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Design of Monkeypox Virus Spread Control in
Humans Using Pontryagin Minimum Principle
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Abstract—Monkeypox is a contagious disease caused by a
virus. In Africa, monkeypox results in death in 1 out of 10
infected individuals. The Food and Drug Administration in the
United States recommends vaccination as a preventive measure
against monkeypox virus. If infected, the World Health Organi-
zation (WHO) advises quarantine to prevent further transmission
to others. This research develops a mathematical model known as
SIR (Susceptible-Infected-Recovered) for the spread of monkey-
pox virus, incorporating vaccination and quarantine as control
measures. The SIR model utilized is based on an existing model
and follows the conditions of monkeypox spread in Nigeria, rep-
resented as a system of nonlinear differential equations. Optimal
control is determined using the Pontryagin Minimum Principle
and simulated using the fourth-order forward-backward sweep
Runge-Kutta method to assess the level of monkeypox infection
before and after implementing control measures. Based on the
simulation results, it is concluded that the application of control
measures can reduce the population of infected monkeys by 70%
and infected humans by 59%.

I. INTRODUCTION

S INCE January 2022, 3413 laboratories from 50 countries
have reported the emergence and fatalities associated

with monkeypox, making it a matter of special concern [1].
Monkeypox is a contagious disease caused by a virus. The
virus is typically transmitted to humans through contact with
infected pets or primates, consumption of infected animal
meat, direct contact, or animal scratches or bites. Human-to-
human transmission mainly occurs through direct contact. In
efforts to prevent the spread of monkeypox virus, the U.S.
Food and Drug Administration recommends the use of the
JYNNEOSTM vaccine, which has an effectiveness rate of
85%. For individuals already infected, quarantine is essential
to break the chain of transmission. Additionally, maintaining
personal hygiene, wearing masks, washing utensils with hot
water, and disinfecting contaminated surfaces are advised [2].

This research optimizes the impact of vaccination and
quarantine on the spread of monkeypox virus using the
Pontryagin Maximum/Minimum Principle. The Pontryagin
Maximum/Minimum Principle is a principle used to solve
optimal control problems in the SIR model by finding controls
that maximize or minimize the objective function. It has
the advantage of stating the necessary conditions to obtain
the most optimal control, thereby minimizing the objective
function [3], [4]. The research also utilizes the Runge-Kutta
method to solve the problem numerically. The Runge-Kutta
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method is an alternative method to Taylor series that does not
require derivative calculations [5], [6]. Its advantages include
higher accuracy compared to Euler’s method, Heun’s method,
and Taylor series [7].

Theoretical studies on monkeypox are conducted by mod-
eling them as systems of differential equations. Bhunu et al.
conducted research by modeling the spread of diseases like
monkeypox. The study concluded that the high transmission
rate of monkeypox virus in Central and West Africa is at-
tributed to poor nutrition and poverty, which forces people
to hunt monkeys and wild animals that are infected with
monkeypox. The study also suggests that further research
should estimate the impact of vaccination in reducing monkey-
pox transmission [8]. Another study titled “The Transmission
Potential of Monkeypox Virus in Human Populations” by
Fine et al. concluded that without appropriate interventions,
monkeypox has the potential to become a global health threat
[9].

Considering the numerous reports from laboratories regard-
ing monkeypox cases, it is crucial to control the spread of
this disease. Based on the recommendations from Bhunu’s
research and the preventive measures suggested by the WHO,
this study will apply the Pontryagin Minimum Principle to
suppress the spread of monkeypox virus. It is hoped that
by implementing vaccination and quarantine controls, the
spread of monkeypox virus can be reduced, particularly among
susceptible populations.

