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Modeling and Estimating GARCH-X and Realized
GARCH Using ARWM and GRG Methods*

Didit B. Nugroho1,2, Melina T. Wijaya3, and Hanna A. Parhusip1

Abstract—This study evaluates the fitting performance of
GARCH-X(1,1) and RealGARCH(1,1) models, which are ex-
tensions of GARCH(1,1) model by adding the Realized Kernel
measure as an exogenous component, on real data, namely the
Financial Times Stock Exchange 100 and Hang Seng stock indices
over the period from January 2000 to December 2017. The
models assume that the return error follows Normal and Student-
t distributions. The parameters of models are estimated by
using the Adaptive Random Walk Metropolis (ARWM) method
implemented in Matlab and the Generalized Reduced Gradient
(GRG) method. The comparison of estimation results shows that
the GRG method has a good ability to estimate the models
because it provides the estimation results that are close to the
results of the ARWM method in terms of relative error. On
the basis of Akaike Information Criterion, the RealGARCH
models perform better than the GARCH-X models, where the
RealGARCH model with Student-t distribution provides the best
fit.

Index Terms—Adaptive, GARCH-X, GRG, Realized GARCH,
Realized Kernel

I. INTRODUCTION

VOLATILITY has an important role in the strategic eco-
nomic decisions because it can be interpreted as the

standard deviation of changes in financial asset returns within
a given period of time [1]. When the volatility of financial
assets is higher, the risk is also higher. Financial assets include,
among others, exchange rates of currency, stock indeks, and
commodities.

The volatility of a time series data can be heteroscedastic,
which means that the volatility value varies over time. One
of the popular models that can be used to model the time-
varying volatility is Generalized Autoregressive Conditional
Heteroskedasticity (GARCH) model introduced in [2]. Con-
ventional GARCH-type models utilize daily returns (typically
squared values of market returns) to extract information about
the volatility at the daily level in asset market. Since the
squared returns are contamined by noise, see [3], the use of
high frequency data (per second, minute, hour and so on)
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providing intraday observations have become an increasingly
popular way to obtain less noisy volatility [4], known as
Realized Volatility (RV).

Study in [5] extended the GARCH model to the GARCH-
X by incorporating the RV data as an exogenous component
in the conditional volatility process. The model has been
empirically proven to have a significant advantage in fitting to
real data. The GARCH-X model is then extended in [4] to the
Realized GARCH (RealGARCH) by expressing the RV as a
stochastic equation depending on several unknown parameters.

Furthermore, previous empirical studies have shown that
time series financial return are not normally distributed but
have a heavy-tails characteristic. One of the proposed distribu-
tions that able to accommodate the heavy-tails characteristic
is Student-t distribution. Recently, this empirical study was
conducted in [6] in the context of non-linear GARCH-X
model, in [7] in the context of logarithmic RealGARCH (log-
RealGARCH) model, and in [8] in the context of GJR model.

In estimating the GARCH-type model, the MLE (Maximum
Likelihood Estimation) based method is commonly used.
In contrast to this, this study applies the Generalized Re-
duced Gradient (GRG) method with the reason to provide an
overview of the ease of estimation on the proposed models for
financial practitioners. As a reference for the estimation accu-
racy of the GRG method, the estimation result of the Adaptive
Random Walk Metropolis (ARWM) method is assumed as true
value. The ARWM method has been successfully employed in
[6], [7], [8] and they showed the efficiency of the method.

