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Abstract—Climate change is increasingly driving extreme
weather events, yet its regional impacts remain complex. This
study employs the RegCM5 model, driven by ERA5 reanalysis
data, to simulate high-resolution (5 km) climate dynamics in
Surabaya, Indonesia from December 2018 to November 2023.
Validated against gridded observational datasets and analyzed via
Earth’s energy balance, the results reveal a steady rise in both
top-of-atmosphere and surface energy imbalances, correspond-
ing with record-breaking increases in maximum and minimum
temperatures by approximately 1.5◦C and 1◦C from 2020 to
2023. While monthly precipitation patterns were inconsistent,
daily observations indicate a significant increase in high-intensity
precipitation events. These findings offer critical insights into
evolving regional climate impacts and inform local adaptation
and mitigation strategies.

I. INTRODUCTION

CLIMATE change impacts are becoming more frequent. In
2022, flood [1], [2] and drought [3], [4], [5] happen in the

same year. These changes made them uncertain and become
hard to mitigate and adapted to the problems [6], [7], [8]. Some
studies revealed that climate change is impacting precipitation
trends [9]. The changes are not only in precipitation, but it also
alter the temperature trends. The temperature reached a record-
breaking peak in 2023 [10], [11]. These changes in global
scale do not necessarily mean all regions face the same thing,
further regional studies are needed to determine the changes.

Surabaya is the second largest city in Indonesia, inhabited
by 3 million people [12]. Brantas river flows through Surabaya
and made Surabaya as the downstream of Brantas and a part of
Brantas’ Watershed. There was no recorded drought happening
in Surabaya. Pluvial [13], coastal [14], and fluvial [15] floods
happen frequently in Surabaya. Surabaya has experienced
the highest observed rainfall at 159.3 mm/day in 2010 [16].
As for temperature, it has increased steadily since 1981 for
minimum temperatures. While the maximum temperature de-
creased steadily, making the temperature variability decreased
over years since 1981. Due to these changes, prediction tools
are becoming more important to foresee the climate in the
future.

Climate model is a mathematical model to simulate the
earth’s climate [17]. Global Climate Models (GCMs) are the
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general model of the entire earth’s climate [18], which are
used as the basis for Regional Climate Models (RCMs) [19].
One of the most used RCMs is RegCM, which is developed by
ICTP [20]. Compared to GCMs, RCMs had more significant
bias [21]. There are already several regional studies that utilize
RCMs [22], [23], [24].

This study employs RegCM5 to simulate the regional cli-
mate of Surabaya, providing a fine-scale perspective of the
regional impacts of global climate change. Gridded datasets
observation used as model assessment and calibration. Thus,
determining the climate change phenomenon and its impacts
on temperatures and precipitation trends. The findings are
expected to offer valuable insights for local policymakers
and stakeholders, by improving climate change mitigation and
adaptation. This research not only deepens the understanding
of local climate dynamics but also contributes a replicable
methodological framework for assessing climate change im-
pacts in other vulnerable regions.

II. METHODS

This study utilized RegCM5, the latest version of RegCM
[20]. The domain is 5 km cell resolution, with 60 cells
longitude by 60 cells latitude. MOLOCH non-hydrodynamical
core was used, with 18 vertical sigma levels and top of model
at 30,000 km. Simulation period started from December 2018
until November 2023.

The GCM used in this study was ERA5 6-hour datasets
at 0.25◦ horizontal resolution [25]. SST data is also from
the same dataset. ESA-CCI soil moisture [26] was utilized
to determine the initial soil moisture conditions.

The model was built under Windows Subsystem Linux
(WSL) using Linux distribution. Model configuration is re-
quired before running the simulation. The scheme used in this
study is shown on Table I, which is a mix from study by Wang
[27] and Ngo-Duc [28]. There are five steps to run a simulation
in RegCM5, which are in order: (1) terrain, (2) mksurf, (3)
sst, (4) icbc, and (5) regcmmpi. Only the last step could be
run in parallel, the other can only be run in series and required
to be just once per scenario. All of required datasets can be
found on ICTP database, except the finer resolution of ERA5
and ESA-CCI Soil Moisture. There are four output datasets,
which are in NetCDF format: (1) ATM, (2) LAK, (3) RAD,
and (4) SRF. In this study only radiation, temperatures, and
precipitation was discussed. Thus, the needed output are only
RAD and SRF. The output were hourly datasets, which then
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Fig. 1. Top-of-Atmosphere Monthly Energy Budget

be processed into monthly using Climate Data Operators [29]
and NetCDF Operators [30].

