Connectivity of The Triple Idempotent Graph of Ring \mathbb{Z}_n

Vika Yugi Kurniawan, Bayu Purboutomo, Sutrima, Nughthoh Arfawi Kurdhi

Abstract—Let R be a commutative ring and I(R) denotes a set of all idempotent elements of R. The triple idempotent graph of ring \mathbf{R} , denoted by TI(R), is the undirected simple graph with vertex-set in $R - \{0, 1\}$. Two distinct vertices u and v in $TI(\mathbb{Z}_n)$ are adjacent if and only if there exists $w \in R - \{0, 1\}$ where $w \neq u$ and $w \neq v$ such as $uv \notin I(R)$, $uw \notin I(R)$, $vw \notin I(R)$ and $uvw \in I(R)$. In this research, we study the connectivity of the triple idempotent graph of ring integer modulo n, denoted by $TI(\mathbb{Z}_n)$. The result is that the triple idempotent graph of ring \mathbb{Z}_n is a connected graph if n prime and $n \geq 7$.

Index Terms—the triple idempotent graph, ring of integers modulo n, connected graph

I. INTRODUCTION

ET *R* be a commutative ring with unit element $1 \neq 0$. In 1988, Beck [4] introduced the concept of a zero-divisor graph that connect between ring theory and graph theory. In [2], Anderson and Livingston modified zero-divisor graph, denotes by $\Gamma(R)$, with vertices $Z(R)^* = Z(R) - \{0\}$ and two distinct vertices $x, y \in Z(R)^*$ adjacent if and only if xy = 0. There was shown that $\Gamma(R)$ is a connected graph with $gr(\Gamma(R)) \in \{3,4,\infty\}$. In other paper, Akhtar and Lee [3], studied the connectivity of the zero divisor graph $\Gamma(R)$ associated to a finite commutative ring *R*. They investigated the conditions of ring *R* such that graph $\Gamma(R)$ is a connected graph. Later, many papers that investigated various kind of graphs associated with the ring, see [1], [10], [8], and [11].

Recently in [9], Mohammad and Shuker introduced graph that is called idempotent divisor graph, denoted by JI(R), with the set of vertices $R^* = R - \{0\}$ and two distinct vertices v_1 and v_2 adjacent if and only if $v_1.v_2 = e$, for some non-unit idempotent element $e \in R(i.e \ e^2 = e \neq 1)$. Let I(R) be a set of idempotent elements of ring R. In this paper, the definition of the triple idempotent graph of a commutative ring R, denoted by TI(R), is the undirected simple graph with vertex-set $R - \{0, 1\}$. Two distinct vertices u and v are in TI(R) adjacent if and only if there exist $w \in R - \{0, 1\}$ where $w \neq u$ and $w \neq v$ such as $uv \notin I(R)$, $uw \notin I(R)$, $vw \notin I(R)$ and $uvw \in I(R)$. We will investigate the properties that related to connectivity of the triple idempotent graph of ring integer modulo n, denoted by $TI(\mathbb{Z}_n)$.

II. PRELIMINARIES

According to Chartrand and Zhang [7], a graph G is a finite nonempty set V of objects is called vertices together with a possibly empty set E of 2-element subsets of V is called edges. The number of vertices in a graph G is the order of G and the number of edges is the size of G. A graph of size 0 is called an empty graph. Two distinct vertices u and v said to be adjacent if there is an edge between u and v. The degree of a vertex u in a graph G is the number of vertices in G that are adjacent to u. If a path between two vertices of graph Gcan be found, then the graph G is connected.

If R is a ring, Z(R) denotes the set of zero-divisors of R and I(R) denotes the set of idempotent elements of R.

Definition 1. Graph triple idempotent of commutative ring R, denoted by TI(R), is the undirected simple graph with vertexset $R - \{0, 1\}$, and two different vertices u and v are in TI(R) adjacent if and only if there exists $w \in R - \{0, 1\}$ where $w \neq u$ and $w \neq v$ such that $u.v \notin I(R)$, $u.w \notin I(R)$, $v.w \notin I(R)$ and $u.v.w \in I(R)$, where I(R) is a set of all idempotent elements of R.