Motivated by the above studies, the first aim of this study
is to evaluate the accuracy of the GRG method in estimating
the GARCH-X and RealGARCH models by comparing their
estimation results to the results by the ARWM method. It
contributes to providing an explanation that it is possible to
estimate volatility models by using the GRG method and
illustrates its use through empirical data. The second aim
is to investigate the fitting performance of the GARCH-X
(1,1) and RealGARCH (1,1) models by assuming the return
error is Normally and Student-t distributed. This contributes
to the literature on the choice of appropriate models to capture
the characteristics of financial returns, especially in terms
of volatility and distribution. To the best of the authors’
knowledge, there is no literature on those works. The empirical
analysis is based on real data, namely the FTSE100 (Financial
Times Stock Exchange 100) and HSI (Hang Seng index) over
the daily period from January 2000 to December 2017.
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II. MODEL AND ESTIMATION METHOD

A. GARCH-X(1,1) and RealGARCH(1,1) Models

GARCH-X model was introduced in [5] by directly adding
realized measures to the conditional volatility equation of
the GARCH model as exogenous variable. The model has
been shown to improve the conventional GARCH model in
the measurement of volatility and the accuracy of the model
prediction. The GARCH-X(1,1) model typically takes the
following form:

Rt = εt , εt ∼ N(0,σ2
t ) (1)

σ
2
t = ω +αR2

t−1 +βσ
2
t−1 + γXt−1 (2)

where ω > 0, 0 ≤ α,β < 1, γ > 0 to ensure the positivity
of the conditional variance and 0 ≤ α + β < 1 to ensure
the stationarity of the conditional variance. Meanwhile, the
exogenous component Xt denotes the RV constructed from
high frequency intraday returns. In our empirical study we use
the Realized Kernel (RK) in [9] that is shown to be unbiased
and converges at a faster rate than other RV measures. The
GARCH-X(1,1) model has symmetrical volatility response
to return shocks, meaning that conditional volatility is not
determined by positivity or negativity unanticipated excess
return [10].

The GARCH-X model was then developed in [4] to the
RealGARCH model by expressing realized measure as an
equation relating the observed realized measure to the latent
volatility:

Rt = εt , εt ∼ N(0,σ2
t ) (3)

σ
2
t = ω +βσ

2
t−1 + γXt−1 (4)

Xt = ξ +ϕσ
2
t + τ(zt)+ut , ut ∼ N(0,s2

u). (5)

In this case, it should expect 0 < ϕ < 1. To guarantee the con-
ditional variance is finite and positive, the required conditions
are, [11]:

ω,β ,γ,ω,ϕ,s2
u > 0,ω + γξ > 0,0 < β + γϕ < 1. (6)

The model facilitates a leverage effect that is denoted by the
function τ(zt) = τ1zt + τ2(z2

t − 1), where zt =
Rt−1
σt−1

and τ1,
τ2 ∈ R. The function can generate volatility asymmetry in
response to return shocks, which is indicated by a negative
value of τ1. Negative asymmetry effects in volatility interprets
that volatility tends to be higher in response to ‘bad news’
(excess returns lower than expected) than to ‘good news’ and
to be lower in response to ‘good news’ (excess returns higher
than expected) than to ‘bad news’ [12].

B. Normal and Student-t Distributions

The Normal distribution, also called the Gauss distribution,
is the most common type of distribution used in various
statistical analyses. The curve of the Normal distribution is
a symmetrical bell that extends infinitely in both positive
and negative directions. However, not all symmetrical bell-
shaped distributions are normal, for example the Student-t
distribution. This distribution is bell-shaped symmetrical but
has a thicker tail (often called heavy/fat tails) than the Normal
distribution.

When the return error, εt , and the RV error, su, is standard
Normally distributed, the log-likelihood functions correspond-
ing to return and measure equations are:

L (Rt |ω,α,β ,γ) =−1
2

[
log

(
2πσ

2
t
)
+

R2
t

σ2
t

]
, (7)

L
(
Xt |ξ ,ϕ,τ1,τ2,s2

u
)
=−1

2
[
log

(
2πs2

u
)

+

(
Xt −ξ −ϕσ2

t − τ(zt)
)2

s2
u

]
, (8)

respectively. Meanwhile, when εt follows Student-t distri-
bution with degrees of freedom ν > 2 (which controls the
thickness of the distribution tail, the log-likelihood function
corresponding to return is as follows [13]:

L (Rt |ω,α,β ,γ,ν) = logΓ

(
ν +1

2

)
− logΓ

(
ν

2

)
− log

(
σ

2
t (ν −2)

)
− 1

2
(ν +1) log

(
1+

R2
t

σ2
t (ν −2)

)
. (9)

In particular, the log-likelihood function in the Real-
GARCH(1,1) model is the sum of the log-likelihood functions
of return and realized measure.

