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Terwilliger Algebras of Group Association Schemes
of Matrix Groups

Nur Hamid1

Abstract—This paper investigates the Terwilliger algebras of
some group association schemes related to matrix groups. We ob-
tain the structure of the Terwilliger algebras for the general and
the special linear group of 2× 2 matrices over the field of order
5. In particular, we determine the Wedderburn decomposition of
these algebras.

I. INTRODUCTION

THE Terwilliger algebra, which was known as the sub-
constituent algebra, was introduced by P. Terwilliger

[9]. Terwilliger provided a method for studying association
schemes and applied the method to the P− and Q−polynomial
schemes. The Terwilliger algebra is an important tool for
investigating association schemes.

Several previous studies of the Terwilliger algebra of some
group association schemes have been done (see [3], [5], [2]).
The initial investigation of the Terwilliger algebra of group
association schemes can be found in [3]. Balmaceda and Oura
[1] continued the investigation of the Terwilliger algebras for
the groups S5 and A5. These groups are the first nontrivial
case for the family of symmetric and alternating groups. The
investigation was then conducted for the group S6, A6, and
PSL(2, 7) in [5]. The Terwilliger algebra was investigated
over a positive characteristic field in [6].

We can find the exploration of the structure of the Ter-
williger algebras over several different types of finite groups
of order at most 64 in [4]. More information can also be
seen in [2]. This study aimed to determine the structure of
the Terwilliger algebra from the finite group of association
schemes of matrix groups. Readers may refer [7], [10] for the
current research. We use SageMath [8] for the computation.

Although there have been results of Terwilliger algebra of
group association schemes, the investigation of Terwilliger
algebra for matrix groups is not much. This encourages us to
observe the Terwilliger algebra of group association schemes
for other matrix groups with bigger orders than in [2].

The groups investigated in this study are the general linear
group GL(2, 5) of all 2 × 2 matrices over the field of
order 5 whose determinants are not equal to zero and its
subgroup SL(2, 5) of matrices whose determinants are 1. The
groups GL(2, 5) and SL(2, 5) are of degrees 480 and 120,
respectively. The numbers of their conjugacy classes are 24
and 9.

We begin with the definition of a group association scheme.
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Definition 1.1: Let G be a finite group and C0, C1, . . . , Cd

be the conjugacy classes of G. Define the relation Ri on G
by

(x, y) ∈ R ⇔ yx−1 ∈ Ci.

Then X (G) = (G, {Ri}) becomes a commutative association
scheme, called the group association scheme of G.

We correspond each Ri to an adjacency matrix Ai of size
|G| × |G| defined as:

(Ai)x,y =

{
1 if (x, y) ∈ Ri,

0 otherwise.
.

The adjacency matrices A0, A1, . . . , Ad form a basis for an
algebra A over C, called the Bose-Mesner algebra, and satisfy

AiAj =

d∑
k=0

pkijAk.

The numbers pkij are called the intersection numbers of the
group association scheme X (G) and given by

pkij = |{(x, y) ∈ Ci × Cj |xy = z for a fixed z ∈ Ck}|.

The algebra A has a second basis from its primitive idempo-
tents E0, E1, . . . , Ed which satisfy

Ei ◦ Ej =
1

|G|

d∑
k=0

qkijEk

where ◦ denotes the entry-wise multiplication and qkij are the
nonnegative real numbers, called the Krein parameters.

Let E∗
i and A∗

i with i = 0, 1, . . . , d be the |G|×|G| diagonal
matrices defined by:

(E∗
i )x,x =

{
1 if x ∈ Ci,

0 if x /∈ Ci,

(A∗
i )x,x = |G|(Ei)e,x

where e is the identity of G and x ∈ G. Then A∗ =
⟨E∗

0 , E
∗
1 , . . . , E

∗
d⟩ = ⟨A∗

0, A
∗
1, . . . , A

∗
d⟩ is an algebra over C

which is called the dual Bose-Mesner algebra of X (G).
Let Mi be the full matrix algebra over C of degree i. As

the main result of this paper, we determine the Wedderburn
decomposition

T (GL(2, 5)) ∼=M4 ⊕M6 ⊕M10 ⊕M16 ⊕M16

⊕M20 ⊕M24 ⊕M24

and

T (SL(2, 5)) ∼= M1 ⊕M⊕M3 ⊕M7 ⊕M7 ⊕M8 ⊕M9.
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G |G| dimT0(G) dimT (G) dim T̃ (G)
GL(2, 5) 480 2136 2216 2336
SL(2, 5) 120 261 262 296

TABLE I
DIMENSIONS OF T0(G), T (G), AND T̃ (G)

We summarize the dimensions obtained in this paper in Table
I.

