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Skew Semi-Heyting Algebras
Berhanu Assaye Alaba, Mihret Alamneh and Yeshiwas Mebrat

Abstract—In this paper, we introduce the concept of skew
semi-Heyting algebra and extend the notions of semi-Heyting
algebras. We characterize a skew semi-Heyting algebra as a
skew Heyting algebra interms of a unique binary operation on
which an induced binary operation is defined, and some algebraic
properties on it.

Index Terms—Skew semi-Heyting algebra, semi-Heyting alge-
bra.

I. INTRODUCTION

THE foundation of modern theory of skew lattices can
be found in Jonathan Leech’s 1989 paper [1]. Leech

[2], [3] showed that each right handed skew Boolean algebra
can be embedded in to a generic skew Boolean algebra of
partial functions from a given set to the co-domain {0,1}.
Heyting algebra is a relatively pseudo-complemented dis-
tributive lattice which arises from non-classical logic, and
it was first investigated by T. Skolem about 1920 [4]. A
Heyting algebra named after a Dutch mathematician Arend
Heyting was introduced by G. Birkhoff [5] and is developed
by H. B. Curry about 1963. While Boolean algebras provide
algebraic models of classical logic, Heyting algebras provide
algebraic models of intuitionistic logic. The notion of skew
Heyting algebra was introduced by Karin Cvetko-vah [6]
as a generalization of Heyting algebra. In that paper, it is
proved that a skew Heyting algebras form a variety and that
the maximal lattice image of a skew Heyting algebra is a
generalized Heyting algebra. H.P. Sankappanavar [7] in 2007
define and investigate a new (equational) class of algebras,
which is called Semi-Heyting Algebras, as an abstraction
from Heyting algebras. He showed that semi-Heyting algebras
share with Heyting algebras some strong properties, like these
algebras are: pseudocomplemented, distributive, congruences
on them are determined by filters and every interval in a semi-
Heyting algebra is also pseudo complemented.

This paper consists of two sections. The first section de-
scribes preliminary concepts which can be used in proving
lemmas, theorems and corollaries in the subsequent section.
In the second section, we introduce the notion of skew semi-
Heyting algebra and present some basic arithmetical proper-
ties. In this section, we also characterize a skew semi-Heyting
algebra as a skew Heyting algebra interms of a unique binary
operation b→ defined on b↑ for any b ∈ L such that b→
is precisely the induced binary operation on L, and some
algebraic properties of it.
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II. PRELIMINARIES

First, we give the necessary definitions and results on
Heyting algebras, semi-Heyting algebras, skew lattices and
skew Heyting algebras which will be used in the next section.

Definition 2.1 ([7]): An algebra (L,∨,∧,→,0,1) of type
(2,2,2,0,0) is called a Heyting algebra if it satisfies the
following axioms:

(1) (L,∨,∧,0,1) is a lattice with 0 and 1
(2) x∧ (x→ y) = x∧ y
(3) x∧ (y→ z) = x∧ ((x∧ y)→ (x∧ z))
(4) (x∧ y)→ x = 1

for all x,y,z ∈ L.
Lemma 2.2 ([8]): Let L be a Heyting algebra, then an

equivalence relation θ on L is a congruence relation if and
only if for any (a,b) ∈ θ ,d ∈ L,

(1) (a∧d,b∧d) ∈ θ

(2) (a∨d,b∨d) ∈ θ

(3) (a→ d,b→ d) ∈ θ

(4) (d→ a,d→ b) ∈ θ .
Definition 2.3 ([7]): An algebra (L,∨,∧,→,0,1) is a semi-

Heyting algebra if the following conditions hold:
(SH1) (L,∨,∧,0,1) is a lattice with 0 and 1
(SH2) x∧ (x→ y) = x∧ y
(SH3) x∧ (y→ z) = x∧ ((x∧ y)→ (x∧ z))
(SH4) x→ x = 1.

