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Optimal Control of the Spread of Dengue Fever by
Controlling the Vectors Growth Affected by Climate

Change and Treatment
Basuki Widodo, Nur Asiyah, Aulia Rahma, Kamiran, and Chairul Imron

Abstract—Dengue Hemorrhagic Fever (DHF) is an infectious
disease caused by the dengue virus and is spread through the
bite of an adult female Aedes aegypti mosquito, as a vector
(disease-carrying animal), to humans. This disease is still a major
health problem in tropical and subtropical regions. Indonesia is
reported as the 2nd highest country among 30 other endemic
countries. Warm temperatures during the rainy season are ideal
conditions for mosquitoes to lay eggs optimally, increasing egg
maturity, and shortening the virus incubation period. This has an
impact on increasing the number of mosquitoes and the risk of
disease transmission. In this study, control of DHF was carried
out by controlling the growth of vectors in the egg and adult
phases of mosquitoes, which were influenced by rainfall and
air temperature, as well as the treatment of infected humans.
Before carrying out the control, stability analysis around the
equilibrium point is first conducted. Next, the numerical solution
is obtained using the Runge-Kutta method of order 4 with the
help of MATLAB software. The results of the analysis show
that, based on the optimal control effect in the form of mosquito
egg death (k1), adult mosquito death (k2), and human treatment
(k3), in the cities of Pekanbaru and Solok, there is not much
difference between the two. However, there is a slight difference
in the increase in the human population that is susceptible to
disease.

Index Terms—Climate Change, Dengue Fever, Optimal Con-
trol, Treatment, Vector Growth.

I. INTRODUCTION

DENGUE Hemorrhagic Fever (DHF) is an infectious
disease caused by a virus and spread by vectors (disease-

carrying animals). Dengue fever is transmitted through the
bite of an adult female Aedes aegypti mosquito infected
with the dengue virus to humans. The habitat of the Aedes
aegypti mosquito is generally in areas with high rainfall, hot
temperatures, and humidity, which means that this disease is
still a major health problem in tropical and subtropical regions.
Indonesia is reported as the 2nd highest country among 30
other endemic countries [1]. The number of DHF cases in
Indonesia fluctuates every year. DHF cases in Indonesia in
2020 recorded 108,303 cases and 747 deaths. In 2021 there
were 73,518 cases of DHF with a total of 705 deaths, while in
2022 there were 131,265 dengue cases and 1,183 deaths [2].

The main factors triggering the rapid transmission or spread
of DHF are climate (such as rainfall, temperature, and humid-
ity), population density, and public awareness in maintaining
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environmental sanitation. Another factor is the intrinsic nature
of the Aedes aegypti mosquito, which is very tough [3].
Extreme temperatures can kill vectors, but warm temperatures
can increase their survival. Continuous rainfall causes the
availability of Mosquito Breeding Sites (MBS) to increase, as
well as warm temperatures during the rainy season, creating
ideal conditions for mosquitoes to lay eggs optimally, increase
egg maturity, and shorten the virus incubation period. This, in
turn, increases the mosquito population and the risk of disease
transmission [4].

As a disease that is not transmitted directly from human
to human, DHF control can be carried out by breaking the
chain of transmission of the virus by reducing the number
of Aedes aegypti mosquitoes. Eradicating mosquitoes, which
are the vectors for the spread of dengue fever, is the primary
prevention method to control its spread. Research conducted
by [6] shows that when control resources are limited, it is
more effective to apply vector control and transmission control
than vaccination. One method is administering larvicides to
Mosquito Breeding Sites (MBS) to kill mosquito eggs and
spraying insecticides in the home environment or areas where
mosquitoes breed to reduce the adult mosquito population [5].

Based on the problems above, the research conducted opti-
mal control of DHF by controlling the growth of the vector in
the egg and adult phases of mosquitoes, which are affected
by rainfall and air temperature. The controls implemented
included applying larvicides to MBS to kill mosquito eggs,
spraying insecticides in areas where mosquitoes develop, and
managing the treatment of infected humans. Before apply-
ing the control measures, a stability analysis was performed
around the equilibrium point. Furthermore, numerical solu-
tions were computed using the Runge-Kutta method of order
4, with the assistance of MATLAB software.

