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Second Degree Refinement Jacobi Iteration Method
for Solving System of Linear Equation

Tesfaye Kebede

Abstract—Several iterative techniques for the solution of linear
system of equations have been proposed in different literature in
the past.In this paper, we present a Second degree of refinement
Jacobi Iteration method for solving system of linear equation,
Ax = b and we consider few numerical examples and spectral
radius to show that the effective of the Second degree of refine-
ment Jacobi Iteration Method (SDRJ) in comparison with other
methods of First degree Jacobi (FDJ), First degree Refinement
Jacobi (FDRJ) and Second degree Jacobi (SDJ) method.

Index Terms—Jacobi iteration, second degree refinement, sys-
tem of linear equations.

I. INTRODUCTION

IN many scientific and engineering applications, one often
comes across with a problem of finding the solution of a

system of linear equations written as the following equation
in matrix form:

Ax = b (1)

where A is a nonsingular matrix of size n× n, x and b are
n-dimensional vectors. Splitting the matrix A [1] as :

A = D−L−U (2)

where D is a diagonal matrix and −L and −U are strictly
lower and upper triangular part of A respectively. A general
first degree linear stationary iterative method for the solution
of the system of equation (1) may be defined in the form:

x(n+1) = Hx(n)+C (3)

where x(n+1) and x(n) are the approximation for x at the (n+
1)th and nth iterations respectively, H is called the iterative
matrix depending on matrix A and C is a column vector. The
iteration system x(n+1) = Hx(n)+C is converge if and only if
the spectral radius of H are less than unity, i.e. σ(H)< 1.

The first degree iterative method of Jacobi (FDJ) method
for the solution of (1) is defined as:

x(n+1) = D−1(L+U)x(n)+D−1b (4)

and the first degree refinement Jacobi (FDRJ) method can be
obtained in the form of :

x(n+1) = (D−1(L+U))2x(n)+(I +D−1(L+U))D−1b (5)

X (n+1) = HRJX (n)+CRJ , (6)

where

HRJ = [D−1(L+U)]2,CRJ = [I +D−1(L+U)]D−1b (7)
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The linear stationary any second degree method is given by
[2]

x(n+1) = x(n)+a(x(n)− x(n−1))+b1(x(n+1)− x(n)) (8)

Here x(n+1) appearing in the right hand side as given in
equation (3) is completely consistent for any constant a and
b1 such that b1 6= 0.

X (n+1) = X (n)+a(X (n)−X (n−1))+b1(HX (n)+C−X (n))

⇒ X (n+1) = X (n)+aX (n)−aX (n−1)+b1HX (n)+b1C−b1X (n)

⇒ X (n+1) = X (n)+aX (n)−b1X (n)+b1HX (n)+b1C−aX (n−1)

⇒ X (n+1) = (1+a−b1)X (n)+b1HX (n)−aX (n−1)+b1C

⇒ X (n+1) = [(1+a−b1)I +b1H]X (n)−aX (n−1)+b1C

X (n+1) = GX (n)+H1X (n−1)+K (9)

where
G = (1+a−b1)I +b1H (10)

H1 =−aI (11)

K = b1C (12)

The linear stationary any second degree method is given by
[2] can be written in number (6) or number (7) with (8), (9)
and (10) conditions. On the other way equation (1) can be
solved using the second degree Jacobi(SDJ) stationary iterative
method using

x(n+1) = b1D−1(L+U)x(n)−ax(n−1)+b1k1

⇒ x(n+1) = b1[D−1(L+U)x(n)+ k1]−ax(n−1) (13)

For optimal values of a and b1 Where k1 = D−1b. If A
is a row strictly diagonal dominant (SDD) matrix, then the
Jacobi method converges for any arbitrary choice of the initial
approximation [3].

In this paper, we construct a new method of solving a linear
system of the form Ax = b that arise in any engineering and
applied science.

The outline of this paper is as follows: we introduce second
degree refinement Jacobi (SDRJ) iterative method in accor-
dance this we will see the relationship between spectral radius
of first degree Jacobi (FDJ), first degree refinement Jacobi
(FDRJ), Second degree Jacobi (SDJ) methods and Second
degree refinement Jacobi iteration (SDRJ) methods are given.
Based on the methods and results, few numerical examples
are considered to show that the efficiency of the new method
in comparison with the existing FDJ, FDRJ and SDJ methods.
Finally discussion and conclusion made at Section V.
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II. SECOND DEGREE REFINEMENT JACOBI (SDRJ)
ITERATIVE METHOD

Theorem 1: If matrix A is non singular PD and SDD matrix
with A = D− L−U , then the Second degree of Refinement
Jacobi iterative method is:

[x(n+1) = b1[D−1(L+U)]
2
x(n)−aIx(n−1)+

b1(I +D−1(L+U))D−1b]

for any initial guess and the optimal values for a and b1.