Theorem 2.4: [7] Let L be a semi-Heyting algebra. Then for
any x,y,z ∈ L,L satisfies the following conditions:

(a) x∧ (y→ z) = x∧ ((x∧ y)→ z)
(b) x∧ (y→ z) = x∧ (y→ (x∧ z)).
Definition 2.5 ([1]): A skew lattice is an algebra L =

(L;∧,∨) of type (2,2) such that ∧ and ∨ are both idempotent
and associative, and they satisfy the following absorption laws:
x∧ (x∨y) = x = x∨ (x∧y) and (x∧y)∨y = y = (x∨y)∧y for
all x,y ∈ L.

The natural partial order can be defined on a skew lattice
L by stating that x ≤ y if and only if x∨ y = y = y∨ x, or
equivalently x∧ y = x = y∧ x for x,y ∈ L. Also the natural
preorder can be defined by x � y if and only if y∨ x∨ y =
y, or equivalently x∧ y∧ x = x for x,y ∈ L so that Green’s
equivalence relation D is defined by xDy if and only if x� y
and y� x (see [7]).

Definition 2.6 ([6]): A skew lattice is called strongly dis-
tributive if for all x,y,z∈ L it satisfies the following identities:
x∧(y∨z)= (x∧y)∨(x∧z) and (x∨y)∧z=(x∧z)∨(y∧z); and
it is called co-strongly distributive if it satisfies the identities:
x∨ (y∧ z) = (x∨ y)∧ (x∨ z) and (x∧ y)∨ z = (x∨ z)∧ (y∨ z).

Definition 2.7: [3], [6] A skew Lattice L is called normal if
w∧x∧y∧ z = w∧y∧x∧ z and it is called conormal if w∨x∨
y∨ z = w∨ y∨ x∨ z for all w,x,y,z ∈ L.
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A skew lattice which is both normal and conormal is called
binormal skew lattice. If a skew lattice is strongly distributive,
then it is normal. Dually if a skew lattice is costrongly
distributive, then it is conormal (see [3], [6]).

Definition 2.8 ([6]): An algebra L = (L;∨,∧,→,1) of type
(2,2,2,0) is said to be a skew Heyting algebra whenever the
following conditions are satisfied:

(1) (L;∨,∧,1) is a co-strongly distributive skew lattice with
top 1.

(2) For any a ∈ L, an operation →a can be defined on
a↑= {a∨ x∨ a|x ∈ L} such that (a↑,∨,∧,→a,1,a) is a
Heyting algebra with top 1 and bottom a.

(3) An induced binary operation → from →a is defined on
L by

x→ y = (y∨ x∨ y)→y y.

Lemma 2.9 ([6]): Let (L,∨,∧,→,1) be a skew Heyting
algebra and let x,y,a ∈ L be such that x,y ∈a↑ hold. Then
x→ y = x→a y.

III. SKEW SEMI-HEYTING ALGEBRAS

In this section, we introduce the concept of skew semi-
Heyting algebra, characterize it as a skew Heyting algebra in
terms of a unique binary operation on which an induced binary
operation is defined and investigate some of its algebraic
properties. Throughout this section, L stands for a non empty
set and we will use the following notations:

(i) For any a ∈ L and a partial ordering ≤ on L, the set
{x ∈ L|a≤ x≤ b} is denoted by [a,b],

(ii) If L contains 0 for any a∈ L,→a is the binary operation
defined on [0,a],

(iii) For any b,c ∈ L, b→ is the binary operation defined on
[b,c].

Definition 3.1: An algebra (L;∨,∧,→,1) of type (2,2,2,0)
is said to be a skew semi-Heyting algebra whenever the
following conditions are satisfied:

(1) (L;∨,∧,1) is a co-strongly distributive skew lattice with
top 1.

(2) For any a ∈ L, an operation a→ can be defined on a↑=
{x ∈ L|a ≤ x} such that (a↑,∨,∧,a→,1,a) is a semi-
Heyting algebra with top 1 and bottom a.

(3) An induced binary operation → from a→ is defined on
L by

x→ y = (y∨ x∨ y)y→y.

Example 3.2: Let L be a co-strongly distributive skew lattice
and b ∈ L such that x,y ∈ b↑. Define a binary operation b→
on b↑ by

xb→y =
{

1 if x≤ y
y otherwise

One can show that b ↑ is a semi-Heyting algebra. Thus defining
a binary operation → on L induced from b→ by, x→ y =
(y∨ x∨ y) y→y makes L a skew semi-Heyting algebra.

