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Forecasting of Indonesian Crude Prices using
ARIMA and Hybrid TSR-ARIMA

Etik Zukhronah, Winita Sulandari, Sri Subanti, Isnandar Slamet, Sugiyanto, and Irwan Susanto

Abstract—Forecasting of Indonesian crude prices (ICP) is
crucial for the government and policymakers. It helps them
develop appropriate economic policies, budget allocations, and
energy strategies. Forecasting methods that can be used are Time
Series Regression (TSR) and Autoregressive Integrated Moving
Average (ARIMA). This study aims to forecast ICP using ARIMA
and hybrid TSR-ARIMA models. The data used in this study is
the ICP per month, from January 2017 to November 2022. The
data is divided into two groups, the data from January 2017
to December 2020 is used as training data, and the data from
January 2021 to November 2022 is used as testing data. The
MAPE values for the testing data of the TSR-ARIMA(2,1,0) and
ARIMA(2,1,0) models are 8.24% and 17.37% respectively. Based
on this, it can be concluded that the TSR-ARIMA(2,1,0) model
is better than the ARIMA(2,1,0) model for forecasting ICP.

Keywords: ARIMA, hybrid TSR-ARIMA, ICP.

I. INTRODUCTION

ORECASTING Indonesian crude prices (ICP) is

importance for the government and policymakers as it
allows them to formulate effective economic policies, allocate
budgets appropriately, and devise energy strategies. By having
reliable price forecasts, the government can estimate the
revenue generated from oil exports, establish suitable tax
rates, and evaluate the impact of oil price fluctuations on the
overall economy. Moreover, accurate forecasts play a crucial
role in planning and executing energy-related infrastructure
projects. Techniques used for modeling ICP include ARIMA,
and hybrid of time series regression with ARIMA models.

ARIMA models are a popular and powerful tool for
forecasting time series data, such as sales, prices, or weather.
ARIMA stands for AutoRegressive Integrated Moving
Average, and it captures the patterns, trends, and seasonality
of the data using a combination of past values, differences,
and errors. ARIMA is a model that combines autoregressive
(AR), differencing (I), and moving average (MA) components
to capture the inherent patterns and dependencies within a
time series [1]. The AR component represents the linear
dependence between the current observation and its past
values, while the MA component models the relationship
between the current observation and the residual errors
from previous observations. The I component deals with
differencing operations to achieve stationarity. Many
researchers have worked in their region using ARIMA
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techniques [2] [3] [4] [5].

Time series regression is a statistical modeling technique
used to analyze and forecast future values of a dependent
variable based on its historical patterns and the relationship
with one or more independent variables. It is particularly
useful in analyzing data that is collected over time and exhibits
a sequential dependence. Time series regression models incor-
porate both the time component and the regression component,
allowing for the identification of trends, seasonality, and other
underlying patterns in the data. A hybrid time series regression
and ARIMA models called TSR-ARIMA can improve the
forecasting accuracy [6] [7] [8]. ARIMA models, on the
other hand, typically only consider the historical values of
the time series itself. Hybrid models can integrate regression
techniques to handle non-stationary components and capture
the underlying trends and patterns effectively. Hybrid models
can reduce forecasting errors compared to models that work
independently [9] [10] [11]. Especially in [7] [8], hybrid
TSR-ARIMA model demonstrated excellent performance by
yielding small errors. The data patterns in [7] [8] are similar
to the data patterns used in this paper for ICP. Based on this,
we utilize the hybrid TSR-ARIMA model for forecasting ICP
data. Previous research has utilized ICP data with different
models [12] [13], not employing the hybrid TSR-ARIMA
model. As a comparison to the hybrid TSR-ARIMA model,
this paper uses the ARIMA model.

II. METHODOLOGY

This paper discusses an ARIMA and hybrid TSR-
ARIMA used for predicting the ICP. The ICP is taken from
website https://databoks.katadata.co.id/datapublish/2022
/04/08 /tertinggi-sejak-2013-icp-maret-2022-capai-
us1135-per-bareldataboks.katadata.co.id/1 and
https://databoks.katadata.co.id/datapublish/2022/12/05/harga-
minyak-indonesia-turun-ke-us875-per-barel-pada-november-
2022/2. The data is divided into two groups: one data group
from 2017-2020 as training data and the second group from
2021-November 2022 as testing data.

The steps for ARIMA model are as follows:

a) Plot the training data of ICP to assess the stationarity of
the data. If the data is not stationary, then differencing
may be required.

b) Plot autocorrelation function (ACF) and partial autocor-
relation function (PACF).