In the following, given an example of $TI(\mathbb{Z}_9)$.

Example 2. Let \mathbb{Z}_9 , with $\mathbb{Z}_9 = \{\bar{0}, \bar{1}, \bar{2}, \bar{3}, \bar{4}, \bar{5}, \bar{6}, \bar{7}, \bar{8}\}$ and $I(\mathbb{Z}_9) = \{\bar{0}, \bar{1}\}$. By the Definition 1, the set of vertex $V(TI(\mathbb{Z}_9)) = \{\bar{2}, \bar{3}, \bar{4}, \bar{5}, \bar{6}, \bar{7}, \bar{8}\}$ and the set of edge $E(TI(\mathbb{Z}_9)) = \{e_{\bar{2}, \bar{4}}, e_{\bar{2}, \bar{8}}, e_{\bar{4}, \bar{8}}, e_{\bar{5}, \bar{7}}, e_{\bar{5}, \bar{8}}, e_{\bar{7}, \bar{8}}\}$. Graph $TI(\mathbb{Z}_9)$ illustrated in the Figure 1.

Fig. 1: Graph $TI(\mathbb{Z}_9)$

III. RESULT

In this section, the results of investigations regarding the conditions for connectivity of $TI(\mathbb{Z}_n)$ are given. The following is a theorem regarding the condition for the $TI(\mathbb{Z}_n)$ to be an empty graph.

Theorem 3. Let \mathbb{Z}_n . If $n \leq 6$, then $TI(\mathbb{Z}_n)$ is an empty graph.

V. Y. Kurniawan, B. Purboutomo, Sutrima, and N. A. Kurdhi are with the Universitas Sebelas Maret, Surakarta, 57126 Indonesia e-mail: vikayugi@staff.uns.ac.id

Manuscript received October 30, 2023; accepted January 30, 2024.

Proof. The proof given by 3 cases below.

- 1) For n = 3, 4. Since $|V(TI(\mathbb{Z}_n))| < 3$, then there are not found any adjacency such that for $TI(\mathbb{Z}_n)$ has no edge or $TI(\mathbb{Z}_n)$ is an empty graph.
- 2) For n = 5.

There are found $V(TI(\mathbb{Z}_5)) = \{\bar{2}, \bar{3}, \bar{4}\}$ and $I(\mathbb{Z}_5) = \{\bar{0}, \bar{1}\}$. Since $|V(TI(\mathbb{Z}_5))| = 3$ and \mathbb{Z}_5 is a commutative ring such that there is only one possible combination of vertices u, v, w i.e. $u = \bar{2}, v = \bar{3}, w = \bar{4}$. As a result of $uv = \bar{1}, \bar{1} \in I(\mathbb{Z}_5)$, then u, v, w are not adjacent. Therefore $TI(\mathbb{Z}_5)$ has no edge or $TI(\mathbb{Z}_5)$ is an empty graph.

3) For n = 6.

There are found $V(TI(\mathbb{Z}_6)) = \{\bar{2}, \bar{3}, \bar{4}, \bar{5}\}$ and $I(\mathbb{Z}_6) = \{\bar{0}, \bar{1}, \bar{3}, \bar{4}\}$. Since $|V(TI(\mathbb{Z}_6))| = 4$, same as before, then there are four possible combinations of vertices u, v, w. First, for vertex $u = \bar{2}, v = \bar{3}, w = \bar{4}$. As result of $uv = \bar{0}$ $\bar{0} \in I(\mathbb{Z}_6)$, then u, v, w are not adjacent. In the same way, for the others combination as well. Therefore, $TI(\mathbb{Z}_6)$ has no edge or $TI(\mathbb{Z}_6)$ is an empty graph.

So, it is proven that for \mathbb{Z}_n where $n \leq 6$, the $TI(\mathbb{Z}_n)$ is an empty graph.