TABLE I
SCHEMES USED IN THIS STUDY

Schemes Configuration
Land Surface CLM4.5
Planetary Boundary Layer UW
Cumulus Convection Tiedtke
Moisture SUBEX
Ocean-Flux Modified Zeng
Radiation RRTM

Precipitation and temperatures bias were corrected using
observed datasets from GPM IMERG NASA [31], [32] and
TerraClimate [33] respectively. The bias-correction method
used was quantile mapping, as it was the most suitable method
for Indonesia [34].

Climate change phenomenon was determined using earth’s
energy balance (EEB) equation [35], shown below. Thus,
needing TOA incident shortwave radiation (rsdt), TOA out-
going shortwave radiation (rsut), and TOA outgoing longwave
radiation (rlut) for Top-of-Atmosphere (TOA) EEB. As for
surface EEB the variables needed are surface downwelling
shortwave radiation (rsds), surface upwelling shortwave radi-
ation (rsus), surface downwelling longwave radiation (rlds),
surface upwelling longwave radiation (rlus), sensible heat flux
(hfss), and sensible latent heat flux (hfls).

TOA EEB = rsdt− (rsut+ rlut) (1)

Surface EEB = (rsds− rsus)+(rlds− rlus)
−(hfss+hfls) (2)

III. RESULTS AND DISCUSSION

A. Climate Change Phenomenon

One of the methods to determine climate change is by
calculating the earth’s energy budget. Shown on Figure 1, the
trends of the TOA EEB have steadily increased each year.
Both peak and median trendline show positive trends, while
the valley trendline was relatively stagnant. The peak has
increased around 15 W/m2 in 2023 compared to 2020.

Fig. 2. Surface Monthly Energy Budget

Fig. 3. Maximum and Minimum Temperature Trends

As for the surface EEB on Figure 2, the trendlines showed
a similar result. But on the valley trendline, it has a slightly
negative trend. The peak has increased around 0.5 W/m2 in
2023 compared to 2020. The valley has also increased in 2023,
around 1.5 W/m2 compared to 2020.

B. Temperature Trends

The positive trendlines in the earth’s energy budget trans-
lated into the increase in temperature trends on Figure 3. The
temperatures had reached new peaks for both maximum and
minimum temperatures. Maximum temperature has increased
around 1.5◦C in 2023 compared to 2020. The minimum
temperature has also increased drastically, around 1◦C in 2023
compared to 2020.

C. Precipitation Trends

Both EEB and temperatures trend had increased dramati-
cally, but no same thing happened for precipitation. The trends
of monthly precipitation were rather inconsistent displayed on
Figure 4. It jumped to around 650 mm/month in 2022 but
dropped to around 400 mm/month in 2023.

The daily precipitation trends show a different story, on
Figure 5. The peak in 2023 was extreme, compared to the
peak of every other year. The lowest peak was in 2020 at 53.2
mm/day, while the highest peak was in 2023 at 182.9 mm/day.
Compared to the monthly trends, the daily precipitation follow
similar patterns as the EEB and temperature trends.

D. Discussion

In 2020 there was a global phenomenon due to the COVID
pandemic [36]. Because of the pandemic, global lockdown was
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Fig. 4. Monthly Precipitation Trends

Fig. 5. Daily Precipitation Trends

applied to limit human activities [37]. This limitation resulted
in the improvement of the climate conditions [38], [39]. But
in 2023 the lockdown was lifted and human activities started
to pace into the norms like back before the pandemic [40],
[41]. In the same year, others major occurrences were also
happening. There were two wars happening, in Russia [42]
and in Palestine [43]. Some research showed that the wars
impacted climate conditions and increased the GHGs in the
atmosphere [44], [45], [46], [47]. Another reason was the trend
in artificial intelligence (AI) [48], [49]. Studies suggested that
AI required a huge amount of energy [50] and thus increased
GHGs release into the atmosphere [51], [52].

Some studies revealed that in 2023, a record-breaking
temperature occurred [10], [53]. Several researchers argued
that the jump of temperature was due to the increase of human
activities [11]. Study by Muller [54] revealed that there were
different changes in precipitation regime. Based on this study
findings it can be hypothesized that the precipitation regime
in Surabaya changed, decrease in low intensity precipitation
and increase in high intensity precipitation. This hypothesis is
supported by the decrease in monthly trend and the increase
in daily trend.

IV. CONCLUSION
In conclusion, this study revealed that the climate change in

Surabaya has gotten worse in 2023 compared to the previous
years. Showed by the increase of TOA and surface EEB in
2023, relative to 2020. The increase in EEB impacts on the
temperature trends. It has reached a record-breaking tempera-
ture, both maximum and minimum temperatures. Temperatures

are not the only impacted variable due to climate change.
Precipitation was also affected. Monthly precipitation was
relatively inconsistent, but extreme conditions were suggested
from the daily precipitation trends. Further study is required
to better picture the climate change effects. One can extend
the simulation period, to compare a further year apart. These
findings might shed light on the policymaker, to plan better
mitigation and adaptation to climate change.
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