II. MODEL FORMULATION

A. Description of the Model

This research develops a model for the spread of monkeypox
virus, which has been previously studied by Bhunu et al., as
shown in the following equations:

dSn

dt
= Λn − (µn +λn)Sn

dIn

dt
= λnSn − (µn +dn +ρn)In

dRn

dt
= ρnIn −µnRn

dSh

dt
= Λh − (µh +λh)Sh

dIh

dt
= λhSh − (µh +dh +ρh)Ih

dRh

dt
= ρhIh −µhRh

Furthermore, in this study, additional control variables are
introduced, including the vaccination rate among susceptible
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humans (u1), the proportion of infected monkeys placed under
quarantine (u2), and the vaccination rate among susceptible
monkeys (u3). As a result, the model is formulated as follows:

dSh

dt
= Λh − [βhIh +(1−u2)βn2In +u1 +µh]Sh

dIh

dt
= [βhIh +(1−u2)βn2In]Sh − (µh +dh +ρh)Ih

dRh

dt
= ρhIh +u1Sh −µhRh

dSn

dt
= Λn − [(1−u2)βn1In +u3 +µn]Sn

dIn

dt
= [(1−u2)βn1In]Sn − (µn +dn +ρn)In

dRn

dt
= u3Sn +ρnIn −µnRn

Where:
• Λh: Birth rate of humans
• Λn: Birth rate of monkeys
• µh: Death rate of humans
• µn: Death rate of monkeys
• dh: Death rate due to monkeypox in humans
• dn: Death rate due to monkeypox in monkeys
• ρh: Natural recovery rate of humans
• ρn: Natural recovery rate of monkeys
• βn1: Transmission rate of monkeypox in monkeys from

contact with monkeys
• βn2: Transmission rate of monkeypox in humans from

contact with monkeys
• βh: Transmission rate of monkeypox in humans from

contact with humans
• Sh: Population of susceptible humans
• Ih: Population of infected humans
• Rh: Population of recovered humans
• Sn: Population of susceptible monkeys
• In: Population of infected monkeys
• Rn: Population of recovered monkeys

B. The Equilibrium Points

The equilibrium points of the system of equations are
obtained when:

dSh

dt
= 0

dIh

dt
= 0

dRh

dt
= 0

dSn

dt
= 0

dIn

dt
= 0

dRn

dt
= 0

The disease-free equilibrium point is a condition where
there is no spread of monkeypox virus in a population,
resulting in no infected population (Ih = 0, In = 0). Thus, the
disease-free equilibrium point can be obtained as follows:

E0 =

(
Λh

u1ωv +µh
,0,

u1γωvΛh

µh(u1ωv +µh)
,

Λn

u3ωk +µn
,0,

u3ωkθnΛn

(u3ωkθn +µn)µn

)

The endemic equilibrium points are used to indicate the
potential occurrence of disease transmission. In essence, there
are three possible endemic equilibrium states mathematically:
the specific monkey endemic equilibrium, the specific human
endemic equilibrium, and the equilibrium state where the
disease coexists between humans and animals. Based on the
fact that monkeypox infection is primarily transmitted from
animals to humans, analyzing the endemic equilibrium solely
in humans is not necessary since human-to-human transmis-
sion of monkeypox rarely causes outbreaks.

The specific animal endemic equilibrium point occurs when
there is only infection from animal to animal, no infection
from human to human, and no infection from animal to
human (βn2 = βh = 0). Therefore, the endemic equilibrium
point specific to animal disease can be obtained as follows:

E∗
1 = (S∗h,0,R

∗
h,S

∗
n, I

∗
n ,R

∗
n)

S∗h =
Λh

u1 +µh

R∗
h =

u1S∗h
µh

S∗n =
Λn − (ρn +µn +dn)I∗n

u3 +µn

I∗n =
Λn −µn

dn

R∗
n =

u3S∗n +ρnI∗n
µn

The endemic equilibrium points in humans and monkeys
occur when there is transmission from animal to animal, ani-
mal to human, and human to human. The endemic equilibrium
points in this model can be obtained as follows:

E∗
2 = (S∗h, I

∗
h ,R

∗
h,S

∗
n, I

∗
n ,R

∗
n)