¢) Define the order of AR and MA models by using ACF
and PACEF plots.
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d) Test the significance of the parameters in the ARIMA
model.

e) Check the diagnostics of the ARIMA model, i.e., whether
the residuals follow a normal distribution using the
Kolmogorov-Smirnov test and whether they exhibit a
white noise process using the Ljung-Box test.

f) Calculate the error of each model using Mean Absolute
Percentage Error (MAPE) and choose the model with the
lowest MAPE.

The steps for hybrid TSR-ARIMA model are as follows:

a) Modeling the training data of ICP using time series
regression and calculate the residue.

b) Modeling the residue of TSR model using the steps of
ARIMA model a-e.

¢) The forecast of the hybrid TSR-ARIMA model is ob-
tained by summing the forecasts from the TSR model
and the ARIMA model.

d) Calculate the MAPE of each model and choose the model
with the lowest MAPE.

Calculating the MAPE values for testing data of ARIMA and
hybrid TSR-ARIMA models. A good model is a model that
has a smaller MAPE value.

A. ARIMA Model

ARIMA models are a type of linear models that can
effectively capture both stationary and nonstationary time
series. Autoregressive models, on the other hand, are a specific
category within ARIMA models, primarily used for modeling
stationary time series. Unlike other models, ARIMA models
do not incorporate independent variables during their construc-
tion. Instead, they heavily rely on the autocorrelation patterns
present in the data. The ARIMA(p,d,q) model, as described
by Wei [14], can be expressed as follows

¢p(B)(1—B)"Z = 6,(B)& (1)

where ¢, is a Moving Average parameter of order p, 6, is an
Autoregressive parameter of order ¢, B is a backshift operator,
d is an order of differencing, Z; is an actual data at time 7, and
& is an error at time ¢ that assumed to be normally distributed
and independent with mean 0 and variance o7?. The order
of an ARMA(p,q) model can be determined by examining
the autocorrelation and partial autocorrelation patterns of the
autoregressive-moving average model. Hanke and Wichern
[15] provide a summary of these patterns in TableACFand-
PACF, which can be used to identify the appropriate values of
p and g for the model.

TABLE I: The characteristics of ACF and PACF

Model ACF PACF
Cut off after the order .
MA(@) g of the process Die out
AR(p) Dic out Cut off after the order

p of the process

ARMA(p,q) Die out Die out

The parameters ¢, and 6, of the ARIMA (p,d,q) model,
as described in eql, are estimated using the Least Squares
method. It is important to ensure that the residuals of the
ARIMA model follow a normal distribution and exhibit a
white noise process. To test the normality distribution of the
residuals, the Kolmogorov-Smirnov test can be utilized [16].

The null hypothesis assumes that the residuals are normally

distributed. The null hypothesis is rejected if the test statistic
D, which represents the maximum absolute difference between
the empirical cumulative distribution function (S(x)) of the
sample residuals and the cumulative distribution function of a
normal distribution (Fy(x)), exceeds a critical value Dy ,,. The
critical value is determined based on the desired significance
level o and the sample size (n). If the test statistic D exceeds
the critical value Dg ,, the null hypothesis of normality is
rejected, indicating that the residuals do not follow a normal
distribution.
The Ljung-Box Q-statistics is a method used to assess whether
the residuals from an ARIMA (p,d, g) model exhibit character-
istics of a white noise process [17] [18]. Ljung-Box Q-statistic,
given by:

Q=n(n+2)

agls
=

)
=n—k

where n represents the number of data, K is the degrees of
freedom representing the maximum lags considered, and ry is
the sample autocorrelation function at lag k.

Under the null hypothesis that all autocorrelation values (r¢)
are equal to zero, the Q-statistic is compared to critical values
derived from the chi-square distribution with K degrees of
freedom. The degrees of freedom correspond to the maximum
lags considered (K). If the model is correctly specified,
the residuals should be uncorrelated, resulting in a small Q
value and a large probability value. If the calculated Q value
exceeds the critical value from the chi-square distribution, the
null hypothesis of uncorrelated residuals can be rejected.

The MAPE is a metric used to assess the accuracy of
forecasts. A lower MAPE value indicates a more accurate
forecast. In general, the MAPE can be calculated using the
following formula:

Y,-Y,
Y,

n
t=1

MAPE = ’ x 100%.