C. Estimation Methods

This study particularly chooses the GRG method as a
method to estimate the model parameters that maximize log-
likelihood. The GRG method is based on work published in
[14], [15]. The GRG method is a simple estimation method and
is often used to solve optimization problems with non-linear
objective and constraint functions. Three primary parameters
form the basis of this method: objective function, decision
variables, and constraints [16]. The non-linear problem of the
form given by constraints inequality is solved by the addition
of slack variables. It is essentially an expansion of the Simplex
approach, sometimes referred to as a linear programming
solver, which partitions the variables into the basic variables
and the non-basic variables [17].

The fundamental idea of the GRG method is to use con-
straint equations to express basic variables in the form of
non-basic variables. The objective function is then expressed in
terms of non-basic variables only. The GRG method solves the
original problem with a sequence of problems, each of which
uses a linear approximation of its constraints. In each iteration,
the linearization of the constraints is recalculated at the points
found from the previous iteration. Typically, although the con-
straints are only approximate, the sub-problems produce points
that are increasingly close to the optimal point. The nature
of linearization is that, at the optimal point, the linearized
problem has the same solution as the original problem.

In the GRG framework, initial values of the decision vari-
ables are considered as the initial solution and small changes
in the initial values are expected to improve the parameter
values and the objective function. When the problem is to
maximize the objective function, this function value will
gradually “increase” and when the problem is to minimize
the objective function, this function value will gradually “de-
crease”. Occasionally, when the objective function is changing
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very little between trial solutions or for other reasons, the
solver will quit before reaching a locally optimal solution.
When the message ”Solver found a solution” displays, it
indicates that no other set of choice variable values around
the current values produces a better value for the objective
function, indicating that the GRG method has discovered a
locally optimal solution.

Fig. 1. Flowchart of GRG optimization algorithm [14], [18].

A flow chart of the GRG algorithm is shown in Figure 1.
The following is a summary for each step [14], [19]:

1) Specification of Decision Variables: The algorithm
begins with an initial solution guess of the decision
variable values.

2) Calculation of the Reduced Gradient: The reduced
gradient of the objective function is calculated with
respect to the decision variables.

3) Check for Convergence: If the convergence criteria are
satisfied, stop. Otherwise go to step 4.

4) Compute the Search Direction: A search direction is
determined based on the reduced gradient, ensuring it
improves the objective function while remaining within
the feasible region defined by the constraints.

5) Step Size Determination: A line search is conducted to
find the optimal step size along the search direction that
optimizes the objective function.

6) Iteration: Steps 3–5 (2–5 if the reduced gradient is not
computed in the one dimensional search) are repeated
iteratively, with the algorithm updating the variable
values and refining the search direction in each iteration.

7) Termination: The algorithm stops when the objective
function or the variable values change by less than a
specified tolerance, or when a maximum number of
iterations is reached.

Studies in [20], [21] found that the GRG method is sensitive
to the initial value, meaning that the different initial values
for an unknown paramater may provide significantly different
estimation results or may not even be found. Therefore, they
suggested taking an initial value that is close to the expected
optimum value.

In order to evaluate the accuracy of estimation results
obtained by the GRG method. The ARWM method is used for
comparison since the method was empirically shown in [6],
[7], [22], to estimate GARCH(1,1)-type and logRealGARCH-
type models efficiently in term of autocorrelation. The method
is employed in the Markov Chain Monte Carlo (MCMC)
scheme and implemented in Matlab by making own code. In
contrast to the outcome of GRG method, some statistics such
standard deviation and confidence intervals for the unknown
parameters can be obtained by MCMC.