II. RESEARCH METHOD

A. Study of literature

At this stage a literature study was carried out by identifying
problems from the topics, namely regarding the spread of
dengue fever, the effect of climate change on mosquito growth,
the theory of optimal control with its completion using the
Pontryagin Minimum Principle and the theory of numerical
simulation using the Runge-Kutta Order 4 method. The studies
used at this stage are from a number of books, research
journals, articles, research, and another research.
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B. Model Formulation

At this stage, the development of a model of the spread
of DHF disease is carried out, analysis of stability around
the equilibrium point, linearization, provision of control, and
determining the objective function and boundary conditions.

C. Numerical Simulation and Results Analysis

At this stage a numerical simulation was carried out using
the Runge-Kutta method of order 4 with the help of Matlab
software. Then the analysis of the results is carried out on the
simulation results that have been carried out.

D. Conclusions and Suggestions

Furthermore, conclusions are drawn on the results of the
discussion, simulation, and analysis that has been carried out
and providing criticism and suggestions so that this research
can be used as a reference for further research.

III. RESULTS AND DISCUSSION
A. Development of Dengue Fever Spread Model with Optimal
Control

Model of the spread of dengue fever by adding the
optimal control variable into the compartment diagram as
shown in Figure 1. Mathematical Model of Dengue Epidemic

Fig. 1: Compartment Diagram of the Dengue Epidemic Model
with the Effects of Climate and Treatment

with Effects of Climate and Treatment, as follow equations,
i.e.Equation 1-8, respectively:

dSe

dt
= bv

(
1−ν

(
Iv

Sv +Ev + Iv

))
− (1+ k1)µeSe − (1− k1)ωSe,

dIe

dt
= bvν

(
Iv

Sv +Ev + Iv

)
− (1+ k1)µeIe − (1− k1)ωIe,

dSv

dt
= (1− k1)ωSe −β

Ihk3

Nh
Sv − (µv + k2)Sv,

dEv

dt
= β

Ihk3

Nh
Sv − εEv − (µv + k2)Ev,

dIv

dt
= εEv +(1− k1)ωIe − (µv + k2)Iv,

dIh

dt
= β

Sh

Nh
Iv − γhk3,

dSh

dt
= µhNh −β

Sh

Nh
Iv −µhSh,

dRh

dt
= γhk3 −µhRh.

Notation and variable definition of each parameter are as
follows.
Se: Susceptible mosquito eggs,
Ie: Mosquito eggs infected with dengue virus,
Sv: Sub class of susceptible mosquito population,
Ev: Sub class of mosquito population exposed but not yet
infected,
Iv: Sub class of mosquito population infected with dengue
virus,
Sh: sub class of susceptible human population,
Ih: Sub class of human population infected with dengue virus,
Rh: Subclass of human population that recovered from dengue
virus infection,
bv: Oviposition rate of adult mosquitoes,
ω: Mosquito egg hatching rate,
µh: The natural birth or death rate of humans,
µe: Mosquito egg death rate,
β : Probability of spread of disease by the bite of an infected
mosquito to susceptible humans,
ε: Dengue virus incubation period,
γ: The rate of migration of infected human populations to
cured humans,
v: Proportion of vertical infection incidence of adult female
mosquitoes to mosquito eggs,
k1: Percentage of mosquito egg mortality due to insecticides,
k2: Percentage of adult mosquito mortality due to fogging,
k3: Percentage of treatment in humans,

B. Equilibrium Point Analysis

To analyze the stability of the dengue fever model, an
equilibrium point will be sought in Equations (1) - (8).
In order to obtain a disease-free equilib-
rium point E0

(
S∗e , I

∗
e ,S

∗
v ,E

∗
v , I

∗
v ,S

∗
h, I

∗
h ,R

∗
h

)
=(

bv
(1+k1)µe−(1−k1)ω

,0, (1−k1)ωbv
(µv+k2)((1+k1)µe−(1−k1)ω) ,0,0,Nh,0,0

)
and an endemic equilibrium point
E1
(
S∗∗e , I∗∗e ,S∗∗v ,E∗∗

v , I∗∗v ,S∗∗h , I∗∗h ,R∗∗
h

)
with,

S∗∗e =
bv − Ie(A+B)

A+B

I∗∗e =
bvvIv

(Sv +Ev + Iv)(A+B)

S∗∗v =
BSe − (ε +C)Ev

C

E∗∗
v =

β (Ihk3)

Nh(ε +C)
Sv

S∗∗h =
µhN2

h
β Iv +µhNh

I∗∗h =
µh(Nh −Sh)

µhk3 − γhk3

R∗∗
h =

γhIhk3

µh
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C. Linearization

The model for the spread of dengue hemorrhagic fever is a
non-linear model, so it is necessary to conduct linearization to
analyze stability. The linearization of the model for the spread
of dengue hemorrhagic fever uses the Taylor series expansion
of Equations (1) - (8) to obtain the Jacobian matrix as follows.