S∗h =
Λh − (µh +dh +ρh)I∗h

u1 +µh

I∗h =
Λh −µh

dh

R∗
h =

ρhI∗h +u1S∗h
µh

S∗n =
Λn − (ρn +µn +dn)I∗n

u3 +µn

I∗n =
Λn −µn

dn

R∗
n =

u3S∗n +ρnI∗n
µn

C. The Basic Reproduction Number

The basic reproduction number, denoted as R0, is the
expected number of infections generated by a single infected
individual in a susceptible population within a unit of time.
In this research, the analysis of the reproduction number is
conducted without implementing any control measures. The
determination of the basic reproduction number is performed
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using the Next Generation Matrix (NGM) method. The Next
Generation Matrix is defined as follows:

K = FV−1 =

(
Λhβh

µh(dh+µh+ρh)
Λhβn1

µh(dh+µh+ρh)

0 Λnβn1
µn(dn+µn+ρn)

)
Therefore, the basic reproduction number of the monkeypox

disease model is given by:

R0 = {R0,n,R0,h}

where R0,n and R0,h are the basic reproduction numbers for
monkeys and humans, respectively, with the following values:

R0,n =
Λnβn1

µn(dn +µn +ρn)

R0,h =
Λhβh

µh(dh +µh +ρh)

The disease-free equilibrium point will be asymptotically
stable if R0 < 1 and unstable if R0 > 1, where R0 =
max{R0,n,R0,h}.

D. Local Stability

Local stability refers to the stability of a linear system or the
stability of the linearization of a nonlinear system. The local
stability at an equilibrium point is determined by the signs
of the real parts of the characteristic roots of the system’s
Jacobian matrix computed around the equilibrium point. In
the case of a nonlinear system, it needs to be linearized to
obtain a linear system form. The following are the properties
of local stability around an equilibrium point.

1) An equilibrium point is said to be asymptotically stable
if and only if Re(λi)< 0 for every i = 1,2, . . . ,n.

2) An equilibrium point is said to be stable if and only if
Re(λi)≤ 0 for every i = 1,2, . . . ,n.

3) An equilibrium point is said to be unstable if and only if
Re(λi)> 0 for every i = 1,2, . . . ,n.

To analyze the stability, we will determine the equilibrium
points of the dengue fever transmission model. The equilib-
rium points obtained are the disease-free equilibrium E∗

0 =
(S∗h,0,R

∗
h,S

∗
n,0,R

∗
n), the endemic equilibrium specific to an-

imals E∗
1 = (S∗h,0,0,S

∗
n, I

∗
n ,R

∗
n), and the endemic equilibrium

for both animals and humans E∗
2 = (S∗h, I

∗
h ,R

∗
h,S

∗
n, I

∗
n ,R

∗
n). Next,

stability analysis is performed by finding the eigenvalues
around the equilibrium points. It is found that the system is
asymptotically stable towards the disease-free equilibrium and
the endemic equilibrium if all eigenvalues have negative real
parts (λ < 0).

E. Controllability Analysis

A system can be controlled if, based on control analysis, it
is deemed controllable. The necessary and sufficient condition
for a controllable system is as follows:

w(0, t1) =
∫ t1

0
e−AT BBT e−AT T dT is non-singular

The matrix Mc = (B | AB | A2B | · · · | An−1B) has the same rank
as n.

Before conducting the control analysis, the model is con-
structed by adding the desired controls. In this study, con-
trols u1 and u2 are given, which represent vaccination and
quarantine controls, respectively. The controls are restricted to
0 ≤ u ≤ 1. This leads to the state-space representation, and the
matrices A and B are obtained as follows.