The steps of the ARWM method can be summarized as
follows. Let θ be some unknown parameter of interest. At the
i-th iteration, a proposal θ is generated by:

θ
(i) = θ

(i−1)+
√

∆(i)z(i), z(i) ∼ N(0,1), (10)

where ∆(i) is the step width. On the basis of the Bayesian ap-
proach, the posterior distribution of θ given data is calculated
as follows:

log p(θ |data) = L (data|θ)+ log p(θ), (11)

where p(θ) is the prior distribution for θ . The proposal θ (i)

is accepted if
p(θ (i)|data)

p(θ (i−1)|data)
> u, in which u ∼U(0,1).

After discarding the first N iteration, the remaining M
samples are then used to calculated some statistics. Following
the approach in [23], this study estimates the 95% Highest
Posterior Density (HPD) interval as follows:

1) Calculate Mcut = [0.05 × M] and Mspan = M − Mcut ,
where [x] represents the standard rounding function of
x.

2) Sort the estimated values from the smallest to the largest,
i.e.

{
θ j
}M

j=1, where θ1 ≤ θ2 ≤ . . .≤ θM .
3) Find the index j∗ so that θ j∗+Mspan − θ j∗ =

min
1≤ j≤Mcut

(
θ j+Mspan −θ j

)
.

4) Determine the 95% HPD interval:(
θ j∗ ,θ j∗+Mspan

)
. (12)

D. Evaluation of Model

In selecting the model that gives the best fit to real data,
this study uses the Akaike Information Criterion (AIC). This
method is used because the competing models do not need
to be nested, meaning that neither model can be obtained
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as an appropriate parametric restriction on the other model.
AIC’s simplicity in calculation and application—it just needs
the likelihood function and the model’s parameter number—is
one of its key benefits. AIC is independent of any external
information, including the sample size and error distribution,
which makes it most popular, flexible and reliable than other
criteria [24]. AIC has a statistical value as follows:

AIC = 2(k−L ), (13)

where k represents the number of parameters in the estimated
model and L represents the log-likelihood value of the model.
The criterion is that the model with the smallest AIC value
gives the best fit.

E. Steps Involved in Modeling
A flowchart of the GARCH-type methodology is shown in

Figure 2. The steps involved in actually modeling a GARCH-
type model are summarized as follows.

1) Data preparation
The preparation of the data is the initial step in GARCH
modeling. This means collecting the historical informa-
tion about the asset such as daily returns Rt , which are
the natural logarithm of percentage changes in the asset
value between two consecutive days, and daily Realized
Kernel (RK) in [9] as the exogenous variable Xt . If we
let Pt denote the value on day t and Pt–1 denote the value
on day t–1, then Rt can be expressed as

Rt = 100log
(

Pt

Pt−1

)
. (14)

To provide an empirical example, the observed data
are two major stock market indices: FTSE100 (UK)
and HSI (Hongkong) using a sample of daily returns
and RK from January 2000 to December 2017, which
are provided by the Oxford-Man Institute’s “realised
library”.

2) Model specification
This study uses GARCH-X and RealGARCH with order
(1,1), which has shown in [25], [26] in the GARCH(1,1)
context to produce a simple and relatively accurate result
for volatility estimate across a variety of fields. For
the return errors, the standard Normal and Student-t
distribution are introduced to capture various aspects of
the returns process.

3) Define the log-likelihood function
For the GARCH-X model, the total log-likelihood func-
tion can be written as the sum of the log-likelihood
function of the observed returns. For the RealGARCH
model, the total log-likelihood function can be written as
the sum of the log-likelihood functions of the observed
returns and observed realized measures.

