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Performance of Gahver-Stehfest Numerical Laplace
Inversion Method on Option Pricing Formulas

Endah R.M. Putri and Sentot Didik Surjanto

Abstract—In this paper we study the performance of Gahver-
Stehfest numerical Laplace inversion method. The method is
applied to some simple functions which have analytical Laplace
inversion and the option pricing formulas which their analytical
inversions are not available. The accuracy and efficiency of the
methods for each functions are presented.

Index Terms—American call option, Laplace transform, nu-
merical inversion, optimal exercise price.

I. INTRODUCTION

LAPLACE transform method is a widely known method
to obtain analytical solution of a mathematical model

consists of a differential equation [1]. Many applications in
various fields of the Laplace transform method can be found
in literature. The application of Laplace transform method in
diffusion and wave problem can be found in [2], [3], [4], [5].
As the solution of financial derivative pricing such as option
pricing problem can be obtained via diffussion process [6],
then the Laplace transform method is also applied in financial
problems.

The use of Laplace transform and its analytic inversion
on some simple basic functions are common in literature
[1], [7]. However, the widely use of Laplace transform in
application, leads to more complicated functions or differential
equations. Those equations are often solved in Laplace space
but no analytical inversion obtained. Consequently, numerical
Laplace inversion methods are applied to get the solution in
the original space.

The existing numerical Laplace inversion method such as
Gaver-Stehfest method [8], Papoulis-Legendre method [9],
Schappery method [10], and Durbin method [9], are commonly
used for many applications such as engineering field. Gaver-
Stehfest method is known as a relatively simple method to
use [9] which becomes our interest to apply on some basic
functions and option pricing functions. The method is studied
in this paper to present the performance of the method in term
of accuracy and efficiency.

First stage presented is the accuracy and efficiency of the
methods to some simple basic formulas. The formulas have the
analytical solutions which are used to measure the accuracy
of the methods. The computational time required to obtain the
value in the original space are considered as the efficiency
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of the methods. As the profile of the performance on the
simple formulas obtained, then the method is applied to the
pricing formulas of the American call options with similar
procedure in observing the accuracy and efficiency. The pric-
ing formulas are obtained based on an analytic approximation
of the American put options which used a pseudo-steady state
approximation [11].

This paper is organized as follows. Section 2 provides the
review of the numerical Laplace inversion used in this paper.
Section 3 presents the application of the methods on some
simple basic formulas and section 4 presents the application
on the optimal exercise price formula of American call options.

II. GAVER-STEHFEST METHOD

The Gaver-Stehfest method is often used in engineering
fields to solve linear and non-linear diffusion problem. A
function in Laplace space, F̂ , is inverted into the original time
t by the following algorithm:

f (t)≈ [
ln2
t
]∑N

n=1 VnF̂(
n ln2

t
)

Vn = (−1)
N
2
+n

∑
min(n,N/2)

k=
n+1

2

kN/2(2k)!
(N/2− k)!k!(n− k)!(2k−n)!

(1)

where N is an even number, n is an integer, 1 ≤ n ≤ N, and
k is the greatest integer less than or equal to (n+ 1)/2. N
being even is required for convergence acceleration.

III. PERFORMANCE ON SOME BASIC FORMULAS

This section presents numerical implementations of Gaver-
Stehfest method (see Equation 1) applied in some basic for-
mulas. The analytic inversion of the formulas can be obtained
easily with the basic knowledge of the Laplace transform [1].
The Laplace transform is defined as

L [ f (t)] = F(s) =
∫

∞

0
f (t)e−stdt (2)

where f (t) is a function such that f (t) = 0 for t < 0 and F(s)
is the Laplace transform of f (t). The existance of Laplace
transform for function f (t) can be read in detail in Duffy [7].

Accordingly, the analytic Laplace inversion is defined as

L −1[F(s)](t) = f (t) =
1

2πi
limT→∞

∫
γ+iT

γ−iT
F(s)estds (3)

where γ is a a real number for the convergence of countour
integral.
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Here, we use some basic functions whose analytic inversion
can be found easily based on Equation 2 and 3. We determine
the basic functions based on their types: linear, quadratic,
sinusoidal, logarithmic, and exponential. These functions are
used to provide the performance measurement of the numerical
Laplace inversion later on. The performance is observed based
on the accuracy and computational time spent to obtain the
inversion.