J =



j11 0 j13 0 j15 0 0 0
0 j22 j23 j24 j25 0 0 0
j31 0 j33 j43 0 0 j37 0
0 0 j43 j44 j54 0 j47 0
0 0 0 ε j55 0 j65 0
0 0 0 0 0 j66 j76 0
0 0 j37 0 j75 j76 j77 j87
0 0 0 0 0 0 j87 j88


with,

j11 =−(1+ k1)µe − (1− k1)ω

j13 =
bvvIv

(Sv +Ev + Iv)2

j14 = bvv
(

Iv

(Sv +Ev + Iv)2

)
j15 = bvv

(
Iv

(Sv +Ev + Iv)2

)
j22 =−(1+ k1)µe − (1− k1)ω

j23 =−bvv
(

Iv

(Sv +Ev + Iv)2

)
j24 =−bvv

(
Iv

(Sv +Ev + Iv)2

)
j25 =−bvv

(
Iv

(Sv +Ev + Iv)2

)
j31 = (1− k1)ω

j33 =−β Ihk3

Nh
− (µv + k2)

j37 =−βk3

Nh
Sv

j43 =
β Ihk3

Nh

j44 =−ε − (µv + k2)

j47 =
βk3

Nh
Sv

j52 = (1− k1)ω

j54 = ε

j55 =−(µv + k2)

j65 =−βSh

Nh

j66 =−β Iv

Nh
−µh

j75 =
βSh

Nh

j76 =−µhk3 − γhk3

j77 =−µhk3 − γhk3

j87 = γhk3

j88 =−µh

D. Numerical Simulation and Results Analysis

In this section, the results of numerical simulations of
the dengue hemorrhagic fever model are presented using the
parameters of the equation to obtain stability, controllability,
and comparison of the results of numerical simulations with
control and without control.
In Tables 1 and 2 below, the initial values of the variables and
parameters used in this numerical simulation are presented.

TABLE I: Initial Value of Model Variables of Dengue Fever
Spread

Parameter Pekanbaru Solo Source
bv 0.3614758369 0.2840196049 [5]
ω 1.7891486 1.31076641 [5]
µh 0.0249 0.0199 [5]
µe 0.3644277688 0.3274149631 [5]
µv 0.006469390419 0.01743452765 [5]
β 0.02076941776 0.01255547746 [5]
ε 0.2955969909 0.3402025690 [5]
γ 0.0007690192 0.001424585 [5]
v 0.028 0.028 [5]
k1 0.80 0.80 [5]
k2 0.75 0.75 [5]
k3 0.90 0.90 [5]

TABLE II: Variables Value of Dengue Model

Variables Pekanbaru Solok Source
Se 1,000,000 100,000 [5]
Ie 50,000 5,000 [5]
Sv 100,000 7,000 [5]
Ev 5,000 350 [5]
Iv 200 25 [5]
Sh 1,091,083 68,607 [5]
Ih 15 10 [5]
Rh 14 9 [5]

E. Stability Analysis of Disease-Free Equilibrium Points

Stability analysis was carried out by substituting the disease-
free equilibrium point into the Jacobian matrix, in order to
obtain the following equation:

(−(1+ k1)µe − (1− k1)ω −λ )

(−(1+ k1)µe − (1− k1)ω −λ )

(−(µv + k2)−λ )

(−ε − (µv + k2)−λ )

(−(µv + k2)−λ )

(−µh −λ )

(−µhk3 − γhk3 −λ )

(−µh −λ ) = 0

Thus, the eigenvalues are obtained:

λ1 =−(1+ k1)µe − (1− k1)ω

λ2 =−(1+ k1)µe − (1− k1)ω

λ3 =−(µv + k2)
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λ4 =−ε − (µv + k2)

λ5 =−(µv + k2)

λ6 =−µh

λ7 =−µhk3 − γhk3

λ8 =−µh

By substituting the existing parameters, we get:

λ1 =−1.01379970384
λ2 =−1.01379970384
λ3 =−0.756469390419
λ4 =−1.052066381319
λ5 =−0.756469390419
λ6 =−0.0249
λ7 =−0.02310211728
λ8 =−0.0249

Therefore, since all eigenvalues are negative, the system is
said to be asymptotically stable at the disease-free equilibrium
point.