4) Estimation
While MLE is popular, other methods like GRG or
Bayesian estimation can also be used. The optimization
problem involves estimating the model parameter by
maximizing the log-likelihood function. In comparison,
the ARWM method in the Bayesian Markov Chain
Monte Carlo (MCMC) algorithm is also performed.

5) Model diagnostics
From the results of the parameter estimation, the esti-
mation accuracy of the GRG method is assessed against
the estimation of the ARWM method as a respected
benchmark. Meanwhile, the AIC assessments are used to
compare competing models and to select the best-fitting
one.

Fig. 2. The conceptual framework of GARCH modeling.

III. RESULT AND DISCUSSION

A. Description of Data

Table I presents summary statistics for the percentage return
and RK of the FTSE100 and HSI data, in which SD denotes
standard deviation. The means for both return data are close to
zero as is expected for a time series. There is a high positive
value of kurtosis (> 3), suggesting a heavy-tailed distribution
for the return error. Although not reported, the Jarque–Bera
normality test (see [27]) rejects the null hypothesis for both
returns, which confirms non-normality of the series. There-
fore, the assumption of Student-t distribution would be much
appropriate in comparison to Normal distribution assumption.

TABLE I
DESCRIPTIVE STATISTICS.

Statistics FTSE100 HSI
Return RK Return RK

Mean −0.035 0.766 −0.047 0.815
Standard Deviation 0.930 0.484 0.994 0.433

Maximum 7.04 5.71 12.16 6.68
Minimum −5.76 0.20 −11.62 0.21
Kurtosis 7.53 15.20 16.13 31.72

Figure 3 displays the daily returns of FTSE100 and HSI.
It can be seen that both returns fluctuates around their return
means or it can be said that there is no upward or downward
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trend. This stationarity is a pre-condition before applying the
GARCH model. On both plots of returns, the volatility of stock
return may looks decrease after the middle of 2003 and then
becomes much more volatile from 2008 to 2010. After 2010,
the volatility tends to be smaller, with some turbulences in the
middle of 2011 and the beginning of 2016.

2000/1/4 2003/1/2 2009/1/2 2012/1/5 2016/1/6

-5

0
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10
Returns of FTSE

2000/1/3 2003/1/2 2009/1/2 2012/1/3 2016/1/4
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0

5

10

Returns of HSI

Fig. 3. Plots of daily return (in percentage).

B. Implementation of the Estimation Method

In implementing the ARWM method, the initial values for
parameters in the GARCH-X(1,1) models are as follows:

ω = 0.1,α = 0.1,β = 0.9,γ = 0.1,ν = 10, (15)

in the RealGARCH(1,1) models are as follows:

ω = 0.01,β = 0.7,γ = 0.2,ν = 10, (16)

ξ = 0.01,ϕ = 0.9,τ1 = 0.25,τ2 =−0.25,s2
u = 0.25. (17)

Following the Bayesian MCMC rules, the model is completed
through prior distributions for the model parameters. In this
study, the prior distribution for the parameters ω , α , β , γ , ξ ,
ϕ , τ1, τ2, s2

u are N(0,1000) as in [28] and for the parameter
ν is exp(0.01) as in [29].

Since the GRG method is sensitive to the initial value, the
initial values for the model parameters in the GRG method are
taken to close the estimation results of the ARWM method:

ω = 0.001,α = 0.05,β = 0.9,γ = 0.05,ν = 10 (18)

for the GARCH-X(1,1) models, and

ω = 0.001,β = 0.5,γ = 0.5,ν = 10, (19)

ξ = 0.1,ϕ = 0.9,τ1 =−0.05,τ2 = 0.05,s2
u = 0.05 (20)

for the RealGARCH(1,1) models.