A=


−a1−a2−a3−µh −a4 0 0 0 0

a1+a2 a4−µh−ρh−dh 0 0 0 0
a3 ρh −µh 0 0 0
0 0 0 −a5−µn−a8 0 0
0 0 0 a5 −a6 0
0 0 0 0 a6 −µn−ρn−dn


Where:

a1 = βhIh

a2 = (1−u2)βn2In

a3 = u1

a4 = βhSh

a5 = (1−u2)βn1In

a6 = (1−u2)βn2Sh

a7 = (1−u2)βn1Sn

a8 = u3

B =


−Sh InShβn2 0
Sh −InShβn2 0
0 0 0
0 InSnβn1 0
0 −InSnβn1 0
0 0 0


Next, the rank of Mc = [B | AB | A2B | A3B | A4B | A5B] is

calculated to analyze controllability. If rank(Mc) = 6, then the
monkeypox spread model is a controllable system.

III. RESEARCH METHOD

The research was conducted using the following steps:
1) Literature review on mathematical modeling of monkey-

pox virus spread.
2) Modification of the mathematical model of monkeypox

virus with vaccination and quarantine.
3) Determination of equilibrium points and analysis of their

stability in the modified mathematical model of monkey-
pox virus spread.

4) Control solution using the Pontryagin’s Minimum Prin-
ciple (PMP) method.

5) Numerical simulation of the modified mathematical
model of monkeypox virus spread.

6) Drawing conclusions and preparing the final report.

IV. RESULTS AND DISCUSSIONS

A. Formulation and Solution of the Optimal Control Problem

The formulation of an optimal control problem consists
of mathematically describing a system or model, determining
an objective function, and specifying constraints or boundary
conditions, with the aim of finding the value of u(t) that can
optimize the objective function.
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In this study, the objective function to be minimized is:

J(u1,u2)=
∫ t f

0

(
Ih(t)+ In(t)+

1
2

(
C1u2

1(t)+C2u2
2(t)+C3u2

3(t)
))

dt

where Ih represents the population of infected humans and In
represents the population of infected monkeys, C1 is the cost
weight coefficient for human vaccination control, C2 is the
cost weight coefficient for infected monkey quarantine control,
and C3 is the cost weight coefficient for vulnerable monkey
quarantine control. In other words, the infected population
will be minimized by implementing vaccination and quarantine
measures with minimum cost.

The Minimum Pontryagin’s Principle is used to obtain the
optimal control in a dynamic system from the initial state to the
final state by minimizing the objective function with control
u(t) restricted to u(t) ∈ U . The steps to solve the optimal
control problem using the Pontryagin’s Minimum Principle
are as follows.

Step 1: Formulate the Hamiltonian function

H = Ih + In +
1
2
(
C1u2

1 +C2u2
2 +C3u2

3
)

+λSh [Λh − (βhIh +(1−u2)βn2In +u1 +µh)Sh]

+λIh [(βhIh +(1−u2)βn2In)Sh − (µh +dh +ρh) Ih]

+λRh [ρhIh +u1Sh −µhRh]

+λSn [Λn − ((1−u2)βn1In +u3 +µn)Sn]

+λIn [(1−u2)βn1InSn − (µn +dn +ρn) In]

+λRn [u3Sn +ρnIn −µnRn]

Step 2: Minimize H to all control vectors u(t) to
determine the stationary conditions.

1)

∂H
∂u1

= 0

C1uc
1 +(λRh −λSh )ωvSh = 0

uc
1 =

(λSh −λRh )Sh

C1

2)

∂H
∂u2

= 0

C2uc
2 +(λSh −λIh )(βn2InSh)

+(λSn −λIn )(βn1InSn) = 0

uc
2 =

(λIn −λSn )βn1InSn +(λSh −λIh )βn2InSh

C2

3)

∂H
∂u3

= 0

C3uc
3 +(λRn −λSn )Sn = 0

uc
3 =

(λSn −λRn )Sn

C3

Step 3: Use the result from Step 2 by substituting it into
Step 1 and determine the optimal H .