STABILITY ANALYSIS OF ENDEMIC EQUILIBRIUM POINT

Furthermore, stability analysis is carried out by substituting
endemic equilibrium points into the Jacobian matrix, so that
the following equation is obtained:

(−(1+ k1)µe − (1− k1)ω −λ )

(−(1+ k1)µe − (1− k1)ω −λ )(
−β

(
µh(Nh −Sh)

Nh(µh − γh)

)
− (µv + k2)−λ

)
(−ε − (µv + k2)−λ )

(−(µv + k2)−λ )(
−β

(
εEv +BIe

NhC

)
−µh −λ

)
(−µhk3 − γhk3 −λ )

(−µh −λ ) = 0

So the eigenvalues are obtained as follows:

λ1 =−(1+ k1)µe − (1− k1)ω

λ2 =−(1+ k1)µe − (1− k1)ω

λ3 =−β

(
µh(Nh −Sh)

Nh(µh − γh)

)
− (µv + k2)

λ4 =−ε − (µv + k2)

λ5 =−(µv + k2)

λ6 =−β

(
εEv +BIe

NhC

)
−µh

λ7 =−µhk3 − γhk3

λ8 =−µh

By entering the existing parameters, we get:

λ1 =−1.01379970384
λ2 =−1.01379970384

λ3 =−0.00000057
λ4 =−1.052066381319
λ5 =−0.756469390419
λ6 =−0.00028885
λ7 =−0.02310211728
λ8 =−0.0249

Thus, since all eigenvalues are negative, the system is said
to be asymptotically stable at the endemic equilibrium point.

STABILITY ANALYSIS OF ENDEMIC EQUILIBRIUM POINT

Furthermore, stability analysis is carried out by substituting
endemic equilibrium points into the Jacobian matrix, so that
the following equation is obtained:

(−(1+ k1)µe − (1− k1)ω −λ )

(−(1+ k1)µe − (1− k1)ω −λ )(
−β

(
µh(Nh −Sh)

Nh(µh − γh)

)
− (µv + k2)−λ

)
(−ε − (µv + k2)−λ )

(−(µv + k2)−λ )(
−β

(
εEv +BIe

NhC

)
−µh −λ

)
(−µhk3 − γhk3 −λ )

(−µh −λ ) = 0

So the eigenvalues are obtained as follows:

λ1 =−(1+ k1)µe − (1− k1)ω

λ2 =−(1+ k1)µe − (1− k1)ω

λ3 =−β

(
µh(Nh −Sh)

Nh(µh − γh)

)
− (µv + k2)

λ4 =−ε − (µv + k2)

λ5 =−(µv + k2)

λ6 =−β

(
εEv +BIe

NhC

)
−µh

λ7 =−µhk3 − γhk3

λ8 =−µh

By substituting the existing parameters, we get:

λ1 =−1.01379970384
λ2 =−1.01379970384
λ3 =−0.00000057
λ4 =−1.052066381319
λ5 =−0.756469390419
λ6 =−0.00028885
λ7 =−0.02310211728
λ8 =−0.0249

Therefore, since all eigenvalues are negative, the system is
said to be asymptotically stable at the endemic equilibrium
point.
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CONTROLLABILITY

From Equations (1) to (8), if Se = x1, Ie = x2,Sv = x3,Ev =
x4, Iv = x5,Sh = x6, Ih = x7, and Rh = x8, the state space is
obtained as follows:

ẋ1
ẋ2
ẋ3
ẋ4
ẋ5
ẋ6
ẋ7
ẋ8


=



a11 0 a31 0 0 0 0 0
0 a22 0 0 a52 0 0 0

a13 a23 a33 a43 0 0 0 0
a14 a24 0 a44 a54 0 0 0
a15 a25 0 0 a55 a65 a75 0
0 0 0 0 a66 a76 0 0
0 0 a37 a47 0 0 a77 a78
0 0 0 0 0 0 0 a88





x1
x2
x3
x4
x5
x6
x7
x8


+B

k1
k2
k3



(1)
where

A =



a11 0 a31 0 0 0 0 0
0 a22 0 0 a52 0 0 0

a13 a23 a33 a43 0 0 0 0
a14 a24 0 a44 a54 0 0 0
a15 a25 0 0 a55 a65 a75 0
0 0 0 0 a66 a76 0 0
0 0 a37 a47 0 0 a77 a78
0 0 0 0 0 0 0 a88