C. Efficiency of the ARWM Method

For example, Figure 4 provides trace plots of the posterior
estimates for each parameter in the RealGARCHt(1,1) model
adopting the FTSE100 stock index data. MCMC algorithm was
run for a total of 6000 iterations with the first 1000 iterations
discarded as burn-in period and the last 5000 iterations are
used for inference. The trace plots seem to be stationary

although the Markov chain explores the parameter space
slowly for β , γ and ϕ . The Markov chains were then checked
for convergence by integrated autocorrelation time of Sokal
(1997) and they have autocorrelation time less than 180. It is
reasonable to believe that the generated Markov chains have
a good convergence and can be used as a reference for the
accuracy of the accuracy of the estimation results by GRG
method.
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Fig. 4. Trace plots of the parameters of the RealGARCHt(1,1) model by
using ARWM method for the FTSE100 data. Red line denotes the posterior
mean.

D. Estimation Results

The results obtained of the GARCH-X(1,1) and Re-
alGARCH(1,1) parameter estimation using the GRG and
ARWM methods for the FTSE100 and HSI data sets are
presented in Tables II and III, respectively. Assuming the
estimated values obtained by the ARWM method as the actual
measurement, the accuracy of the GRG method is measured
by the relative error defined as the ratio of the absolute error
of the measurement (difference between the measured value
and the actual value) to the absolute of actual measurement.
The formula is:

RE =

∣∣∣∣actual value−measured value
actual value

∣∣∣∣ (21)

Comparing between the estimated values of two methods, the
results with both methods seem to be close to each other, with
the exception of the parameter ω , which is zero by the GRG
method. By ignoring ω , both methods give the estimation
results that are not much different with the relative errors
less than 10%. This indicates that the GRG method has a
good ability to estimate the studied models. Notice that the
constraint violation on parameter ω is caused by the estimated
value which is very close to zero. This is similar to the
results in [1], [20]. However, the violation does not affect the
estimation of the other parameters.

Regarding the estimates of β , the GARCH-X models exhibit
a high degree of volatility persistence about 0.9, which is
greater than the degree of volatility persistence about 0.6
exhibited by the RealGARCH models. This finding suggests
that changes in volatility of models with Student-t distribution
have only a relatively small effect on asset prices. Meanwhile,
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TABLE II
THE ESTIMATES FOR POSTERIOR MEAN IN ADOPTING THE FTSE100

DATA.

Par. Normal Student-t
GARCH-X RealGARCH GARCH-X RealGARCH

Method: ARWM
ω 0.0006 0.0006 0.0006 0.0007
α 0.106 - 0.103 -
β 0.838 0.562 0.850 0.578
γ 0.052 0.396 0.045 0.384
ν - - 9.69 7.07
τ1 - −0.036 - −0.036
τ2 - 0.044 - 0.045
ξ - 0.084 - 0.082
ϕ - 0.983 - 0.976
s2

u - 0.053 - 0.053
Method: GRG
ω 0.000 0.000 0.000 0.000
α 0.104 - 0.099 -
β 0.840 0.565 0.856 0.563
γ 0.052 0.386 0.043 0.395
ν - - 9.43 6.46
τ1 - −0.035 - −0.023
τ2 - 0.044 - 0.046
ξ - 0.084 - 0.083
ϕ - 0.999 - 0.985
s2

u - 0.053 - 0.052
Relative Error (RE) in percent
ω - - - -
α 1.06 - 3.56 -
β 0.23 0.53 0.69 1.50
γ 0.34 2.32 3.68 0.50
ν - - 2.66 1.52
τ1 - 1.52 - 0.76
τ2 - 1.17 - 1.74
ξ - 0.54 - 1.06
ϕ - 1.75 - 1.55
s2

u - 0.41 - 0.15

the point estimate of ϕ suggests that volatilities of FTSE100
and HSI amount to about 99% and 84% of daily volatility,
respectively. Observing the coefficient on zt , that is τ1, the
estimate is negative in all cases. In terms of 95% HPD interval,
τ1 is significant in all cases with the estimate values between
−0.05 and −0.02 on adopting the FTSE100 data and between
−0.04 and −0.01 on adopting HSI data. The fact that this
finding suggests a negative asymmetry effect on volatility.
Finally, the models with Student-t distribution produces a
small degrees of freedom, suggesting the existence of heavy-
tails in the return distribution.