Given: A is non singular PD and SDD matrix and A = D-L-
U. Required: the second degree of refinement Jacobi iterative
method is: x(n+1) = b1[D−1(L+U)+k1]x(n)−a1x(n−1). Proof:
now consider equation (5)and (6), so one can get :

x(n+1) = x(n)+a(x(n)−x(n−1))+b1(HRJx(n)+CRJ−x(n)) (14)

This also can be written as follows after some computation:

X (n+1) = GRJx(n)+FRJx(n−1)+KRJ (15)

where GRJ = (1 + a− b1)I + b1HRJ ,FRJ = −aI and KRJ =
b1CRJ . By using Golub and Varga [2](

x(n)

x(n+1)

)
=

(
0 I

FRJ GRJ

)(
x(n−1)

x(n)

)
+

(
0

KRJ

)
(16)

⇒
(

x(n)

x(n+1)

)
= Ĝ

(
x(n−1)

x(n)

)
+

(
0

KRJ

)
, (17)

where Ĝ =

(
0 I

FRJ GRJ

)
The above equation converges to the exact solution if

σ(Ĝ) < 1, i.e. the spectra radius of Ĝ is less than one. In
order to solve the spectra radius of Ĝ, first we have to solve
the eigenvalues λ of Ĝ.

σ(Ĝ)< 1 iff all roots λRJ of det(λRJ
2I−λRJGRJ−FRJ) = 0

(18)

i.e. det(λRJ
2I−λRJGRJ−FRJ) = 0

⇒ det(λRJ
2I−λRJ [(1+a−b1)I +b1HRJ ]+aI) = 0

⇒ det(λRJ
2I−λRJ(1+a−b1)I−λRJb1HRJ +aI) = 0

⇒ det(−λRJb1[−
λRJ

b1
I +

(1+a−b1)

b1
I +HRJ−

a
λRJb1

I] = 0

⇒ (−λRJb1)
ndet(HRJ +

(1+a−b1)

b1
I− λ 2

RJ +a
λRJb1

I) = 0

⇒ det(HRJ+
(1+a−b1)

b1
I− λ 2

RJ +a
λRJb1

I)= 0,since(−λRJb1)
n 6= 0

(19)

Thus, the eigenvalues λRJ of Ĝ are related to the eigenvalues
µRJ of HRJ with HJ is

µRJ +
(1+a−b1)

b1
=

(a+λRJ
2)

λRJb1
(20)

As the image of the circle, Let the eigenvalue λRJ = veiθ =
v(cosθ +isinθ) is the ellipse, then substituting this in equation
(18), we obtain

µRJ +
(1+a−b1)

b1
=

(veiθ )2 +a
veiθ b1

.

⇒ µRJ +
1+a−b1

b1
=

veiθ

b1
+

a
b1veiθ

⇒ µRJ +
1+a−b1

b1
=

v(cosθ + isinθ)

b1
+

a(cosθ − isinθ)

b1v

⇒ µRJ =−
(1+a−b1)

b1
+

vcosθ

b1
+ i

vsinθ

b1
+

acosθ

b1v
− i

asinθ

vb1

∴ µRJ =
1
b1

(v+
a
v
)cosθ− 1+a−b1

b1
+ i

1
b1

(v− a
v
)sinθ (21)

i.e. ReµRJ =
1
b1
(v+ a

v )cosθ − (1+a−b1)
b1

⇒ cosθ =
ReµRJ +

(1+a−b1)
b1

1
b1
(v+ a

v )
(22)

ImµRJ =
1
b1
(v− a

v )sinθ

⇒ sinθ =
IMµRJ

1
b1
(v+ a

v )
(23)

We know that cos2 θ + sin2
θ = 1

[
ReµRJ +

(1+a−b1)
b1

1
b1
(v+ a

v )
]2 +[

ImµRJ
1
b1
(v− a

v )
]2 = 1 (24)

centre = c(h,k) = (− (1+a−b1)

b1
,0) (25)

centre = c(h,k) = (− (1+a−b1)

b1
,0) (26)