A semi-Heyting algebra is not necessarily a skew semi-
Heyting algebra. The following example justifies this.

Example 3.3: Let L = {0,x,1} be a chain with 0 < x < 1
which is the lattice reduct of the two semi-Heyting algebras
with the binary operation → defined on L by the tables
given below. It can be routinely verified that the algebra
(L,∨,∧,→,1) where the binary operation→ defined by Table
1 is a skew semi-Heyting algebra. But (L,∨,∧,→,1) where
the binary operation→ defined by Table 2 is not a skew semi-
Heyting algebra, because when we apply the definition of →
in Table 2 we obtain that 0→ x = (x∨0∨ x)x→x⇒ 0→ x =
xx→x⇒ x = 1 which is impossible.

We now present some useful arithmetical properties of skew
semi-Heyting algebras.

Theorem 3.4: Let L be a skew semi-Heyting algebra and
x,y,z ∈ L. Then the following hold:

(a) 1→ x = x
(b) x→ 1 = 1
(c) x≤ y⇒ x→ y = 1
(d) y≤ x→ y
(e) (x∨ y)→ x = y→ x
(f) x≤ y≤ z⇒ y≤ x→ z
(g) (x∧ y)→ x = 1
(h) x→ (y→ x) = y→ (x→ y)

Proof: (a) and (b) hold trivially.
(c) Suppose x≤ y. Then x→ y = (y∨ x∨ y)y→ y = 1
(d) y ∧ (x → y) = y ∧ ((y ∨ x ∨ y)y→y) = y ∧ {(y ∧ (y ∨ x ∨
y))y→y} = y∧ (yy→y) = y∧ 1 = y. Moreover, since y∨ x∨
y and y belongs to y↑ , ((y∨ x∨ y)y→y)∧ y = y
(e) (x∨y)→ x = (x∨(x∨y)∨x)x→x = (x∨y∨x)x→x = y→ x.
(f) Let x ≤ y ≤ z. Then y∧ (x→ z) = y∧ ((z∨ x∨ z)z→z) =
y∧ z∧ ((z∨ x∨ z)z→z) = y∧ z∧ (zz→z) = y∧ z = y. Clearly,
(x→ z)∧ y = y
(g) (x∧ y)→ x = (x∨ (x∧ y)∨ x)x→x = x x→x = 1.
(h) From (d) we have x≤ y→ x and y≤ x→ y. Then by (c)
we conclude that x→ (y→ x) = 1 = y→ (x→ y).

Lemma 3.5: Let L be a skew semi-Heyting algebra. Then
for any a ∈ L, a↑ is a distributive lattice.

Proof: Suppose L be a skew semi-Heyting algebra. Let
a ∈ L. Then a↑ is a semi-Heyting algebra. Hence a↑ is a
distributive lattice.

→ 0 x 1
0 1 1 1
x 0 1 1
1 0 x 1

TABLE I
SKEW SEMI-HEYTING ALGEBRA

→ 0 x 1
0 1 x 1
x 0 1 1
1 0 x 1

TABLE II
NOT A SKEW SEMI-HEYTING

ALGEBRA

Lemma 3.6: Let L be a skew semi-Heyting algebra and x,y∈
L. Then x∨ y ∈ y↑ if and only if y∨ x ∈x↑. Whenever x∨ y
and y∨ x both belongs to y↑, then they are equal.

Proof: Suppose x∨y∈ y ↑. Since y∈ y ↑, we have y∨(x∨
y) = (x∨y)∨y. Using associative property of skew lattice we
obtain y∨ x∨ y = x∨ y. Thus (y∨ x∨ y)∨ x = x∨ y∨ x so that
y∨ x = x∨ y∨ x. Clearly x∨ y∨ x ∈ x ↑ for some y ∈ L which
implies that y∨ x ∈ x ↑. The converse holds analogously and
the proof of the other condition is so simple.