with

a11 =−(1+ k1)µe − (1− k1)ω,

a13 = bvv
(

Iv

(Sv +Ev + Iv)2

)
,

a14 = bvv
(

Iv

(Sv +Ev + Iv)2

)
,

a15 = bvv
(

Iv

(Sv +Ev + Iv)2

)
,

a22 =−(1+ k1)µe − (1− k1)ω,

a23 =−bvv
(

Iv

(Sv +Ev + Iv)2

)
,

a24 =−bvv
(

Iv

(Sv +Ev + Iv)2

)
,

a25 = bvv
(

Iv

(Sv +Ev + Iv)2

)
,

a31 = (1− k1)ω,

a33 =−β
Ihk3

Nh
− (µv + k2),

a37 =−β
k3

Nh
Sv,

a43 = β
Ihk3

Nh
,

a44 =−ε − (µv + k2),

a47 = β
k3

Nh
Sv,

a52 = (1− k1)ω,

a54 = ε,

a55 =−(µv + k2),

a65 =−β
Sh

Nh
,

a66 =−β
Iv

Nh
−µh,

a75 = β
Sh

Nh
,

a76 =−µhk3 − γhk3,

a77 =−µhk3 − γhk3,

a87 = γhk3,

a88 =−µh.

and matrix B3×3 So that a controllable matrix Mc is obtained
which has the same rank as the matrix A so that the system
is said to be controlled.

BASIC REPRODUCTION NUMBER

The basic reproduction number R0 represents the average
number of infected individuals per unit of time. To calculate
R0, the next-generation matrix of the infected equations can
be used as follows:

dIe

dt
= bvv

(
Iv

(Sv +Ev + Iv)

)
−µeIe −ωIe,

dIv

dt
= εEv +ωIe −µvIv,

dIh

dt
= β

Sh

Nh
Iv −µhIh − γhIh.

By inserting the disease-free equilibrium point, we obtain
the Jacobian matrix:

J =

−ω + k1ω 0 0
(1− k1)ω −µv − k2 0

0 β −µhk3 − γhk3


Furthermore, the Jacobian matrix will be decomposed into

a transmission matrix F and transition matrices V as follows:

F =

0 0 0
0 −µv − k2 0
0 0 0

 , V =

ω − k1ω 0 0
0 µv + k2 0
0 0 µhk3 + γhk3


so the inverse of V

V−1 =


1

ω−k1ω
0 0

0 1
µv+k2

0
0 0 1

µhk3+γhk3


and got

FV−1 =

0 0 0
0 −µv − k2 0
0 0 0




1
ω−k1ω

0 0
0 1

µv+k2
0

0 0 1
µhk3+γhk3

=

0 0 0
0 −1 0
0 0 0


then calculates the basic reproduction number where the basic
reproduction number is ρ(FV−1) namely:

(FV−1 −λ I) =

∣∣∣∣∣∣
−λ 0 0
0 −1−λ 0
0 0 −λ

∣∣∣∣∣∣= 0,

−λ
2 −λ

3 = 0,

λ
2(−1−λ ) = 0,

λ1 = 0 or λ2 =−1

obtained
R0 = max{λ1,λ2}= 0
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So that the basic reproduction number (R0) setelah diberikan
kontrol adalah 0 after being given control is 0 which indicates
that on average each infected individual will infect less than
one new individual, which means the disease will not spread.

IV. OPTIMAL CONTROL DESIGN

The problem of optimal control in this study is solved
using the Pontryagin Maximum Principle. The aim is to
minimize the number of infected human populations through
treatment, increase the death of adult mosquitoes through
fumigation with insecticides, and extermination/control of
mosquito eggs/larvae through the use of Abate larvicide. Math-
ematically, the objective of optimal control can be expressed
in terms of the objective function as follows:

J(k1,k2,k3)=min
∫ t f

t0

(
a1Ih +a2Iv +a3Ie +

(
m1k2

1
2

+
m2k2

2
2

+
m3k2

3
2

))
dt

where:

a1 = weight of infected human population (Ih)

a2 = weight of infected mosquito population (Iv)

a3 = weight of infected mosquito egg population (Ie)

m1 = percentage of dead mosquito eggs
m2 = percentage of dead adult mosquitoes
m3 = percentage of treatment in humans

A. Optimal Control Completion
Completion of optimal control can be solved using the

Pontryagin Minimum Principle with the following steps. Form
the Hamiltonian function

H = a1Ih +a2Iv +a3Ie +

(
m1k2

1
2

+
m2k2

2
2

+
m3k2

3
2

)