The illustrations of graph $TI(\mathbb{Z}_n)$ where $n \leq 6$ are shown in Figure 2.

There is a lemma that related to divisibility properties for any non-zero element in a field F.

Lemma 4. Let F be a field. For every $a, b \in F$ where $a \neq 0$ and $b \neq 0$ then a|b and b|a.

Proof. Let non zero element $a, b \in F$. We will show that a|b and b|a. Because of F is a field, clearly there exist b^{-1} such that $a = a.e = a.b.b^{-1}$. Using commutative and closed properties, then $a.b.b^{-1} = a.b^{-1}.b = c.b$ with $c = a.b^{-1}, c \in F$. Therefore, surely b|a. As the same way, for a|b. So, for every non zero element $a, b \in F$ then a|b and b|a.

In the following, a lemma is given regarding cases of vertices that are not adjacent to each other in $TI(\mathbb{Z}_n)$.

Lemma 5. Let \mathbb{Z}_n where *n* is prime and $n \ge 7$. For every $u, v \in V(TI(\mathbb{Z}_n))$, *u* not adjacent to *v* if uv = 1 or $uv = x \ne 1$ where $x = u^{-1}$ or $x = v^{-1}$.

Proof. Let $u, v \in V(TI(\mathbb{Z}_n))$ be distinct and arbitrary vertices. Then, clearly that \mathbb{Z}_n where *n* prime are field, such that $I(\mathbb{Z}_n) = \{0,1\}$ where element 0 and 1 in \mathbb{Z}_n are related to $\overline{0}$ and $\overline{1}$. Since, the field has no zero divisor element, then adjacency condition can be reduced to $uv \neq 1, vw \neq 1, uw \neq 1$ and uvw = 1. There will be showed 2 cases where *u* is not adjacent to *v*.

1) Case 1 uv = 1.

By Definition 1, if uv = 1, $1 \in I(\mathbb{Z}_n)$, then it will be contradiction with one of adjacency conditions of $TI(\mathbb{Z}_n)$. Therefore, u is not adjacent to v.

- 2) Case 2 $uv = x \neq 1$, where $x = u^{-1}$ or $x = v^{-1}$.
- For $uv = u^{-1}$, if both side multiply with u, then u.v.u = 1. Seen that needed two elements of u in the left side so that triple vertices multiplication that involved u and v is equal to 1. By Definition 1, it will be contradiction with one of adjacency conditions where $u \neq v \neq w$ respectively. Therefore, u is not adjacent to v. In the same ways for $uv = v^{-1}$.

As an illustration of the lemma 5, the following is an example of an explanation of the cases that two vertices is not adjacent to each other in \mathbb{Z}_{11} .

Example 6. Let \mathbb{Z}_{11} . The set of vertex element and the set of idempotent element, $V(TI(\mathbb{Z}_{11})) = \{\bar{2}, \bar{3}, \bar{4}, \bar{5}, \bar{6}, \bar{7}, \bar{8}, \bar{9}, \bar{1}0\}$ and $I(TI(\mathbb{Z}_{11})) = \{\bar{0}, \bar{1}\}$. We provide an example explanation by showing that any two vertices that are not adjacent in \mathbb{Z}_{11} , can be included in one of the two cases in the Lemma 5 above. Given below adjacency matrix of \mathbb{Z}_{11} in the Table I.