B. Hybrid TSR-ARIMA Model

The time series regression model, according to Bowerman
and O’Connell [19], can be expressed by eq2

Li=Ti+5+¢& ()

where L; is the response variable at time ¢, 7; is the trend
component at time ¢, S; is the seasonal component at time z,
& is the error at time ¢ assumed to be normally distributed
and independent with mean 0 and variance of o7. If the data
contains a linear trend, eq2 can be written as follows:
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L=T+¢g

The hybrid TSR-ARIMA model combines the TSR and
ARIMA models to forecast data. Zhang [1] presents the hybrid
model formulation as follows:

y=L+Z

where y; represents observation at time ¢, L, represents the
TSR component, Z; represents the ARIMA component. At
first, modelling the data using TSR and the corresponding
forecast ﬁ, at time ¢ is obtained. Then, the residual at time
t is given by e, =y, — L,. Next, modelling the residual using
ARIMA model and the corresponding forecast Z; at time ¢
is obtained. The forecasting using the hybrid TSR-ARIMA
model can be expressed as:

yAt :£t+2t~

III. RESULT AND DISCUSSION

The plot of training data for ICP from January 2017 to
December 2020 is shown in figurel figurel shows that the

Training data
g

b1}

Month  Jan ul Xl

B0 Jui Jan Ju Jan
Year 2017 2018 2015 2020

Fig. 1: Plot of training data

training data follows an upward trend. In January 2020, a
decline begins, which is associated with the outbreak of the
COVID-19 pandemic. Starting from May 2020, there was an
increase.

A. Modeling of ARIMA

The ARIMA modeling begins with testing the stationarity
of the data. figurel shows that the data exhibits an upward
trend, which is further supported by the ACF plot in figure?2.

Fig. 2: Plot ACF of training data

Next, differencing of order 1 is performed, and the plot of
differenced data is shown in figure3, while its corresponding
ACF plot is displayed in figure4 and PACF plot is shown in
figure$.

Differencing 1

Mogh lan 4 ] 1

an FY] 1
Yemr 3017 2018 013

n I
202

Fig. 3: Plot diff 1 of training data
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Fig. 4: Plot ACF of diff 1

figure3 shows that the data has become stationary. This
is further supported by the ACF plot in figure4, which in-
dicates a stationary pattern. figure4 shows that lag one is
outside the confidence interval, suggesting an order of g = 1.
Additionally, figure5 indicates that lag one and lag two are
outside the confidence interval, indicating a possible order
of p =2. Based on these observations, the possible ARIMA
models are ARIMA(0,1,1), ARIMA(1,1,0), ARIMA(1,1,1),
ARIMA(2,1,0), and ARIMA(2,1,1). Next, parameter estima-
tion for these models is performed, and the results are
presented in Table2. Table2 shows that parameter estima-

TABLE II: Estimation of parameters

Model Parameters Coeficient T-value p-value
ARIMA(0,1,1) | MA'1 -0.505 -3.88 0.000
ARIMA(1,1,0) | AR 0.423 3.11 0.003
AR 1 0.151 0.53 0.599
ARIMACLLD 1 vpa -0.407 155 | 0129
AR 1 0.589 4.25 0.000
ARIMA,1.0) | 5R 5 -0.401 289 | 0006
AR 1 -0.562 -3.87 0.000
ARIMA(2,1,1) | AR 2 0.275 1.90 0.064
MA 1 -1.022 -293.24 | 0.000

tion of ARIMA(0,1,1), ARIMA(1,1,0) and ARIMA(2,1,0)
are significant because all parameters have p-value less than
o = 0.05. Meanwhile, ARIMA(1,1,1) and ARIMA(2,1,1) are

Partial A ut ocorre la tios
S o5 oo
F

Fig. 5: Plot PACF of diff 1
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not significant because the parameter has p-value more than
a =0.05. The ARIMA model’s estimated parameter values are
significant, subsequently, a goodness-of-fit test is conducted
to determine whether the model’s residuals follow a normal
distribution and white noise using Kolmogorov-Smirnov and
Ljung-Box tests. The result showed that the residual of three
models are normally distributed and white noise. Next, the
MAPE values for the training data are calculated for the three
models, and the results are presented in table3.