The accuracy of the Gaver-Stehfest method is justified using
the relative errors. The errors are calculated as the mean
absolute errors (MAE) shown by Equation 4 as follows,

MAE =
n

∑
i=1

| x̃i− xi |
n

(4)

The justification of the accuracy of the method is set up
by 5% tolerance and the error must be less than the tolerance
limit prescribed. We use Matlab R2013a and PC specification
Intel(R)Core(TM) i5− 2400S CPU @2.50GHz2.50GHz, 64-
bit Operating System RAM 4.00 GB.

The ease of this method by only choosing the value of
N should be observed for finding the most reliable N. The
simulation is conducted for various value of N to observe the
most suitable range value of N. In theory, the larger value of
N results better value of inversion, but Cheng and Sidauruk
[9] suggested that the value ranges between 6−20. Therefore,
we tested the functions by choosing N = 2, ...,22. The results
are shown in Table I and Table II in the Appendix.

The γ in function of the fifth coloumn in Table I and II
is The Euler-Mascheroni constant which has numerical value
γ = 0.577215664901532860606512090082402431042... as in
[12].

Table I and II show that the Gaver-Stehfest numerical
inversion method can provide fast convergent results as the
number of N increases. By comparing the numerical results
with the analytical ones, the MAE (Mean Absolute Error) is
calculated for every basic functions tested. Figure 1 to 5 show
that the MAE decreases significantly as the N increases. In
detail for Fig 1 and 3, the MAEs are smoothly decreasing
while the 2,4, and 5 show different behaviour. The decreasing
functions of MAE in 2,4, and 5 have different trends, one is
smoothly decreasing while the other fluctuate decreasing. The
value of MAE which is less than 5% for all functions after
N = 12. For all basic functions tested, the results show that
Gaver-Stehfest method is significantly accurate, efficient, and
easy, to use for numerical Laplace inversion.

To continue the used of Gaver-Stehfest in other functions
with higher complexity, here we propose the optimal exercise
formula of American call options and American down and
out call options in the Laplace space. The functions have
polynomial forms which is one type of the function tested.

IV. PERFORMANCE ON AMERICAN OPTIONS

In this section, the equation optimal exercise price of
American call options is tested using the numerical Laplace
inversion methods. For clarity we present the formulas derived
based on [13].

The American call options governing equation based on the
Black-Scholes model is similar to European options with the
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Fig. 1. The MAE profile for f (t) = 1 in Table I
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Fig. 2. The MAE profile for f (t) = te−t in Table I
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Fig. 3. The MAE profile for f (t) = t2 in Table I
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Fig. 4. The MAE profile for f (t) = sin(t) in Table I
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Fig. 5. The MAE profile for f (t) =−γ− ln(t)) in Table I

initial and boundary conditions but the American style has
additional conditions as a free boundary conditions. While
the European options has the analytic solution, the American
option has no analytic solution [11]. The optimal exercise
privilege in American options makes the option valuations
become more complicated.

The complete PDE system of the dividend-paid American
call options with the Black-Scholes equation as the governing
equation, can be summarized as follows:

∂V
∂ t

+
1
2

σ2S2 ∂ 2V
∂S2 +(r−δ )S(t)

∂V
∂S
− rV = 0

V (0, t) = 0
V (S,T ) = max(S−K,0)
V (S f (t), t) = S f (t)−K
∂V
∂S

(S f (t), t) = 1

(5)

where V is the option price, S is the stock price, S f is the
optimal exercise price, K is the strike price. The parameter r

is the risk-free interest rate, σ is the volatility, and δ is the
dividend paid. The two latter boundary conditions in Equation
5 are the optimal exercise boundaries that have been the part
of the solution.

Using the solution procedure following Zhu [11], we can
obtain the formula to calculate the optimal exercise price in
Laplace space with dimensionless variables similar to the ones
in Zhang and Zhu [14]. Equation for the optimal exit price is
obtained explicitly in Laplace space,

X̂q2
f

{
q1(β −α)+(p+α)

q1(p+α)(p+β )

}
+X̂ f

{
β (1−q1)

q1 pq2(p+β )

}
=− α

p1+q2(p+α)
(6)

where

q1,2 =
1+β −α

2
±
√
(

1+β −α

2
)2 +(p+α)

α =
2r
σ2

β =
2δ

σ2

Equation 6 is highly non-linear and is difficult to invert back
to the original space. This fact is different from the one in
Zhu [11] that the formula for non-dividend paid American put
options is obtained. The analytical inversion of the formula
is available for the typical options but not available if the
dividend is assumed to be paid [14]. Therefore, a numerical
Laplace inversion method should be considered.