Following the above lemma we have the next theorem.
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Theorem 3.7: Let L be a skew semi-Heyting algebra and
x,y,z ∈ L such that x∨ y ∈y↑. Then the following hold.

(a) x→ y = 1⇒ x∨ y = y and x∧ y = x
(b) x∧ (y→ z) = x∧ ((x∧ y)→ z)
(c) x∧ ((x→ y)→ y) = x
(d) (x→ y)∧ (y→ x) = 1⇒ y∧ x = y
(e) x∧ (x→ y) = x∧ y
(f) x≤ y⇒ x∧ (z→ y) = x∧ y
(g) (x∨ y)→ (x∧ y) = 1⇒ x∧ y = x.

Proof: (a) Assume x→ y = 1

⇒ (y∨ x∨ y)y→ y = 1
⇒ (x∨ y)∧{(y∨ (x∨ y))y→y}= x∨ y

⇒ (x∨ y)∧ ((x∨ y)y→y) = x∨ y

⇒ x∨ y = y.

Similarly we obtain that, (y∨ x∨ y)y→ y = 1

⇒ x∧ ((y∨ x∨ y)y→y) = x

⇒ x∧ (x∨ y)∧ ((y∨ x∨ y)y→y) = x

⇒ x∧ (x∨ y)∧ ((x∨ y)y→y) = x

⇒ x∧ y = x.

(b) x∧ (y→ z)

= x∧{(z∨ y∨ z)z→z}
= x∧ (x∨ z)∧{(z∨ y∨ z)z→z}
= x∧ (x∨ z)∧{((x∨ z)∧ (z∨ y∨ z))z→

((x∨ z)∧ z)}
= x∧{{((x∨ z)∧ z)∨ ((x∨ z)∧ (y∨ z))}z→z}
= x∧{{(z∨ ((x∧ y)∨ z))}z→z}
= x∧ ((x∧ y)→ z).

(c) x∧ ((x→ y)→ y)

= x∧{((y∨ x∨ y)y→y)→ y}
= x∧{(y∨ ((y∨ x∨ y)y→y)∨ y)y→y}
= x∧ (x∨ y)∧{(y∨ ((y∨ x∨ y)y→y)∨ y)y→y}
= x∧{y∨{(x∨ y)∧{(x∨ y)y→y)}∨ y}y→y}
= x∧ (yy→y)

= x∧1
= x.

(d) (x→ y)∧ (y→ x) = 1

⇒ ((y∨ x∨ y)y→y)∧ ((x∨ y∨ x)x→x) = 1
⇒ y∧{((y∨ x∨ y)y→y)∧ ((x∨ y∨ x)x→x)}= y

⇒ y∧ ((x∨ (y∨ x))x→x) = y

⇒ y∧ (y∨ x)∧ ((x∨ (y∨ x))x→x) = y

⇒ y∧ (y∨ x)∧{{(y∨ x)∧ (x∨ (y∨ x))}x→
(y∨ x)∧ x)}= y

⇒ y∧ ((y∨ x)x→x) = y

⇒ y∧ (y∨ x)∧ ((y∨ x)x→x) = y

⇒ y∧ x = y.

(e) x∧ (x→ y)

= x∧ ((y∨ x∨ y)y→y)

= x∧ (x∨ y)∧{((y∨ x)∨ (x∨ y))y→y}
= x∧ (x∨ y)∧{{(x∨ y)∧ ((y∨ x)∨ (x∨ y))}y→

((x∨ y)∧ y)}
= x∧ (x∨ y)∧{{((y∨ x)∨ (x∨ y))∧ (x∨ y)}y→y}
= x∧ ((x∨ y)y→y)

= x∧ y.

(f) x∧ (z→ y) = x∧ y∧ ((y∨ z∨ y)y→y) = x∧ y.
(g) Suppose (x∨y)→ (x∧y)= 1. Then x∧((x∨y)→ (x∧y))=
x. From (b) we have x∧ ((x∧ (x∨ y))→ (x∧ y) = x. Thus,
applying (e) on x∧ (x→ (x∧ y)) = x yields x∧ (x∧ y) = x.
Therefore x∧ y = x.

Next we give a characterization of skew semi-Heyting
algebra.