We present the representatives and the sizes of the conju-
gacy classes of GL(2, 5) and SL(2, 5). The ordering of the
conjugacy classes is inferred from SageMath [8].

1) GL(2, 5)

rep. Ci

(
1 0
0 1

) (
0 4
1 3

) (
3 0
0 3

)
|Ci| 1 24 1

rep. Ci

(
0 1
1 1

) (
4 0
0 4

) (
0 4
1 2

)
|Ci| 24 1 24

rep. Ci

(
2 0
0 2

) (
0 1
1 4

) (
0 3
1 0

)
|Ci| 1 24 20

rep. Ci

(
0 3
1 4

) (
0 3
1 1

) (
0 1
1 3

)
|Ci| 20 10 20

rep. Ci

(
0 1
1 2

) (
0 4
1 4

) (
0 4
1 1

)
|Ci| 20 20 20

rep. Ci

(
0 2
1 0

) (
0 2
1 3

) (
0 2
1 2

)
|Ci| 20 20 20

rep. Ci

(
4 0
0 3

) (
4 0
0 1

) (
4 0
0 2

)
|Ci| 30 30

rep. Ci

(
3 0
0 1

) (
3 0
0 2

) (
1 0
0 2

)
|Ci| 30 30 30

2) SL(2, 5)

rep. Ci

(
1 0
0 1

) (
0 4
1 3

) (
0 3
3 3

)
|Ci| 1 12 12

rep. Ci

(
4 0
0 4

) (
0 4
1 2

) (
0 3
3 2

)
|Ci| 1 12 12

rep. Ci

(
0 4
1 4

) (
0 4
1 1

) (
3 0
0 2

)
|Ci| 20 20 30

We close this section by defining the Terwilliger algebra.
Definition 1.2: Let G be a finite group. The Terwilliger

algebra, denoted by T (G), of a group association scheme
X (G) is an algebra over C generated by A and A∗.

II. BOUNDS ON T

First, we start with the definitions of the space of triple
product and the centralizer algebra.

Definition 2.1: Let G be a finite group and T (G) be the
Terwilliger algebra for the group G. The space T0(G) is
a subspace of T (G) spanned by the triple matrix products
E∗

i AjE
∗
k for 0 ≤ i, j, k ≤ d over C.

Definition 2.2: Let G be a finite group that acts on itself
by conjugation. The centralizer algebra T̃ (G) is the set of all
|G| × |G| matrices over C that commute with all πg where
(π)xy = 1 if gxg−1 = y and 0, otherwise.

In [3], the bounds on the dimension of the Terwilliger
algebra T were given as:

dimT0(G) ≤ dimT (G) ≤ dim T̃ (G). (1)

The dimension of T0(G) is given by the number of nonzero
matrices products E∗

i AjE
∗
k . In the other words, we can say

dimT0(G) = |{(i, j, k) | E∗
i AjE

∗
k ̸= 0}|. (2)

The dimension formula for T̃ (G) is

dim T̃ (G) =
1

|G|
∑
x∈G

|CG(x)|2 =

d∑
i=0

|G|
|Ci|

. (3)

We call the group G triply transitive if dimT0(G) =
dimT (G) = dim T̃ (G). From Equations (2) and (3), we
obtain the following result.

Proposition 2.3: We have that
1) dimT0(GL(2, 5)) = 2136, dimT0(SL(2, 5)) = 261,
2) dim T̃ (GL(2, 5)) = 2336, dim T̃ (SL(2, 5)) = 296.
As in [3], the degrees di of Wedderburn components of

T̃ (G) can be obtained from finding the nonzero row sums of
the character table of G. They can be written as

di =

d∑
j=0

χi(uj), (4)

where χi(uj) is the character value at uj ∈ Cj . Using
Equation (4), we have the following proposition.

