-w-v$.
2) Case 2. If $u v=x \neq 1$, where $x=u^{-1}$ or $x=v^{-1}$. Let $u v=$ $u^{-1}$. Since $u^{-1} \in V\left(T I\left(\mathbb{Z}_{n}\right)\right)$, then by Lemma 4 there exist $w \in V\left(T I\left(\mathbb{Z}_{n}\right)\right)$ such that $u^{-1}=w . y$. So, $u \cdot w \cdot y=u \cdot u^{-1}=1$ such that $u$ adjacent to $w$. Then, also for $v^{-1} \in V\left(T I\left(\mathbb{Z}_{n}\right)\right)$ by Lemma $4, v^{-1}$ can be divided by $w$ such that $v^{-1}=w . z$. Therefore, $v \cdot w \cdot z=v \cdot v^{-1}=1$, then $v$ adjacent to $w$. Since $u$ adjacent to $w$ and $v$ adjacent to $w$ then there is a path $u-w-v$. With same ways, can be proved for $u v=v^{-1}$.
Since there is always can be found a path between $u$ and $v$, then $T I\left(\mathbb{Z}_{n}\right)$ where $n$ prime and $n \geq 7$ is a connected graph.

Given example that related to a connected graph of $\operatorname{TI}\left(\mathbb{Z}_{7}\right)$ as an illustration of Theorem 7.

Example 8. Let $\mathbb{Z}_{7}$. There is obtained vertex set $V\left(\operatorname{TI}\left(\mathbb{Z}_{7}\right)\right)=$ $\{2,3,4,5,6\}$ and idempotent set $I\left(\mathbb{Z}_{7}\right)=\{0,1\}$. Now, let $u, v \in$ $V\left(T I\left(\mathbb{Z}_{7}\right)\right)$ be distinct vertices, will be shown there always exist path between $u$ and $v$. For $u=2$ and $v=3$, there exist $w=6$ such that u.v.w $=\overline{1} \in I\left(\mathbb{Z}_{7}\right)$. Therefore, there is a direct path between $2-3,2-6$ and 3-6.

For $u=\overline{2}$ and $v=\overline{4}$, as result of $\overline{2} \cdot \overline{4}=\overline{1}, \overline{1} \in I\left(\mathbb{Z}_{7}\right)$ then vertex $\overline{2}$ and $\overline{4}$ are not adjacent. So, there exist $w=\overline{6}$ such that $w^{-1}=\overline{6}=\overline{2} . \overline{3}=\overline{4} . \overline{5}$. Therefore, $\overline{2}$ and $\overline{4}$ adjacent to $\overline{6}$. Can be found a path $\overline{2}-\overline{6}-\overline{4}$, as the same ways for $u=\overline{3}$ and $v=\overline{5}$. For vertex $u=\overline{2}$ and $v=\overline{5}$, u.v $=\overline{3}$ where $\overline{3}$ is the inverse of vertex $\overline{5}$. There exist $w=\overline{6}$ such that $v^{-1}=\overline{3}=\overline{6} . \overline{4}$ and $u^{-1}=\overline{4}=\overline{3} . \overline{6}$. Then, clearly $\overline{2}$ and $\overline{5}$ adjacent to $\overline{6}$ such that there is a path $\overline{2}-\overline{6}-\overline{5}$ as the same ways for $u=\overline{3}$ and $v=\overline{4}$.

Since there is always found a path between every two distinct vertices, then $\operatorname{TI}\left(\mathbb{Z}_{7}\right)$ is a connected graph. Figure 4 shows graph $\operatorname{TI}\left(\mathbb{Z}_{7}\right)$.


Fig. 4: $\operatorname{TI}\left(\mathbb{Z}_{7}\right)$

As shown in Figure 3, $\operatorname{TI}\left(\mathbb{Z}_{11}\right)$ is a connected graph because it also satisfies Theorem 1. In addition, we also give several other graphs $T I\left(\mathbb{Z}_{n}\right)$ where $n$ is prime and $n \geq 7$ in Figure 5 .

(a) $T I\left(\mathbb{Z}_{13}\right)$

(b) $T I\left(\mathbb{Z}_{17}\right)$

(c) $\operatorname{TI}\left(\mathbb{Z}_{19}\right)$

(d) $T I\left(\mathbb{Z}_{23}\right)$

Fig. 5: Graph $T I\left(\mathbb{Z}_{n}\right)$ where $n=\{13,17,19,23\}$.

## Acknowledgment

The authors would like to thank the Institute for Research and Community Services of Universitas Sebelas Maret for funding this research in the academic year of 2023.

## REFERENCES

[1] Akbari, S., Kiani, D., Mohammadi, F. and Moradi, S.: The total graph and regular graph of a commutative ring. Journal of pure and applied algebra, 213(12), pp.2224-2228 (2019).
[2] Anderson, D. F., Livingston, P.S.:The Zero-Divisor Graph of a Commutative Ring. J. Algebra, 217,pp: 434-447 (1999).
[3] Akhtar, R. and Lee, L.: Connectivity of the zero-divisor graph for finite rings. Involve, a Journal of Mathematics, 9(3), pp.415-422 (2016).
[4] Beck, I.: Coloring of Commutative Ring. J. Algebra, Vol. 116, No. 1, pp: 208-226 (1988).
[5] Çelikel, E.C.: Triple Zero Graph of Commutative Ring. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, Vol. 70 (2), pp: 653-663 (2021).
[6] Chartrand, G.: Introductory Graphs Theory. Dover Publicaion. Inc, New York (1997).
[7] Chartrand, G., Lesniak L. and Zhang, P.: Graphs \& Digraphs. Discrete Applied Mathematics. Dover Publicaion. Inc, New York (2012).
[8] Mariiaa, H., Kurniawan, V.Y. and Sutrima. : Zero annihilator graph of semiring of matrices over Boolean semiring. AIP Conference Proceedings. Vol. 2326. No. 1 (2021).
[9] Mohammad, H.Q. dan Shuker, N.H. : The Idempotent Divisor Graph of Commutative Ring. Iraqi Journal, Vol. 63, No. 2, pp: 645-651 (2022)
[10] Osba, E.A., Al-Addasi, S. and Jaradeh, N.A.: Zero divisor graph for the ring of Gaussian integers modulo n. Communications in Algebra, 36(10), pp.3865-3877 (2008).
[11] Rahmawati, A., Kurniawan, V.Y. and Wibowo, S.: The diameter of annihilator ideal graph of $\mathbb{Z}_{n}$. AIP Conference Proceedings. Vol. 2326. No. 1, pp. 020020 (2021).


[^0]:    V. Y. Kurniawan, B. Purboutomo, Sutrima, and N. A. Kurdhi are with the Universitas Sebelas Maret, Surakarta, 57126 Indonesia e-mail: vikayugi@staff.uns.ac.id

    Manuscript received October 30, 2023; accepted January 30, 2024.