Theorem 3.8: Let L be a skew semi-Heyting algebra and
a ∈ L such that x,y,z ∈ a↑. Then the following are equivalent:

(a) L is a skew Heyting algebra
(b) x≤ y⇒ x a→ y = 1
(c) x≤ y⇒ y a→ z≤ x a→ z
(d) (x∨ y)a→z = (x a→ z)∧ (y a→ z).

Proof: Suppose L be a skew Heyting algebra. Let x,y,z∈
a↑. Clearly a↑ is a skew Heyting algebra. If x ≤ y, then x
a→ y = (y∨ x∨ y)y→y = y y→ y = 1. Thus (a)⇒(b) holds.
Using the fact that z ↑ is a Heyting algebra and L is conormal,
whenever x≤ y we have
(ya→z)∧ (xa→z)

= ((z∨ y∨ z)z→z)∧ ((z∨ x∨ z)z→z)

= {(z∨ y∨ z)∨ (z∨ x∨ z)}z→z

= {(z∨ x∨ z)∨ (z∨ y∨ z)}z→z

= (z∨ x∨ y∨ z)z→z

= (z∨ y∨ z)z→z

= y a→ z .

This shows that (a)⇒(c). From the fact that z↑ is a Heyting
algebra, we obtain the following result
(xa→z)∧ (ya→z)

= ((z∨ x∨ z)z→z)∧ ((z∨ y∨ z)z→z)

= {(z∨ x∨ z)∨ (z∨ y∨ z)}z→z

= (z∨ x∨ y∨ z)z→z

= (x∨ y)a→z.

Consequently (a)⇒(d). To prove the converse, we show that
for any a ∈ L, the semi-Heyting algebra a↑ is a Heyting
algebra. For this it suffices to show that each of the conditions
(b), (c) and (d) implies that (x ∧ y)a→x = 1. Suppose (b)
holds. Let a ∈ L such that x,y ∈ a↑. Then x ∧ y = y ∧ x
and (y∧ x)∨ x = x⇒ y∧ x ≤ x⇒ x∧ y ≤ x. From the given
assumption we obtain that (x∧ y)a→x = 1. Now assume that
(c) holds. Clearly x,y ∈ a↑ implies that x∧ y ≤ x. Then by
(c), we have x a→ z ≤ (x ∧ y)a→z for any z ∈ L. Taking
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z = x we get x a→ x ≤ (x∧ y)a→x. This inturn implies that
1 ≤ (x∧ y)a→x. Hence (x∧ y)a→x = 1. Finally let (d) holds.
Then for any x,y ∈a↑,1 = xa→x = (x∨ (x∧ y))a→x = (x a→
x)∧ ((x∧y)a→x) = 1∧ ((x∧y)a→x). Therefore (x∧y)a→x =
1.

In the following theorem we give another characterization
of a skew semi-Heyting algebra.

Theorem 3.9: Let L be a skew semi-Heyting algebra.Then
L is a skew Heyting algebra if and only if for all b ∈ L, the
binary operation b→ on b↑ is the same as the induced binary
operation → on L.

Proof: Suppose L be a skew Heyting algebra. Thus for
any b∈ L, b↑ is a Heyting algebra so that it is a skew Heyting
algebra. Since the binary operation → on a skew Heyting
algebra is unique, x b→ y = x → y for any x,y ∈ b↑ (see
Lemma 2.9). Conversely suppose x b→ y = x→ y for any
x,y ∈ b↑. Since b↑ is semi-Heyting algebra we need to prove
that (x∧y)b→x= 1. Using (SH4) for the semi-Heyting algebra
x↑ we get ,(x∧ y)b→x = (x∧ y)→x = (x∨ (x∧ y)∨ x)x→x = x
x→ x = 1. Hence b↑ is a Heyting algebra and therefore L is a
skew Heyting algebra.

Consider the skew semi-Heyting algebra L given by Exam-
ple 3.3 whose induced binary operation→ is defined by Table
1. In this example the induced binary operation → on L is the
same as the binary operation b→ defined on b↑ for each b∈ L.
Therefore this skew semi-Heyting algebra is a skew Heyting
algebra.
In the next theorem we give an axiomatization for a skew
semi-Heyting algebra.