Length of semi-major axis = a/ =
1
b1

(v+
a
v
) (27)

Length of semi-minor axis = b/ =
1
b1

(v− a
v
) (28)

Foci = F1 = (h− c,0) = (−1+a−b1

b1
− 2
√

a
b1

,0) = (α,0)

(29)

Foci = F2 = (h+ c,0) = (−1+−b1

b1
+

2
√

a
b1

,0) = (β ,0)

(30)

v1 = (h−a′,0) = (−1+a−b1

b1
− 1

b1
(v+

a
v
),0)

v2 = (h+a′,0) = (−1+a−b1

b1
+

1
b1

(v+
a
v
),0)

v3 = (h,k+b′) = (−1+a−b1

b1
,

1
b1

(v− a
v
))

v4 = (h,k−b′) = (−1+a−b1

b1
,− 1

b1
(v− a

v
))
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Before we prove the theorem let us prove the following
Lemmas.

Lemma 2: If µRJ is real, then α ≤ µRJ ≤ β < 1, for any foci
α and β which are real.

Proof: We know that µRJ is a real number. We require
that α ≤ µRJ ≤ β < 1, for any foci α and β which are real.
The proof is as follows:

⇒ µRJ =
1
b1

(v+
a
v
)cosθ − 1+a−b1

b1
,

since µRJ is a real number. In this equation θ varies.

− 1
b1

(v+
a
v
)− 1+a−b1

b1
≤ µm≤

1
b1

(v+
a
v
)cosθ− 1+a−b1

b1
,

since −1≤ cosθ ≤ 1

⇒ α ≤ µRJ ≤ µJ ≤ β < 1 (31)

Because α and β from equation (26) and (27) and to be
convergent ρ(HRJ) < 1 so all the eigenvalues must be less
than 1.

Lemma 3: If the eigenvalues µRJ of HRJ < 1 are real and
lie in the interval.

Proof: α ≤ µRJ ≤ µJ ≤ β < 1, then the optimal choices
of a and b1 must satisfy the following conditions:

a) v2 = a (32)

b)
α +β

2
=−1+a−b1

b1
(33)

c)
β −α

2
=

2v
b1

(34)

d) 2v =
β −α

2− (α +β )
(1+ v2) (35)

Given: the eigenvalues µRJ of HRJ < 1 are real and lie in the
interval α ≤ µRJ ≤ µJ ≤ β < 1. Required: proof of a) until d).
Proof :

a) we know µm is real, then 1
b1
(v− a

v )sinθ = 0, we have
1
b1

sinθ = 0 or (v− a
v ) = 0, so we get v2 = a or sinθ = 0, from

the second equation we have θ = 2π,n = 0,1,2.... Therefore
V 2 = a.

b) From the (26) and (27) and from Lemma 2(a) ,we get:

α =
−2v
b1
− 1+a−b1

b1
and β =

2v
b1
− 1+a−b1

b1

⇒ α +β

2
=−1+a−b1

b1
(mid point formula)

c) We know from (b) above we have α = −2v
b1
− 1+a−b1

b1
and

β = 2v
b1
− 1+a−b1

b1
, then one can get

β −α

2
=

2v
b1

d) From Lemma 2 (b), we have

α +β

2
=−1+a−b1

b1

⇒ 1− α +β

2
= 1− (−1+a−b1

b1
)

⇒ 2− (α +β )

2
= 1+(

1+a−b1

b1
) =

1+a
b1

(36)

Divide equation (31) by (33),we get

⇒
β−α

2
2−(α+β )

2

=

2v
b1

1+a
b1

⇒ β −α

2− (α +β )
=

2v
1+a

⇒ 2v =
β −α

2− (α +β )
(1+ v2)

Lemma 4: If µRJ is the spectral radius of HRJ , then

µRJ =
β −α

2− (α +β )
(37)

Proof: Given: µRJ is the spectral radius of
HRJ . Required: µRJ = β−α

2−(α+β ) . Proof: we know that

µRJ =
1
b1
(v+ a

v )cosθ − 1+a−b1
b1

. By definition of derivative of
functions in calculus

dµRJ

dθ
=

d
dθ

[
1
b1

(v+
a
v
)cosθ− 1+a1−b1

b1
] =− 1

b1
(v+

a
v
)sinθ

To calculate the maximum and minimum value, the above
equation equates to zero.