+λSe

(
bv

(
1− v

(
Iv

Sv +Ev + Iv

))
− (1+ k1)MeSe − (1− k1)ωSe

)
+λIe

(
bvv
(

Iv

Sv +Ev + Iv

)
− (1+ k1)MeIe − (1− k1)ωIe

)
+λSv

(
(1− k1)ωSe −

β Ihk3

Nh
Sv − (Mv + k2)Sv

)
+λEv

(
β Ihk3

Nh
Sv − εEv − (Mv + k2)Ev

)
+λIv (εEv +(1− k1)ωIe − (Mv + k2)Iv)

+λSn

(
MhNh −

βSh

Nh
Iv −MhSh

)
+λIh

(
βSh

Nh
Iv −MhIhk3 − γhIhk3

)
+

+λRh (γhIhk3 −MhRh)
(2)

B. Define Stationary Condition

To get the optimal control equation, H is derived from
k1,k2,k3, so that we get:

a)

dH
dk1

= m1k1 +λSe(MeSe −ωSe)+λIe(−MeIe +ωIe)

+λSv(−ωSe)+λIv(−ωIe),

dH
dk1

= 0,

k∗1 =
λSe(MeSe −ωSe)

m1

+
λIe(−MeIe +ωIe)+λSv(−ωSe)+λIv(−ωIe)

m1

b)
dH
dk2

= m2k2 +λSv(−Sv)+λEv(−Ev)+λIv(−Iv),

dH
dk2

= 0,

k∗2 =
λSv(−Sv)+λEv(−Ev)+λIv(−Iv)

m2

c)

dH
dk3

= m3k3 +λSv

(
−β Ih

Nh
Sv

)
+λEv

(
−β Ih

Nh
Sv

)
+λIh(−MhIh)+λRh(γhIh),

dH
dk3

= 0,

k∗3 =
(λSv +λEv)

(
−β Ih

Nh
Sv

)
+λIh(−MhIh)+λRh(γhIh)

m3
.

C. Determine the Optimal H
The optimal control equations obtained from equations k∗1,

k∗2, and k∗3 are substituted into the equation H, thus obtaining:

H∗ = a1Ih +a2Iv +a3Ie +

(
m1k∗2

1
2

+
m2k∗2

2
2

+
m3k∗2

3
2

)

+λSe

(
bv

(
1− v

(
Iv

Sv +Ev + Iv

))
− (1+ k∗1)µeSe − (1− k∗1)ωSe

)
+λIe

(
bvv
(

Iv

Sv +Ev + Iv

)
− (1+ k∗1)µeIe − (1− k∗1)ωIe

)
+λSv

(
(1− k∗1)ωSe −

β Ihk∗3
Nh

Sv − (µv + k∗2)Sv

)
+λEv

(
β Ihk∗3

Nh
Sv − εEv − (µv + k∗2)Ev

)
+λIv (εEv +(1− k∗1)ωIe − (µv + k∗2)Iv)

+λSh

(
µhNh −

βSh

Nh
Iv −µhSh

)
+λIh

(
βSh

Nh
Iv −MhIhk∗3 − γhIhk∗3

)
+λRh (γhIhk∗3 −µhRh) .

D. Solving the State and Co-state Equations to Obtain an
Optimal System

State Equations

S∗e = bv

(
1− v

(
Iv

Sv +Ev + Iv

))
− (1+ k∗1)µeSe − (1− k∗1)ωSe

I∗e = bvv
(

Iv

Sv +Ev + Iv

)
− (1+ k∗1)µeIe − (1− k∗1)ωIe

S∗v = (1− k∗1)ωSe −
β Ihk∗3

Nh
Sv − (µv + k∗2)Sv

E∗
v =

β Ihk∗3
Nh

Sv − εEv − (µv + k∗2)Ev
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I∗v = εEv +(1− k∗1)ωIe − (µv + k∗2)Iv

S∗h = µhNh −
βSh

Nh
Iv −µhSh

I∗h =
βSh

Nh
Iv −MhIhk∗3 − γhIhk∗3

R∗
h = γhIhk∗3 −µhRh

Co-state Equations

x∗
′
(t) =−

(
dH∗

dx

)
λS

′∗
e =−(λSe (−(1+ k∗1)µe − (1− k∗1)ω)+λSv ((1+ k∗1)ω))

λ I
′∗
e =−(λIe (−(1+ k∗1)µe − (1− k∗1)ω)+λIv ((1+ k∗1)ω))

λS
′∗
v =−

(
λSv

(
−

β Ihk∗3
Nh

−µv − k∗2

)
+λEv

(
β Ihk∗3

Nh

))
λE

′∗
v =−(λEv (ε −Mv − k∗2)+λIv (ε))