Theorem 3.10: Let (L,∨,∧,→,0,1) be an algebra of type
(2,2,2,0,0) such that (L,∨,∧,0,1) is a costrongly distributive
skew lattice and let b∈ L. Then (L,∨,∧,→,1) is a skew semi-
Heyting algebra if and only if the following conditions hold

(a) x b→ x = 1 for all x ∈ b↑
(b) x∧ (x b→ y) = x∧ y for all x,y ∈ b↑
(c) x∧ (y b→ z) = x∧ ((x∧ y)b→z) for all x,y,z ∈ b↑
(d) x∧ (y b→ z) = x∧ (y b→(x∧ z)) for all x,y,z ∈ b↑
(e) y≤ (x→ y) for all x,y ∈ L
(f) x→ y = (y∨ x∨ y)y→y for all x,y ∈ L.

Proof: suppose L be a skew semi-Heyting algebra. Then
for any b ∈ L, b↑ is a semi-Heyting algebra and hence by
Theorem 2.4 (c) and (d) hold. But (a) and (b) hold directly
from the definition of semi-Heyting algebra. Condition (e)
and (f) is direct from the assumption. Since L is co-strongly
distributive skew lattice, for any b ∈ L, b↑ is a lattice. So
to prove the converse it is enough to prove that b↑ is a
semi-Heyting algebra and for this we show that x∧ (y b→
z) = x∧ ((x∧ y)b→(x∧ z)). Then from (c) we have x∧ (y b→
z) = x∧((x∧y)b→z), and by (d) we get x∧((x∧y)b→z) = x∧
((x∧y)b→(x∧z). Hence x∧(y b→ z) = x∧((x∧y)b→(x∧z)).
Now for b ∈ L and x,y,z ∈ b↑, set xb→y = x→ y. Clearly (e)
implies that x→ y∈ y↑⊆ b ↑. Thus the restriction b→ of→ to
b↑ is well defined(see [6]). Since b↑ is commutative (a), (b)
and, (c) and (d) for → simplify respectively to (SH4), (SH2)
and (SH3) for b→ making b→ is the binary operation on b↑.
This shows that for each b ∈ L,(b ↑,∨,∧,b→,b,1) is a semi-
Heyting algebra. Therefore using (f) it is possible to define an

induced binary operation → on L by x→ y = (y∨ x∨ y)y→y
that makes L is a skew semi-Heyting algebra.

Corollary 3.11: Let (L,∨,∧,→,0,1) be an algebra of type
(2,2,2,0,0) such that (L,∨,∧,0,1) is a costrongly distributive
skew lattice and let b∈ L. Then (L,∨,∧,→,1) is a skew semi-
Heyting algebra if and only if the following conditions hold

(a) x≤ (x b→ y)b→y
(b) x∧ (x b→ y) = x∧ y for all x,y ∈ b↑
(c) x∧ (y b→ z) = x∧ ((x∧ y)b→z) for all x,y,z ∈ b↑
(d) x∧ (y b→ z) = x∧ (y b→(x∧ z)) for all x,y,z ∈ b↑
(e) y≤ (x→ y) for all x,y ∈ L
(f) x→ y = (y∨ x∨ y)y→y for all x,y ∈ L.

Proof: From (b) we have 1∧ (1 b→x) = 1∧ x = x⇒ 1
b→x = x. Thus from (a) we get 1 ≤ (1 b→x)b→x, which
implies that 1 ≤ x b→x. Thus x b→x = 1. Therefore b↑ is
a semi-Heyting algebra. The rest of the proof follows from
the above theorem.

Theorem 3.12: Let (L,∨,∧,→,1) be a skew semi-Heyting
algebra. Then for any x,y ∈ L, the algebra ([x,y],∨,∧,x→,y)
is a skew semi-Heyting algebra.