− 1
b1

(v+
a
v
)sinθ = 0

⇒ sinθ = 0⇒ θ = 0,π,2π...

When θ = 0, then µRJ =
1
b1
(v+ a

v )−
1+a−b1

b1

When θ = π , then µRJ =− 1
b1
(v+ a

v )−
1+a−b1

b1

When θ = 2π , then µRJ =
1
b1
(v+ a

v )−
1+a−b1

b1
From the above the maximum value occurs at θ = 0 and 2π

⇒ n
max
i=1

(µRJ) =
1
b1

(v+
a
v
)− 1+a−b1

b1
= β

The minimum value occurs at

θ = π ⇒
n

min
i=1

µRJ =−
1
b1

(v+
a
v
)− 1+a−b1

b1
= α

⇒ µRJ =
n

max
i=1
| µRJ |=

n
max
i=1
| 1

b1
(v+

a
v
)cosθ − 1+a−b1

b1
|

=
1
b1

(v+
a
v
)− 1+a−b1

b1
,since−1≤ cosθ ≤ 1 and
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⇒−µRJ =
n

min
i=1

(− | µRJ |)

= min− | − 1
b1

(v+
a
v
)cosθ − 1+a−b1

b1
|

=
1
b1

(v+
a
v
)− 1+a−b1

b1

⇒ µRJ =
2v
b1
− 1+a−b1

b1
=

2v
b1
− 1+a

b1
+1 =

β −α

2
− 2− (α +β )

2
+1 = β

by equation (31) and (33). Therefore µRJ = β .

⇒−µRJ =
n

min
i=1

(− | µRJ |) =−
1
b1

(v+
a1

v
)− 1+a1−b1

b1
=

−2v
b1
− 1+a1

b1
+1 = α

Therefore µRJ = −α . From the previous two results, we
obtain 2µRJ = β −α and 2 = 2− (α + β ). Then divide the
previous two equations, we get µRJ =

β−α

2−(α+β ) .
Now let us determine the values of a and b1. First, let us

find a from Lemma 3d equation (32)

⇒ 2v =
β −α

2− (α +β )
(1+ v2)

by lemma 3d, we have

⇒ 2v = µRJ(1+ v2)

⇒ µRJv2−2v+µRJ = 0.

This is the equation of quadratic whose graph is a parabola and
the minimum value occurs at p=( 1

µRJ
,

µRJ
2−1

µRJ
) since µRJ > 0.

One can solve by quadratic formula of the above equation:

v =
2±
√

4−4µRJ
2

2µRJ
=

1±
√

1−µRJ
2

µRJ

⇒ v1 =
1+
√

1−µRJ
2

µRJ

and v2 =
1−
√

1−µRJ
2

µRJ

The smallest value is ⇒ v2 =
1−
√

1−µRJ
2

µRJ
. Let

1+ v2 = ω ⇒ a = ω−1

⇒ 1+ v2 =
2

1+
√

1−µ
2
RJ

∴ a =
µ

2
RJ

(1+
√

1−µ
2
RJ)

2
,

since a = v2.
Secondly, let us find b1 ⇒ b1 =

4v
β−α

by using equation (27)

⇒ b1 =
4v

β −α
=

2µRJ(1+ v2)

β −α

∴ b1 =
4

(1+
√

1−µ2
RJ)(2− (α +β ))

.

Lemma 5: If matrix A is positive definite matrix and if HRJ
is Jacobi iterative matrix, then β =−α = µRJ = σ(HRJ).

Proof: Given: matrix A is positive definite matrix and if
HRJ is Jacobi iterative matrix. Required: β = −α = µRJ =
σHRJ . Proof: In order to prove this Lemma, we have to use
Lemma 3

⇒ µRJ =
n

max
i=1
| µRJ |=

1
b1

(v+
a
v
)− 1+a−b1

b1
= β

⇒−µRJ =−
1
b1

(v+
a
v
)− 1+a−b1

b1
= α

∴ β =−α = µRJ

Now we can find the optimal value of a and b1

i.e. a =
µ

2
RJ

(1+
√

1−µ
2
RJ)

2
. b1 = 2

1+
√

1−µ
2
RJ
., since β = −α ⇒

α+β = 0. Now let us find second degree of Refinement Jacobi
(SDRJ) method:

⇒ 1+a−b1

b1
=

α +β

2

⇒ 1+a−b1

b1
=

α−α

2

since β =−α

⇒ (1+a−b1) = 0

From the second degree

⇒ x(n+1) = GRJx(n)+FRJx(n−1)+ kRJ

⇒ x(n+1) = [(1−b1 +a)I +b1HRJ ]x(n)+(−aI)x(n−1)+b1CRJ

⇒ x(n+1) = b1HRJx(n)−ax(n−1)+b1CRJRJ

∴ x(n+1) = b1[D−1(L+U)x(n)+ k1]−ax(n−1),

where

a =
µ

2

(1+
√

1−µ
2)2

, b1 =
2

1+
√

1−µ
2
.

III. RELATIONSHIP BETWEEN SPECTRAL RADIUS

As we have seen above the spectral radius of
• First degree Jacobi method(FDJ) is µ.

• First degree Refinement Jacobi method(FDJ) is µRJ .= µ.2

• Second degree Jacobi method(SDJ) is
√

a = µ

1+
√

1−
µ

2
.

• Second degree Refinement Jacobi method(SDGJ) is a =
µ

2

(1+
√

1−
µ

2)
2 .

That is one can see µ
2

(1+
√

1−
µ

2)
2 ≤

µ

1+
√

1−µ
2
≤ µ since 1+√

1−µ
2 > 0 and also µRJ ≤ µ since 0 < µ < 1.
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IV. NUMERICAL EXAMPLES

a. Solve the following SDD matrix using FDJ ,FDGJ ,SDJ
and SDRJ iterative methods.

4x1− x2− x3 = 3
−2x1 +6x2 + x3 = 9
−x1 + x2 +7x3 =−6

Solution: all results are based on the given
data and we get the spectral radius as follows

Method FDJ FDRJ SDJ SDRJ
Spectral radius 0.4295 0.1845 0.2257 0.0931

b. Solve the following PD matrix using FDJ, FDGJ,
SDJ and SDRJ iterative methods.

3x1− x2− x3 = 1
−x1 +3x2 + x3 = 3
2x1 + x2 +4x3 = 7

Solution: all results are based on the given data we get the
spectral radius as follows

Method FDJ FDRJ SDJ SDRJ
Spectral radius 0.3333 0.1111 0.1716 0.0557

The detailed experimental results are written in the ap-
pendix. Table I shows that FDRJ method converges faster than
FDJ method for SDD matrix. Table II shows that SDRJ method
converges faster than the SDJ method for SDD matrix. Table
III shows that FDRJ method converges faster than FDJ method
for PD matrix. Table IV shows that SDRJ method converges
faster than the SDJ method for PD matrix.

V. CONCLUSIONS

As we have seen in this report for SDD and PD matrix,
we can notice that FDJ, FDRJ and SDJ are reasonable to
approximate the exact solution of system of linear equations
at a certain given condition. But they are relatively slow to
converge to the exact solution. However, the Second degree of
refinement Jacobi iterative method for solving system of linear
equations are reasonable and efficient way of approximating
the exact solution of system of linear equations. Numerical
results of spectral radius show that, SDRJ methods converge
with a small number of iteration steps for solving systems of
linear equations.

In general, the results of numerical examples considered
clearly demonstrate the accuracy of the methods developed in
this paper. It is conjectured that the rate of convergence of the
method that developed in this paper can be further enhanced
by using extrapolating techniques.
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APPENDIX

TABLE I
ALL NUMERICAL RESULT OF SDD MATRIX FOR FDJ AND FDRJ OF

EXAMPLE 1

First degree Jacobi (FDJ) First degree refinement Jacobi (FDRJ)
n x1

(n) x2
(n) x3

(n) x1
(n) x2

(n) x3
(n)

0 0 0 0 0 0 0
1 0.75 1.5 -0.857143 0.910714 1.892857 -0.964286
2 0.9107515 1.892857 -0.964285 0.99171 1.993622 -0.997451
3 0.982143 1.964286 -0.997448 0.999136 1.999726 -0.999683
4 0.991710 1.993622 -0.997448 0.999895 2.000018 -0.999952
5 0.999044 1.996811 -1.000819 0.999986 2.000008 -0.999993
6 0.998998 1.999818 -0.99968 0.999999 2.000002 -1.000000
7 1.000035 1.999613 -1.000116 1.000001 2.000000 -1.000002
8 0.999873 2.000031 -0.999939 1.000000 2.000000 -1.000000
9 1.00023 1.999948 -1.000022