λ I
′∗
v =−

(
λSe (v)+λIe (bvV )+λIv (−Mv − k∗2)+λSh

(
−βSh

Nh

)
+λIh

(
βSh

Nh

))
λS

′∗
h =−

(
λSh

(
−β Iv

Nh
−Mh

)
+λIh

(
β Iv

Nh

))
λ I

′∗
h =−

(
λSv

(
−

βk∗3
Nh

Sv

)
+λEv

(
βk∗3
Nh

Sv

)
+λIh (Mhk∗3 − γhk∗3)+λRh (γhk∗3)

)
λR

′∗
h =−

(
λRh (−Mh)

)
E. Results and Analysis of Simulation Graphs

Comparison of the results of numerical simulations with
control and without control within t = 12 months by entering
parameter values in each population using the Runge-Kutta
Order-4 method.

1) Case in Pekanbaru City
a) Suspectible Mosquito Eggs(Se) Figure 2 shows that

Fig. 2: Graph of Changes in Suspectible Mosquito Egg Pop-
ulation Comparison (Se) before and after being given control

there are differences in the susceptible mosquito eggs
before and after being given control in the initial con-
ditions Se(0) = 1.091.083. Without control, susceptible
mosquito eggs will decrease more drastically than with
control. The difference is not given control and given
control will be seen with a distance between 0-8.

b) Infected Mosquito Eggs (Ie)

Fig. 3: Graph of Changes in Comparison of Infected Mosquito
Egg Populations (Ie)before and after being given control.

Figure 3 shows that there are differences in infected
mosquito eggs before and after being given control
with the initial conditions Ie(0) = 50.000. Without
control, infected mosquito eggs will decrease more
drastically than with control. The difference is not
given control and given control will be seen with a
distance between 0-8 months.

c) Suspectible Adult Mosquitoes (Sv)

Fig. 4: Graph of Changes in the Comparison of Suspectible
(Sv) Adult Mosquito Populations before and after being given
control.

In Figure 4 it can be seen that the administration of
control will reduce the susceptible mosquito population
and will even have a value of 0 in the 8th month
onwards. Meanwhile, without providing control, it will
increase the adult mosquito population which is sus-
ceptible to disease, even the population will stagnate
in the next few months.

d) Adult Mosquitoes Exposed (Ev)
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Fig. 5: Graph of Changes in Comparison of Exposed Adult
Mosquito Populations(Ev) before and after being given control.

In Figure 5 it can be seen that the administration of
control will drastically reduce the mosquito population
exposed to it in the 2nd to 6th months. Meanwhile,
without control, the exposed mosquito population also
decreased steadily after the 12th month.

e) Infected Adult Mosquitos (Iv)

Fig. 6: Graph of Changes in Comparison of Exposed Adult
Mosquito Populations(Ev) before and after being given control.

In Figure 6 it can be seen that giving control will
increase the infected mosquito population until the
first month, then after that it will decrease until the
8th month. Meanwhile, without providing control, it
will increase the adult mosquito population which is
susceptible to disease, even the population will stagnate
in the next few months.

f) Suspectable Humans (Sh)
In Figure 7 without giving control the susceptible
human population will decrease. Meanwhile, by giv-
ing control, the susceptible human population will
decrease, then it will increase but not significantly

Fig. 7: Graph of Changes in Suspectible Human Population
Comparison(Sh) before and after being given control.

g) Infected Humans (Ih)

Fig. 8: Graph of Changes in the Comparison of Infected
Human Populations before and after being given control(Ih).

In Figure 9 the infected human population without
control will increase drastically. Whereas with control,
the infected human population will experience a non-
significant increase and will have a constant value after
the 6th month.

h) Recovery Human (Rh)
In Figure 9 it can be seen that there is no difference be-
tween giving control and without giving control in the
human population that has recovered from infection.

2) Case in Solok City
a) Suspectible Mosquito Eggs (Se)

Figure 10 shows that there are differences in the
susceptible mosquito eggs before and after being given
control with the initial conditions Se(0) = 68.608.
Without control, susceptible mosquito eggs will de-
crease more drastically than with control. The differ-
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Fig. 9: Graph of Changes in Comparison of Human Population
Recovery(Rh) before and after being given control.