E. Model selection

In this study, the fitting performance of models is investi-
gated in the sample data. Table IV presents the AIC values
of competing models estimated by both methods. As the AIC
for the model with Student-t distribution is smaller than the
other distribution, it means the Student-t distribution is more
adequate than the Normal distribution, confirming the previous
result on the estimation of the degrees of freedom. Moreover,
not surprisingly, the RealGARCH(1,1) model outperforms
the GARCH-X(1,1) model in the case of each distribution.
Therefore, overall, the RealGARCH(1,1) model with Student-
t distribution provides the best data fit. In Figure 5 plots of

TABLE III
THE ESTIMATES FOR POSTERIOR MEAN IN ADOPTING THE HSI DATA.

Par. Normal Student-t
GARCH-X RealGARCH GARCH-X RealGARCH

Method: ARWM
ω 0.001 0.004 0.001 0.007
α 0.051 - 0.047 -
β 0.904 0.672 0.915 0.684
γ 0.045 0.323 0.038 0.314
ν - - 8.06 6.99
τ1 - −0.027 - −0.027
τ2 - 0.072 - 0.073
ξ - 0.130 - 0.119
ϕ - 0.849 - 0.839
s2

u - 0.050 - 0.050
Method: GRG
ω 0.000 0.000 0.000 0.005
α 0.049 - 0.043 -
β 0.907 0.671 0.923 0.677
γ 0.044 0.331 0.034 0.319
ν - - 7.87 6.91
τ1 - −0.027 - −0.027
τ2 - 0.072 - 0.072
ξ - 0.134 - 0.122
ϕ - 0.828 - 0.841
s2

u - 0.050 - 0.050
Relative Error (RE) in percent
ω - - - -
α 3.90 - 7.37 -
β 0.52 0.06 0.84 0.97
γ 3.30 2.41 9.05 1.83
ν - - 2.33 1.05
τ1 - 0.39 - 0.19
τ2 - 1.01 - 0.96
ξ - 3.19 - 2.04
ϕ - 2.53 - 0.27
s2

u - 0.03 - 0.18

time-series for daily conditional variance on the best model
are depicted.

TABLE IV
THE AIC TEST FOR THE GARCH-X AND REALGARCH MODELS.

Model Dist. AIC Ranking
ARWM GRG ARWM GRG

Data: FTSE100
GARCH-X Normal 10230.7 10225.6 4 4

Student-t 10152.8 10144.7 3 3
RealGARCH Normal 10001.0 9993.6 2 2

Student-t 9873.9 9881.7 1 1
Data: HIS
GARCH-X Normal 10547.3 10542.3 4 4

Student-t 10444.2 10435.8 3 3
RealGARCH Normal 10028.9 10020.5 2 2

Student-t 9875.0 9864.4 1 1

IV. CONCLUSIONS

This study evaluated the modeling of GARCH-X(1,1) and
RealGARCH(1,1) with Normal and Student-t distributions for
return error based on the measure of Realized Kernel using
the FTSE100 and HSI data. The models were estimated by
using ARWM and GRG methods. The GRG method was
demonstrated to have a good ability to estimate the studied
models as the estimation results are not much different from
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Fig. 5. Plots of daily conditional variance on the RealGARCHt(1,1) model.

the estimation results by the ARWM method, namely with a
relative error of less than 2%.

The fitting performance of models was investigated by the
AIC. We demonstrate that the models with the Student-t distri-
bution consistently outperform those with the Normal distribu-
tion in all cases. Moreover, the use of RealGARCH(1,1) model
instead of GARCH-X(1,1) model provides a better data fit for
the conditional variance. Therefore, the RealGARCH(1,1) with
Student-t distribution for return error yields the best fitting
performance for both data.
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