Proposition 2.4: From (4), we have that

T̃ (GL(2, 5)) ∼=M4 ⊕M16 ⊕M16 ⊕M16 ⊕M20

⊕M24 ⊕M24

T̃ (SL(2, 5)) ∼=M6 ⊕M7 ⊕M7 ⊕M9 ⊕M9

III. THE TERWILLIGER ALGEBRAS

In this section, we present the main results of this study.
We begin with the dimension of T (G).

Theorem 3.1: The dimensions of T (GL(2, 5)) and
T (SL(2, 5)) are given as follows.

1) dimT (GL(2, 5)) = 2216
2) dimT (SL(2, 5)) = 262

Proof: The proof is done by direct calculations with the
same method as written in [2], [5]. We obtain the linearly
independent elements of the set containing E∗

i AjE
∗
k and

E∗
i AjE

∗
k · E∗

kAlE
∗
m = E∗

i AjE
∗
kAlE

∗
m. By direct calculation,

the product of more than two matrices of the form E∗
i AjE

∗
k

does not afford a new linear independent element. This set of
linearly independent elements provides a basis for T .

We show the distribution of basis elements for
T0(G), T (G), and T̃ (G) by the square d + 1 distribution
matrices indexed by the conjugacy classes of G. Since the
matrices are symmetric, we omit the entry below diagonal for
simplicity. Note that neither GL(2, 5) nor SL(2, 5) is triply
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transitive. For convenience, we divide the distribution matrix
for GL(2, 5) by 3 block matrices.

1) GL(2, 5)
(Ci, Cj)-position for 1 ≤ i, j ≤ 12.

1 1 1 1 1 1 1 1 1 1 1 1
6, 2, 0 1 6, 2, 0 1 6, 2, 0 1 6, 2, 0 4 4 4 4

1 1 1 1 1 1 1 1 1 1
6, 2, 0 1 6, 2, 0 1 6, 2, 0 4 4 4 4

1 1 1 1 1 1 1 1
6, 2, 0 1 6, 2, 0 4 4 4 4

1 1 1 1 1 1
6, 2, 0 4 4 4 4

5 5 5 5
5 5 5
5 5
5


(Ci, Cj)-position for 1 ≤ i ≤ 12 and 13 ≤ j ≤ 24.

1 1 1 1 1 1 1 1 1 1 1 1
4 4 4 4 4 4 5, 0, 1 5, 0, 1 5, 0, 1 5, 0, 1 5, 0, 1 5, 0, 1
1 1 1 1 1 1 1 1 1 1 1 1
4 4 4 4 4 4 5, 0, 1 5, 0, 1 5, 0, 1 5, 0, 1 5, 0, 1 5, 0, 1
1 1 1 1 1 1 1 1 1 1 1 1
4 4 4 4 4 4 5, 0, 1 5, 0, 1 5, 0, 1 5, 0, 1 5, 0, 1 5, 0, 1
1 1 1 1 1 1 1 1 1 1 1 1
4 4 4 4 4 4 5, 0, 1 5, 0, 1 5, 0, 1 5, 0, 1 5, 0, 1 5, 0, 1
5 5 5 5 5 5 5 5 5 5 5 5
5 5 5 5 5 5 5 5 5 5 5 5
5 5 5 5 5 5 5 5 5 5 5 5
5 5 5 5 5 5 5 5 5 5 5 5


(Ci, Cj)-position for 13 ≤ i, j ≤ 24.

5 5 5 5 5 5 5 5 5 5 5 5
5 5 5 5 5 5 5 5 5 5 5
5 5 5 5 5 5 5 5 5 5
5 5 5 5 5 5 5 5 5
5 5 5 5 5 5 5 5
5 5 5 5 5 5 5
6, 1, 2 5, 2, 2 6, 1, 2 6, 1, 2 5, 2, 2 6, 1, 2

7, 0, 2 5, 2, 2 5, 2, 2 7, 0, 2 5, 2, 2
6, 1, 2 6, 1, 2 5, 2, 2 6, 1, 2

6, 1, 2 5, 2, 2 6, 1, 2
7, 2 5, 2, 2

6, 1, 2


2) SL(2, 5)