TABLE I: Adjacency Matrix of $TI(\mathbb{Z}_{11})$

	2	3	4	5	6	7	8	9	10
2	0	0	1	1	0	1	1	1	1
3	0	0	0	0	1	1	1	0	1
4	1	0	0	0	0	1	1	0	1
5	1	0	0	0	1	1	0	0	1
ē	0	1	0	1	0	1	1	1	1
7	1	1	1	1	1	0	0	0	1
8	1	1	1	0	1	0	0	1	1
9	1	0	0	0	1	0	1	0	1
10	1	1	1	1	1	1	1	1	0

Seen that $\overline{2}$ is not adjacent to $\overline{3}$. This is because $\overline{2}.\overline{3} = \overline{6} = \overline{2}^{-1}$ such that include in case 2. Then, vertex $\overline{2}$ is also not adjacent to $\overline{6}$ because $\overline{2}.\overline{6} = \overline{1}$ such that include in case 1. Now, vertex $\overline{3}$ is not adjacent to $\overline{4}$ because $\overline{3}.\overline{4} = \overline{1}$ such that include in case 1. Also, vertex $\overline{3}$ is not adjacent to $\overline{5}$ because $\overline{3}.\overline{5} = \overline{4} = \overline{3}^{-1}$ such that include in case 2. In the same ways, for the others vertices that not adjacent each other in $TI(\mathbb{Z}_{11})$ and always can be included to one of the two cases in Lemma 5. The $TI(\mathbb{Z}_{11})$ is showed in Figure 3.

The following result show that for \mathbb{Z}_n where *n* prime and $n \ge 7$, $TI(\mathbb{Z}_n)$ is a connected graph.

Fig. 3: Graph $TI(\mathbb{Z}_{11})$

Theorem 7. Let \mathbb{Z}_n . If *n* prime and $n \ge 7$, then $TI(\mathbb{Z}_n)$ is a connected graph.

Proof. Let $u, v \in V(TI(\mathbb{Z}_n))$ be arbitrary. Then, by Lemma 5 adjacency condition can be reduced to $uv \neq 1, vw \neq 1, uw \neq 1$ and uvw = 1. If u and v are adjacent, then there is a direct path u-v. If u and v are not adjacent, then by Lemma 5 there are divided to 2 cases.

- 1) Case 1. If uv = 1. Let $w \in V(TI(\mathbb{Z}_n))$. There exist $w^{-1} \in V(TI(\mathbb{Z}_n))$ where $w.w^{-1} = 1$. Since $u \in V(TI(\mathbb{Z}_n))$, then by Lemma 4, $w^{-1} = u.x$ such that $w.u.x = w.w^{-1} = 1$. Therefore, u adjacent to w. In the same way for v, such that v adjacent to w. Since u and v are adjacent to w, then there is a path u-w-v.
- 2) Case 2. If $uv = x \neq 1$, where $x = u^{-1}$ or $x = v^{-1}$. Let $uv = u^{-1}$. Since $u^{-1} \in V(TI(\mathbb{Z}_n))$, then by Lemma 4 there exist $w \in V(TI(\mathbb{Z}_n))$ such that $u^{-1} = w.y$. So, $u.w.y = u.u^{-1} = 1$ such that u adjacent to w. Then, also for $v^{-1} \in V(TI(\mathbb{Z}_n))$ by Lemma 4, v^{-1} can be divided by w such that $v^{-1} = w.z$. Therefore, $v.w.z = v.v^{-1} = 1$, then v adjacent to w. Since u adjacent to w and v adjacent to w then there is a path u-w-v. With same ways, can be proved for $uv = v^{-1}$.

Since there is always can be found a path between *u* and *v*, then $TI(\mathbb{Z}_n)$ where *n* prime and $n \ge 7$ is a connected graph.

Given example that related to a connected graph of $TI(\mathbb{Z}_7)$ as an illustration of Theorem 7.

Example 8. Let \mathbb{Z}_7 . There is obtained vertex set $V(TI(\mathbb{Z}_7)) = \{2,3,4,5,6\}$ and idempotent set $I(\mathbb{Z}_7) = \{0,1\}$. Now, let $u, v \in V(TI(\mathbb{Z}_7))$ be distinct vertices, will be shown there always exist path between u and v. For u = 2 and v = 3, there exist w = 6 such that $u.v.w = \overline{1} \in I(\mathbb{Z}_7)$. Therefore, there is a direct path between 2-3, 2-6 and 3-6.