In the following, a simulation study of Gaver-Stehfest
numerical Laplace inversion method for the optimal exercise
formula (Equation 6) is presented. The value will be compared
with the results from binomial method with various grid size.

Firstly, we compare the accuracy of the non-dimensional op-
timal exercise using the Gahver-Stehfest method for numerical
Laplace inversion with the one using binomial method. The
parameter N = 8 is used as suggested in [14]. The results
obtained from Gahver-Stehfest method has become closer to
the binomial results as the contract duration is longer, see
Figure 6, 7, and 8. The perpetual value of both method is in
a good agreement as shown in Figure 9.

Secondly, we explore the effect of parameter N in Gahver-
Stehfest method to the computation results. In the previous
basic function tested, the error decreases when the N becomes
larger. However, being applied in the optimal exercise price
of American call options, larger N can not guarantee that the
accuracy will increase [14]. The facts are shown in Figure 10,
11, and 12. The figures show that for N = 2,4,8, the results are
stable and close to the binomial’s results. For N = 24, the result
is unstable and does not reach convergence. In conclusion, the
greater N does not guarantee the better result as spotted in
[14]. Therefore, the use of Gahver-Stehfest method in other
formulation needs a pre-study to see the proper N to be chosen
in the calculation.
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Fig. 6. Dimensionless Optimal Exercise Price X f for T = 1 year
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Fig. 7. Dimensionless Optimal Exercise Price X f for T = 5 year
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Fig. 8. Dimensionless Optimal Exercise Price X f for T = 10 year
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Fig. 9. Dimensionless Optimal Exercise Price X f for Perpetual

1 2 3 4 5 6 7 8 9 10 11 12
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

Number of Step in 1 Year

N
on

 D
im

en
si

on
al

 E
xe

rc
is

e 
P

ric
e 

X
f

 

 
Binomial
N=2
N=4
N=8
N=24

Fig. 10. Comparison of Many N in Gahver-Stehfest and 1 Year Binomial
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Fig. 11. Comparison of Many N in Gahver-Stehfest and 5 Year Binomial
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Fig. 12. Comparison of Many N in Gahver-Stehfest and 10 Year Binomial

V. CONCLUSIONS

The use of Gahver-Stehfest method needs a justification of
parameter N to obtain good numerical inversion results. For
some simple functions, the set of N is in the range of N =
8, ...,22. For a more complicated formula which is non-linear,
an optimal exercise formula ini Laplace space is presented and
simulated. The results suggested that more than N = 22 will
result a non-convergence values.

Comparison between the optimal exercise price resulted
from the numerical Laplace inversion Gahver-Stehfest and
method binomial method shows that the accuracy is relatively
close to the binomial results.

VI. APPENDIX

TABLE I
TEST OF GAHVER-STEHFEST METHOD ON SOME BASIC FUNCTIONS

N Results(Numeric)(Computational Time)

f (t) = 1,
F(s) = 1/s

f (t) = e−1,

F(s) =
1

(s+1)2

f (t) = 12 ,
F(s) = 2!/s3

2 (1)(0.0453) (0.2401)(0.0148) (7.2848)(0.0135)
4 (1)(0.0098) (0.3416)(0.0138) (-0.6360)(0.0155)
6 (1)(0.0092) (0.3644)(0.0142) (1.0586)(0.0168)
8 (1)(0.0152) (0.3676)(0.0175) (1.0042)(0.0147)

10 (1)(0.0123) (0.3679)(0.0146) (0.9999)(0.0128)
12 (1)(0.0130) (0.3679)(0.0210) (0.9999)(0.0137)
14 (1)(0.0120) (0.3679)(0.0150) (1.0000)(0.0232)
16 (1)(0.0167) (0.3679)(0.0236) (1.0000)(0.0249)
18 (1)(0.0151) (0.3679)(0.0274) (1.0000)(0.0257)
20 (1)(0.0146) (0.3679)(0.0179) (1.0000)(0.0179)
22 (1)(0.0269) (0.3679)(0.0337) (1.0000)(0.0195)
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