1 1 1 1 1 1 1 1 1
4 4 1 4 4 4 4 5, 0, 1

4 1 4 4 4 4 5, 0, 1
1 1 1 1 1 1

4 4 4 4 5, 0, 1
4 4 4 5, 0, 1

6, 0, 2 6, 0, 2 7, 0, 3
6, 0, 2 7, 0, 3

9, 1, 6


We describe the matrices as follows. The entry with one

number means that the dimensions of T0(G), T (G), and T̃ (G)

are the same. The entry, for example 9, 1, 6, means that
dimT0 = 9, dimT (G) = 9 + 1, and dim T̃ (G) = 9 + 1 + 6.

From the distribution matrices, we figure out the connection
between the dimension produced in the row Ci and Cj with
|Ci| = |Cj |. The basis elements obtained are always the
same. Although we cannot prove this connection for general
cases yet, the relation will be very helpful in reducing the
computation time if it holds.

We continue the investigation by showing the basis for
the center of T . Let Z(T ) be the center of T . The center
Z(T ) consists of block matrices since it contains the diagonal
matrices E∗

i . Thus, we have that

Z(T ) ⊆
d⊕

i=0

Z(E∗
i TE

∗
i ).

Let s = dimZ(T ). Based on the fact

T =

s⊕
i=1

Tεi ∼=
s⊕

i=1

Mdi

where εi denote the primitive central idempotents for T (ε2i =
εi ̸= 0,εiεj = δijεi,

∑s
i=1 εi = 1T , and εi ∈ Z(T )), we then

obtain the structure of T . The following lemma shows the
dimension of Z(T ) for each group.

Lemma 3.2: For G = GL(2, 5), SL(2, 5), the dimensions
of Z(T (G)) are

1) dimZ(T (GL(2, 5)) = 8
2) dimZ(T (SL(2, 5)) = 7

Proof: The basis of each T (G) is obtained by solving the
linear equations system {yxi = xiy} ranging over all xi in a
basis for T (G) where y =

∑
cjbj with basis elements bj and

scalars cj .

Let e1, . . . , es be a basis for Z(T (G)). We have that

eiej =

s∑
k=1

tkije
k
ij .

Set the matrices Bi with the entries (Bi)jk = tkij . These
matrices are simultaneously diagonalizable since they mutually
commute. Thus, we can find a matrix P such that

P−1BiP =

v1(i)
. . .

vs(i)


and define the matrix M by Mij = vi(j). Then, the primitive
central idempotents ε1, . . . , εs for T (G) can be obtained by

(ε1, . . . , εs) = (e1, . . . , es)M
−1.

Theorem 3.3: The degrees of the irreducible complex repre-
sentations afforded by every primitive central idempotent for
each group are as follows.

1) T (GL(2, 5))

εi ε1 ε2 ε3 ε4 ε5 ε6 ε7 ε8
deg εi 4 6 10 16 16 20 24 24
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2) T (SL(2, 5))

εi ε1 ε2 ε3 ε4 ε5 ε6 ε7
deg εi 1 3 3 7 7 8 9

Proof: We use the fact Tεi ≡ Mdi(C). Then, d2i equals
the number of linearly independent elements of the set {xjεi}
where xj are the basis elements of T .

We have our main theorem from Theorem 3.3.
Theorem 3.4: We have the following structures

T (GL(2, 5)) ∼=M4 ⊕M6 ⊕M10 ⊕M16 ⊕M16 ⊕M20

⊕M24 ⊕M24

T (SL(2, 5)) ∼=M1 ⊕M3 ⊕M3 ⊕M7 ⊕M7 ⊕M8

⊕M9

where Mi is the full matrix algebra over C of degree i.
We figure out some information from the Wedderburn

decomposition of T (G) and T̃ (G). A component M16 of
T̃ (GL(2, 5)) decomposes into two components M6 and M10

in T (GL(2, 5)). The sum M6 ⊕M9 in T̃ (GL(2, 5)) decom-
poses into M1⊕M3⊕M3⊕M8. Combining Theorems 3.1
and 3.3, we have

dimT (G) =
∑
i

d2i .
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