H∗ = Ih + In +
1
2
(
C1u∗2

1 +C2u∗2
2 +C3u∗2

3
)

+λSh [Λh − (βhIh +(1−u∗2)βn2In +u∗1 +µh)Sh]

+λIh [(βhIh +(1−u∗2)βn2In)Sh − (µh +dh +ρh) Ih]

+λRh [ρhIh +u∗1Sh −µhRh]

+λSn [Λn − ((1−u∗2)βn1In +u∗3 +µn)Sn]

+λIn [(1−u∗2)βn1InSn − (µn +dn +ρn) In]

+λRn [u
∗
3Sn +ρnIn −µnRn]

Step 4: Solve the state equations

Ṡh
∗
=

∂H
∂λSh

= Λh − (βhIh +(1−u2)βn2In +u1 +µh)Sh,

İh
∗
=

∂H
∂λIh

= (βhIh +(1−u2)βn2In)Sh − (µh +dh +ρh) Ih,

Ṙh
∗
=

∂H
∂λRh

= ρhIh +u1ωvSh −µhRh,

Ṡn
∗
=

∂H
∂λSn

= Λn − ((1−u2)βn1In +u3 +µn)Sn,

İn
∗
=

∂H
∂λIn

= (1−u2)βn1InSn − (µn +dn +ρn) In,

Ṙn
∗
=

∂H
∂λRn

= ρnIn +u3Sn −µnRn.

And the costate

λ
′
Sh

=− ∂H
∂Sh

= (λSh −λIh) [βhIh +(1−u2)βn2In]+ (λSh −λRh)u1 +µhλSh ,

λ
′
Ih
=−∂H

∂ Ih
=−1+(λSh −λIh) [βhSh]+ (µh +dh +ρh)λIh −ρhλRh ,

λ
′
Rh

=− ∂H
∂Rh

= µhλRh ,

λ
′
Sn

=− ∂H
∂Sn

= (λSn −λIn) [(1−u2)βn1In]+ (λSn −λRn)u3 +λSn µn,

λ
′
In
=−∂H

∂ In
=−1+(λSh −λIh) [(1−u2)βn2Sh]+ (λSn −λIn) [(1−u2)βn1Sn]

+ (µn +dn +ρn)λIn −ρnλRn ,

λ
′
Rn

=− ∂H
∂Rn

= µnλRn .

B. Numerical Solution

The Runge-Kutta method is a numerical method used to
solve initial value problems in differential equations. The
Runge-Kutta method provides smaller errors compared to
other numerical methods such as the Euler method and the
Heun method. The fourth-order Runge-Kutta method is widely
used because it offers higher accuracy. Let’s consider the
following differential equation as an example:

dy
dx

= f (x,y)

In the fourth-order Runge-Kutta method, it is formulated as
follows:

yn+1 = yn +
h
6
(k1 +2k2 +2k3 + k4)

with,

k1 = f (xn,yn),

k2 = f
(

xn +
h
2
,yn +

k1

2

)
,

k3 = f
(

xn +
h
2
,yn +

k2

2

)
,
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k4 = f (xn +h,yn + k3).

To obtain the optimal control, a numerical solution using the
fourth-order forward-backward sweep Runge-Kutta method is
required. This is done because the state equation is given
by Sh(0) = Sh0,Sn(0) = Sn0, Ih(0) = Ih0, In(0) = In0,Rh(0) =
Rh0,Rn(0) = Rn0, while the costate equation is given by the
final values

λ1(T ) = λ2(T ) = λ3(T ) = λ4(T ) = λ5(T ) = λ6(T ) = 0.

C. Analysis of Simulation Results

In this discussion, the initial conditions for each population
are given as follows:

Sh(0) = 0.6, Ih(0) = 0.4, Rh(0) = 0,

Sn(0) = 0.6, In(0) = 0.4, Rn(0) = 0.

According to the development of monkeypox cases in
Nigeria, the parameters of this study are obtained from the
research conducted by Bhunu et al. [5] with the following
values.