Proof: Suppose L be a skew semi-Heyting algebra and
x,y ∈ L. We show that [a,y] is a semi-Heyting algebra for any
a∈ [x,y]. Clearly [x,y] is a co-strongly distributive skew lattice.
Since L is a skew semi-Heyting algebra, for any x ∈ L, x↑ is
a semi-Heyting algebra and therefore [x,y] is a semi-Heyting
algebra(see [7]). Again by the same reason [a,y] is a semi-
Heyting algebra. Finally using (Theorem 3.9) one can define
x→ on [x,y] by c x→d = (d∨c∨d)d→d so that [x,y] is a skew
semi-Heyting algebra.

Lemma 3.13: Let the algebra ([x,y],∨,∧,x→,y) be a skew
semi-Heyting algebra. Then the algebra ([x,y],∨,∧,x→,x,y)
is a Heyting algebra.

Proof: Let a,b ∈ [x,y]. Then (a∧b)x→a = (a∨ (a∧b)∨
a)a→a = a a→ a = y. Thus ([x,y],∨,∧,x→,x,y) becomes a
Heyting algebra.

Theorem 3.14: Let L be a binormal skew semi-Heyting
algebra and b ∈ L. Let θ be the relation on b ↑ defined by
(x,y) ∈ θ if and only if b0∧ x = b0∧ y for some b0 ∈ b ↑ .
Then θ is a congruence relation on b↑.

Proof: Suppose L be a binormal skew semi-Heyting
algebra. Clearly θ is reflexive and symmetric. Let b ∈
L and ,x,y,z ∈ b ↑ such that (x,y) ∈ θ and (y,z) ∈ θ . This
indicates that there exist b1 and b2 ∈b↑ such that b1∧x= b1∧y
and b2 ∧ y = b2 ∧ z. Then b2 ∧ b1 ∧ x = b2 ∧ b1 ∧ y = b1 ∧
b2 ∧ y = b1 ∧ b2 ∧ z. This implies that (x,z) ∈ θ and hence
θ is transitive. Therefore θ is an equivalence relation. Let
(x1,y1) ∈ θ and (x2,y2) ∈ θ . Then there exist b1,b2 ∈b↑ such
that b1 ∧ x1 = b1 ∧ y1 and b2 ∧ x2 = b2 ∧ y2. Now we show
that (x1 ∧ x2,y1 ∧ y2) ∈ θ , and (x1 ∨ x2,y1 ∨ y2) ∈ θ . Thus
b1 ∧ x1 ∧ b2 ∧ x2 = b1 ∧ b2 ∧ x1 ∧ x2 so that b1 ∧ y1 ∧ b2 ∧ y2 =
b1 ∧ b2 ∧ y1 ∧ y2. Then b1 ∧ b2 ∧ x1 ∧ x2 = b1 ∧ x1 ∧ b2 ∧ x2 ∧
b1∧y1∧b2∧y2 = b1∧b2∧y1∧y2. Hence (x1∧x2,y1∧y2)∈ θ .
Similarly, since b↑ is distributive lattice we have

b1∧b2∧ (x1∨ x2) = (b1∧b2∧ x1)∨ (b1∧b2∧ x2)

= (b2∧b1∧ x1)∨ (b1∧b2∧ x2)

= (b2∧b1∧ y1)∨ (b1∧b2∧ y2)



14 INTERNATIONAL JOURNAL OF COMPUTING SCIENCE AND APPLIED MATHEMATICS, VOL. 4, NO. 1, FEBRUARY 2018

= b1∧b2∧ (y1∨ y2).

which shows that (x1∨ x2,y1∨ y2) ∈ θ . Finally we obtain
b1∧b2∧ (x1→ x2)

= b1∧b2∧ ((b1∧b2∧ x1)→ (b1∧b2∧ x2))

= b1∧b2∧ ((b2∧b1∧ x1)→ (b1∧b2∧ x2))

= b1∧b2∧ ((b2∧b1∧ y1)→ (b1∧b2∧ y2))

= b1∧b2∧ ((b1∧b2∧ y1)→ (b1∧b2∧ y2))

= b1∧b2∧ (y1→ y2).

Since b↑ is a lattice b1∧b2 ∈b↑, thus (x1→ x2,y1→ y2) ∈ θ .
Therefore θ is a congruence relation on b↑.
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