For $u = \overline{2}$ and $v = \overline{4}$, as result of $\overline{2}.\overline{4} = \overline{1}, \overline{1} \in I(\mathbb{Z}_7)$ then vertex $\overline{2}$ and $\overline{4}$ are not adjacent. So, there exist $w = \overline{6}$ such that $w^{-1} = \overline{6} = \overline{2}.\overline{3} = \overline{4}.\overline{5}$. Therefore, $\overline{2}$ and $\overline{4}$ adjacent to $\overline{6}$. Can be found a path $\overline{2} - \overline{6} - \overline{4}$, as the same ways for $u = \overline{3}$ and $v = \overline{5}$. For vertex $u = \overline{2}$ and $v = \overline{5}$, $u.v = \overline{3}$ where $\overline{3}$ is the inverse of vertex $\overline{5}$. There exist $w = \overline{6}$ such that $v^{-1} = \overline{3} = \overline{6}.\overline{4}$ and $u^{-1} = \overline{4} = \overline{3}.\overline{6}$. Then, clearly $\overline{2}$ and $\overline{5}$ adjacent to $\overline{6}$ such that there is a path $\overline{2} - \overline{6} - \overline{5}$ as the same ways for $u = \overline{3}$ and $v = \overline{4}$.

Since there is always found a path between every two distinct vertices, then $TI(\mathbb{Z}_7)$ is a connected graph. Figure 4 shows graph $TI(\mathbb{Z}_7)$.

As shown in Figure 3, $TI(\mathbb{Z}_{11})$ is a connected graph because it also satisfies Theorem 1. In addition, we also give several other graphs $TI(\mathbb{Z}_n)$ where *n* is prime and $n \ge 7$ in Figure 5.

Fig. 5: Graph $TI(\mathbb{Z}_n)$ where $n = \{13, 17, 19, 23\}$.

ACKNOWLEDGMENT

The authors would like to thank the Institute for Research and Community Services of Universitas Sebelas Maret for funding this research in the academic year of 2023.

REFERENCES

- Akbari, S., Kiani, D., Mohammadi, F. and Moradi, S.: The total graph and regular graph of a commutative ring. Journal of pure and applied algebra, 213(12), pp.2224-2228 (2019).
- [2] Anderson, D. F., Livingston, P.S.:The Zero-Divisor Graph of a Commutative Ring. J. Algebra, 217,pp: 434-447 (1999).
- [3] Akhtar, R. and Lee, L.: Connectivity of the zero-divisor graph for finite rings. Involve, a Journal of Mathematics, 9(3), pp.415-422 (2016).
- [4] Beck, I.: Coloring of Commutative Ring. J. Algebra, Vol. 116, No. 1, pp: 208-226 (1988).
- [5] Çelikel, E.C.: Triple Zero Graph of Commutative Ring. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, Vol. 70 (2), pp: 653-663 (2021).
- [6] Chartrand, G.: Introductory Graphs Theory. Dover Publication. Inc, New York (1997).
- [7] Chartrand, G., Lesniak L. and Zhang, P.: Graphs & Digraphs. Discrete Applied Mathematics. Dover Publication. Inc, New York (2012).
- [8] Mariiaa, H., Kurniawan, V.Y. and Sutrima. : Zero annihilator graph of semiring of matrices over Boolean semiring. AIP Conference Proceedings. Vol. 2326. No. 1 (2021).
- [9] Mohammad, H.Q. dan Shuker, N.H.: The Idempotent Divisor Graph of Commutative Ring. Iraqi Journal, Vol. 63, No. 2, pp: 645-651 (2022).
- [10] Osba, E.A., Al-Addasi, S. and Jaradeh, N.A.: Zero divisor graph for the ring of Gaussian integers modulo n. Communications in Algebra, 36(10), pp.3865-3877 (2008).
- [11] Rahmawati, A., Kurniawan, V.Y. and Wibowo, S.: The diameter of annihilator ideal graph of \mathbb{Z}_n . AIP Conference Proceedings. Vol. 2326. No. 1, pp.020020 (2021).