Fig. 10: Graph of Changes in Comparison of Suspectible
(Se) Mosquito Egg Populations before and after being given
control.

ence is not given control and given control will be seen
with a distance between 0-8 months.

b) Infected Mosquito Eggs (Ie)
Figure 11 shows that there are differences in infected
mosquito eggs before and after being given control
with the initial conditions Ie(0) = 5.000. Without con-
trol, infected mosquito eggs will decrease more dras-
tically than with control. The difference is not given
control and given control will be seen with a distance
between 0-8 months.

c) Suspectible Adult Mosquitoes (Sv)
In Figure 12 it can be seen that the administration of
control will reduce the susceptible mosquito population
and will even have a value of 0 in the 8th month
onwards. Meanwhile, without giving control, it will
increase the adult mosquito population which is sus-
ceptible to disease, even the population will stagnate

Fig. 11: Graph of Changes in Comparison of Infected
Mosquito Egg Populations (Ie) before and after being given
control.

Fig. 12: Graph of Changes in the Comparison of Suspectible
(Sv) Adult Mosquito Populations before and after being given
control.

in the next few months.
d) Adult Mosquitoes Exposed (Ev)

In Figure 13 it can be seen that the administration of
control will drastically reduce the mosquito popula-
tion exposed in the 2nd to 6th months. Meanwhile,
without control, the exposed mosquito population also
decreased steadily after the 12th month.

e) Infected Adult Mosquitoes (Iv)
In Figure 14 it can be seen that giving control will
increase the infected mosquito population until the
first month, then after that it will decrease until the
8th month. Meanwhile, without providing control it
will increase the adult mosquito population which is
susceptible to disease, even the population will stagnate
in the next few months.

f) Suspectable Human (Sh)
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Fig. 13: Graph of Changes in the Comparison of Exposed
(Ev) Adult Mosquito Populations before and after being given
control.

Fig. 14: Graph of Comparison of Changes in Infected (Iv)
Adult Mosquito Populations before and after being given
control.

In Figure 15 without giving control the susceptible
human population will decrease. Meanwhile, by giv-
ing control, the susceptible human population will
decrease, then it will increase but not significantly.

g) Infected Humans (Ih)
In Figure 16 the infected human population without
control will experience a drastic increase. Whereas
with control, the infected human population will ex-
perience a non-significant increase and will have a
constant value after the 6th month.

h) Recovery Human (Rh)
In Figure 17 it can be seen that there is no difference
between administration of controls and without admin-
istration of controls in the human population that has
recovered from infection.

Fig. 15: Graph of Changes in the Comparison of Suspectible
(Sh) Human Populations before and after being given control.

Fig. 16: Graph of Changes in the Comparison of Infected (Ih)
Human Populations before and after being given control.

Fig. 17: Graph of Changes Comparison of Human Population
Recovery (Rh) before and after being given control.
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V. CONCLUSION

VI. CONCLUSIONS

Based on the analysis and discussion given in the previous
chapter, several conclusions were obtained, namely:

1) Model of the spread of dengue fever with the influence
of climate and treatment is as follows.
dSe

dt
= bv

(
1− v

(
Iv

Sv +Ev + Iv

))
− (1+ k1)µeSe − (1− k1)ωSe,

dIe

dt
= bvv

(
Iv

Sv +Ev + Iv

)
− (1+ k1)µeIe − (1− k1)ωIe,

dSv

dt
= (1− k1)ωSe −β

(
Ihk3

Nh

)
Sv − (µv + k2)Sv,

dEv

dt
= β

(
Ihk3

Nh

)
Sv − εEv − (µv + k2)Ev,

dIv

dt
= εEv +(1− k1)ωIe − (µv + k2)Iv,

dSh

dt
= µhNh −β

(
Sh

Nh

)
Iv −µhSh,

dIh

dt
= β

(
Sh

Nh

)
Iv −µhIhk3 − γhIhk3,

dRh

dt
= γhIhk3 −µhRh.

2) Optimal influence control is obtained in the form of
mosquito egg death (k1), adult mosquito death (k2), and
human treatment (k3) will be optimal if,

k∗1 =
λSe(µeSe −ωSe)+λIe(−µeIe +ωIe)+λSv(−ωSe)+λIv(−ωIe)

m1
,

k∗2 =
λSv(−Sv)+λEv(−Ev)+λIv(−Iv)

m2
,

k∗3 =
(λSv +λEv)

(
−β Ih

Nh
Sv

)
+λIh(−µhIh)+λRh(γhIh)

m3
.

Based on the effect of the optimal control in the form of
mosquito egg death (k1), adult mosquito death (k2), and human
treatment (k3) in the cities of Pekanbaru and Solokk, there
is not much difference between the two. However, there is
little difference in the increase in the human population that
is susceptible to disease.
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