TABLE III: MAPE value for training data of ARIMA

Model MAPE
ARIMA(0,1,1) | 8.18
ARIMA(1,1,0) | 8.55
ARIMA(2,1,0) | 7.52

table3 indicates that the ARIMA(2,1,0) model has the smallest
MAPE value, thus leading to the conclusion that it is the
best model. The model of ARIMA(2,1,0) can be expressed
as follows

% =1.589z,-1 —0.99z;,_> +0.401z,_3 3)

B. 3.2 Modeling of hybrid TSR-ARIMA

The hybrid TSR-ARIMA modeling begins with conducting
a time series regression analysis. figurel shows that the data
exhibits a trend pattern, thus a dummy variable in the form of
time (¢) is included. The results of the time series regression
analysis are presented in eq4.

L, =62.34—0.285¢ 4)

Next, the residuals of the TSR model are modeled using an
ARIMA model. The time series plot of the TSR residuals is
shown in figure6, while the plot of its ACF is presented in
figure7.
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Fig. 6: Plot time series of residue TSR
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Fig. 7: Plot ACF of residue TSR

figure6 and figure7 show that the pattern of residue TSR is
a trend. Based on that, it is necessary to perform differencing.
The ACF and PACEF plots of the differenced residue are shown
in figure8 and figure9, respectively.
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Fig. 9: Plot PACF of diff. residue TSR

Based on the figure8 and figure9, the possible model
for hybrid TSR-ARIMA is TSR-ARIMA(0,1,1), TSR-
ARIMA(1,1,0), TSR-ARIMA(1,1,1), TSR-ARIMA(2,1,0) and
TSR-ARIMA(2,1,1). Next, a significance test is conducted
on the five models, and the results show that the TSR-
ARIMA(1,1,1) model’s parameters are not significant. The
Kolmogorov-Smirnov and Ljung-Box tests of the residuals for
the significant parameter models showed that the residuals are
normally distributed and white noise. The MAPE value for
training data of four TSR-ARIMA models are presented in
table4.

TABLE IV: MAPE value for training data of hybrid TSR-
ARIMA

Model MAPE
ARIMA(0,1,1) | 3.89
ARIMA(1,1,0) | 4.54
ARIMA(2,1,0) | 3.03
ARIMA(2,1,1) | 10.26

table4 indicates that the hybrid TSR-ARIMA(2,1,0) model has
the smallest MAPE value, it means that it is the best model.
Next, the MAPE values for the testing data are calculated for
the ARIMA(2,1,0) and the hybrid TSR-ARIMA(2,1,0) models,
and the results are presented in table5. Plot of testing data,
forecasting data of ARIMA and hybrid TSR-ARIMA can be
found in figurelO.

The MAPE value for the ARIMA(2,1,0) model in table5 is
17.37. This indicates that the forecasting performance of the
ARIMA(2,1,0) model is not very good. As shown in figure10,
the forecasted values from the ARIMA(2,1,0) model are signif-
icantly below the testing data, resulting in a large MAPE value.
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TABLE V: MAPE value for testing data

Model MAPE
ARIMA(2,1,0) 17.37
TSR-ARIMA(2,1,0) | 8.24

i,
TSR AIA

Data
@

Year 2021 202

Fig. 10: Comparison of testing data and forecasting

The TSR-ARIMA(2,1,0) model has MAPE value less than
ARIMA(2,1,0) model. figurelO0 shows that forecasting data
of hybrid TSR-ARIMA(2,1,0) model is closer to the testing
data compared to the forecasting data of ARIMA(2,1,0) model.
This means that the TSR-ARIMA(2,1,0) model is better than
ARIMA(2,1,0) model for forecasting ICP. The hybrid TSR-
ARIMA(2,1,0) forecasting model is the summation of the TSR
model forecast in eq3 and the ARIMA model forecast in eq4,
the result of which is as follows

Vi = 62.34 —0.285¢ + 1.589y, | — 0.99y, 2 +0.401y,_3.

IV. CONCLUSION

The analysis of ICP was conducted using the ARIMA and
hybrid TSR-ARIMA models. Based on the behavior of the
ACF and PACEF plots of the training data, the ARIMA(2,1,0)
model yielded the smallest MAPE. Similarly, for the hybrid
TSR-ARIMA model, the hybrid TSR-ARIMA(2,1,0) model
had the smallest MAPE. The residuals of both models followed
a normal distribution and exhibited white noise character-
istics. When applied to the testing data, the hybrid TSR-
ARIMA(2,1,0) model outperformed the ARIMA(2,1,0) model,
resulting in a smaller MAPE. Therefore, the hybrid TSR-
ARIMA(2,1,0) model is more suitable for forecasting ICP.
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