10 0.999982 2.000011 -0.999989
11 1.000006 1.999992 -1.000003
12 0.999998 2.000003 -0.999997
13 1.000002 1.999999 -1.000000
14 1.000000 2.000001 -1.000000
15 1.000000 2.000000 -1.000000

TABLE II
ALL NUMERICAL RESULT OF SDD MATRIX FOR SDJ AND SDRJ OF

EXAMPLE 1

Second degree Jacobi (SDJ) Second degree refinement Jacobi (SDRJ)
n x1

(n) x2
(n) x3

(n) x1
(n) x2

(n) x3
(n)

0 0 0 0 0 0 0
1 0.75 1.5 -0.857143 0.910714 1.892857 -0.964286
2 0.945649 1.965467 -1.001276 0.996783 2.003819 -1.002551
3 1.000294 2.000589 -1.00842 1.000043 2.000823 -1.000045
4 1.000052 2.002884 -0.999995 0.999995 2.000064 -0.999962
5 1.000739 1.999994 -1.000097 0.999997 2.000006 -0.999995
6 0.999972 2.000162 -0.999889 1.000000 2.000001 -0.999999
7 1.000043 1.999971 -1.000024 1.000000 2.000000 -1.000000
8 0.99987 2.000031 -0.999939
9 1.000003 1.999995 -1.000003

10 0.999998 2.000002 -0.999999
11 1.000001 1.999999 -1.000001
12 0.999999 2.000001 -1.000000
13 1.000000 2.000000 -1.000000
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TABLE III
ALL NUMERICAL RESULT OF POSITIVE DEFINITE (PD) MATRIX FOR FDJ

AND FDRJ OF EXAMPLE 2

First degree Jacobi (FDJ) First degree refinement Jacobi (FDRJ)
n x1

(n) x2
(n) x3

(n) x1
(n) x2

(n) x3
(n)

0 0 0 0 0 0 0
1 0.333333 1.000000 1.75 1.250000 0.527778 1.333333
2 1.250000 0.527778 1.333333 0.988426 0.986883 1.030093
3 0.953704 0.972222 0.993056 0.998392 0.998864 1.000643
4 0.988426 0.986883 1.030093 1.000113 0.999583 1.000270
5 1.005659 0.986111 1.009066 0.999986 0.999967 1.000039
6 0.998392 0.998864 1.000643 0.999998 0.999968 1.000038
7 0.999836 0.999250 1.001088 0.999999 0.999998 0.999999
8 1.000113 0.999583 1.000270 1.000000 1.000000 1.000000
9 0.999951 0.999948 1.000048

10 0.999999 0.999968 1.000038
11 1.000002 0.999987 1.000009
12 0.999998 0.999997 1.000005
13 0.999999 0.999999 1.000003
14 0.999999 0.999998 1.000002
15 1.000000 0.999999 1.000001
16 1.000000 1.000000 1.000000

TABLE IV
ALL NUMERICAL RESULT OF POSITIVE DEFINITE (PD) MATRIX FOR SDJ

AND SDRJ OF EXAMPLE 2

Second degree Jacobi (SDJ) Second degree refinement Jacobi (SDFJ)
n x1

(n) x2
(n) x3

(n) x1
(n) x2

(n) x3
(n)

0 0 0 0 0 0 0
1 0.333333 1.000000 1.75 1.250000 0.527778 1.333333
2 1.287113 0.543447 1.372920 0.991546 0.989998 1.033342
3 0.991088 0.970548 0.947441 0.996801 1.001843 0.998534
4 0.963327 1.028536 1.001098 1.000214 0.999651 1.000073
5 1.010436 0.987910 1.013096 1.000019 0.999970 1.000030
6 1.001434 0.998240 0.997707 0.999996 1.000003 1.000000
7 0.998299 1.001638 0.999326 1.000000 1.000000 1.000000
8 1.000288 0.999700 1.000522
9 1.000127 0.999871 0.999949

10 0.999930 1.000070 0.999952
11 1.000004 0.999996 1.000020
12 1.000008 0.999992 1.000000
13 0.999997 1.000003 0.999997
14 1.000000 1.000000 1.000001
15 1.000000 1.000000 1.000000