TABLE I: Model Parameter Values

Parameter Value Description
Λn 0.2yr−1 birth rate of monkeys
Λh 0.029yr−1 birth rate of humans
µn 0.15yr−1 death rate of monkeys
µh 0.02yr−1 death rate of humans
ρn 0.3yr−1 natural recovery rate of monkeys
ρh 0.33yr−1 natural recovery rate of humans
dn 0.2yr−1 death rate due to monkeypox in monkeys
dh 0.1yr−1 death rate due to monkeypox in humans
βn1 0.87yr−1 [l]transmission rate of monkeypox in

monkeys from contact with monkeys
βn2 0.62yr−1 [l]transmission rate of monkeypox in

humans from contact with monkeys
βh 0.73yr−1 [l]transmission rate of monkeypox in

humans from contact with humans

With the simulation results as follows:

Fig. 1: Graph of Infected Monkey Population

Figure 1 and 2 show a decrease in the population of
infected humans and monkeys. The simulation results indicate

Fig. 2: Graph of Infected Human Population

that implementing control measures reduces the population
by 40%. This decrease occurs because the control measures
inhibit the spread of the virus.

Fig. 3: Graph of Susceptible Monkey Population

From Figure 3, the monkey population experiences a decline
in the first two years due to the movement of vulnerable
monkey population towards the recovered monkey population
through quarantine measures. However, the population starts
to increase as the control over quarantine measures decreases.

From Figure 4, there is a decrease in the susceptible human
population from the first year to the fourth year. This decline
in population in the simulation is due to the movement of
susceptible humans towards the recovered human population
through vaccination. However, after the fourth year, the sus-
ceptible population starts to increase as the vaccination control
in humans decreases.

From Figure 5, it can be observed that there is an increase
in the population of recovered monkeys. The simulation shows
a 20% increase in the population, which is attributed to
the influence of the movement from the vulnerable monkey
population towards the recovered monkey population through
quarantine measures.
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Fig. 4: Graph of Susceptible Human Population

Fig. 5: Graph of Recovered Monkey Population

Fig. 6: Graph of Recovered Human Population

In Figure 6, there is a 5% increase in the population in the
simulation. This increase is due to the movement from the
susceptible human population towards the recovered human
population through vaccination.

Fig. 7: Graph of Recovered Monkey Population

Figure 7 shows that the green line represents the vaccination
rate (u1), the blue line represents the quarantine control on
infected monkeys (u2), and the yellow line represents the
quarantine control on vulnerable monkeys (u3). In the year
when vaccination and quarantine control measures are im-
plemented, the required vaccination rate for the susceptible
human population is 1 per year, the proportion of infected
monkeys to be quarantined is 0.1, and the required quarantine
rate for the vulnerable monkey population is 0.66 per year.

V. CONCLUSIONS

Based on the previous analysis and discussion, several
conclusions can be drawn as follows:

1) The mathematical model developed for the simulation is
as follows:

dSh

dt
= Λh − [βhIh +(1−u2)βn2In +u1 +µh]Sh,

dIh

dt
= [βhIh +(1−u2)βn2In]Sh − (µh +dh +ρh) Ih,

dRh

dt
= ρhIh +u1Sh −µhRh,

dSn

dt
= Λn − [(1−u2)βn1In +u3 +µn]Sn,

dIn

dt
= [(1−u2)βn1In]Sn − (µn +dn +ρn) In,

dRn

dt
= u3Sn +ρnIn −µnRn.

2) By using the Maximum Pontryagin’s Principle, the opti-
mal control u obtained from the mathematical model of
monkeypox spread is as follows:

uc
1 =

(λSh −λRh)Sh

C1
,

uc
2 =

(λIn −λSn)(βn1InSn)+(λIh −λSh)(βn2InSh)

C2
,
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uc
3 =

(λSn −λRn)Sn

C3
.

3) The simulation results after implementing the control
measures indicate that the population of infected monkeys
and humans can be reduced by 40
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