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Optimizing Forest Sampling by using Lagrange
Multipliers

Suhud Wahyudi, Farida Agustini Widjajati and Dea Oktavianti

Abstract—To obtain information from a population, we use a
sampling method. One of sampling techniques that we can use is
double sampling. Double sampling is a sampling technique based
on the information of first phase which is used as an additional
information obtaining estimates for the second phase. In this
case, we discuss the model of double sampling with regression
estimator. Then, to obtain the optimal number of samples for
the first and second phases, we use Lagrange multipliers. The
model analysis result is a formula to calculate the optimal number
of samples for the first phase (n′) and the second phase (n).
Implementation of this method is simulated by using teak stands
data from previous studies at Forest Management Unit (FMU)
Madiun which consists of Section Forest Management Units
(FSMU) Dagangan and Dungus. The calculation result of data
from FSMU Dagangan, we get optimal number of plots must be
observed in image interpretation are 149 plots and field survey
are 14 plots. And with the data from FSMU Dungus, we get
optimal number of plots to be observed in image interpretation
are 153 plots and field survey are 20 plots.

Index Terms—Double sampling, Lagrange multiplier optimiza-
tions, regression estimator.

I. INTRODUCTION

STATISTICAL method is one branch of mathematical
science that focuses on the data collection technique,

processing or analyzing data, and deduction based on the data.
In data processing, we analyze the relationship between two or
more variables, and decide which one is the most important.
To analyze the data we can use regression and correlation, in
order to determine which variables are interconnected. One of
the discussion in statistical methods is sampling technique. In
statistical inference, if we want to obtain conclusions about
the population, although without comprehensive observation,
the composition of individuals in the population, we can use
sampling technique [1].

We use sampling technique because of time and cost effi-
ciency, large enough population, the precision in the execution
of observation, and the value of benefits. In the process,
sampling has many techniques that we can use in various
implementations of sampling, one of them is double sampling.
Double sampling is a sampling technique based on the infor-
mation of first phase which is used as an additional information
obtaining estimates for the second phase. One implementation
of double sampling is in forest inventory [2].

However, we have to consider the cost factor of sampling,
so that we need an optimal allocation between the number
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of samples in the first phase and second phase. To determine
the optimal number of samples, we can use optimization by
minimizing the cost function and define the variance estimator
function as constraint. The result of optimization is an optimal
number of samples for the first phase and the second phase
[2].

We can use the Lagrange multipliers method to optimiza-
tion. Lagrange multiplier method (or Lagrange multipliers)
are introduced by Joseph Louis de Lagrange (1736-1813).
Lagrange multiplier method is a method to maximize or
minimize a function of several variables by using λ as its
Lagrange multipliers. The extension of the method to a general
problem of n variables with m constraints has been discussed
in [3]. Kitikidou explains that sampling optimization by using
Lagrange multipliers are computed by minimizing the cost
function and defining variance estimator function as con-
straints [3]. In this paper, we discuss a sampling optimization
using Lagrange multipliers method and apply it to the forest
observation, especially the teak forest inventory.

II. DOUBLE SAMPLING, LINEAR REGRESSION MODEL
AND REGRESSION ESTIMATOR IN DOUBLE SAMPLING

A. Two Phase Sampling (Double Sampling)

Double sampling is one of sampling techniques with two
phases. In the first phase, we choose n′ units number of
samples, and in the second phase we choose n units that are
part of the first phase. We use the first phase as an estimator
for the second phase. In this case, we use regression estimator.

Mean of regression estimator is [3]:

ŷ = y+b(x′− x)

where
• y : mean of y from sub sample (n)
• x′ : mean of x from sample (n′)
• x : mean of x from sub sample (n)
• b : estimator of β

Variance of regression estimator is [3]:

Var
(

ŷ
)
= S2

y

(
1
n
− r2 n′−n

nn′

)
where,
• S2

y : variance of y on subsample (n)
• r : correlation coefficient between y and x
• n′ : the number of first sample which is taken from N
• n : the number of subsamples from n′

Optimum allocation from cost function is [3]:

C = n′C1 +nC2
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where,
• C : the total cost of sampling
• C1 : the cost of first phase sampling
• C2 : the cost of second phase sampling
Let x1,x2, . . . ,xn are n random samples from population with

mean µ dan standard deviation σ . If we use sampling with
replacement and unlimited population then we get [1]:

µx = µ

σ
2
x =

σ2

n
where,
• µx : mean of mean sampling distribution
• σ2

x : variance of mean sampling distribution
In double sampling, we assume y have normal distribution,

confidence interval for mean is [3]:

ŷ−Zα/2
σ√

n
< y < ŷ+Zα/2

σ√
n

where Var
(

ŷ
)
= σ2

n , error of estimation is [3]:

ε = Zα/2
σ√

n

then we get Var
(

ŷ
)
= ε2

Z2
α/2

.

B. Linear Regression Model

Linear regression model of population is [4]:

Y = α +βX + e j

where α and β are constant population parameters, and β is
the regression coefficient. Regression coefficient β is [5]:

β =
∑

N
i=1 (xi−X)(yi−Y )

∑
N
i=1 (xi−X)

2 =
σxy

σ2
x

Variance of population in regression is [5]:

σ
2 = σ

2
y −β

2
σ

2
x (1)

Correlation coefficient of population in regression is [5]:

ρ =
∑

N
i=1 (xi−X)(yi−Y )√

∑
N
i=1 (xi−X)

2
√

∑
N
i=1 (yi−Y )2

=
σxy

σxσy

Relation of correlation coefficient with regression coefficient
is [5]:

ρ = β
σx

σy

From equation (1), we can write:

σ
2 = σ

2
y (1−ρ

2) (2)

From equation (2), we get:

σ
2
y =

σ2

(1−ρ2)

Regression model in sample is [4]:

y = a+bxk + ek

For k = 1,2,3, . . . ,n with a and b are estimators for α and
β , and ek is error of estimator for k-th observation.

Regression coefficient b is [5]:

b =
∑

n
i=1 (xi− x)(yi− y)

∑
n
i=1 (xi− x)2 =

Sxy

S2
x

Correlation coefficient of sample in regression is:

r =
∑

n
i=1 (xi− x)(yi− y)√

∑
n
i=1 (xi− x)2

√
∑

n
i=1 (yi− y)2

=
Sxy

SxSy
(3)

where,

S2
y =

∑
n
i=1 y2

i −
(∑n

i=1 yi)
2

n
n−1

C. Regression Estimator in Double Sampling

Another model of Y is [5]:

Y = Y +β (x−X)

If we assume y is an estimator of equation Y , then we get :

y = Y +β
(
x−X

)
+ e

where e is the error, so E (e) = 0, then we get:

y = Y +β
(
x−X

)
+ e (4)

We also get:

E (y) = E
(
Y +β

(
x−X

)
+ e
)
= Y

The above equation of E (y) shows that y is an unbiased
estimator for Y .

If we assume ∑
n
i=1 ei(xi−x)

∑
n
i=1 (xi−x)2 = ew, we get the value of b which

is an estimator of β as follows:

b = β + ew

Because of E (e) = 0, so E (ew) = 0. Then E (b) = β and
E (E (b)) = β

E
(
ew

2)= E

(∑
n
i=1 ei (xi− x)

∑
n
i=1 (xi− x)2

)2
=

(
x−X

)2

∑
(
x−X

)2

D. Expectation and Variance in Multivariate Distribution

General variance distribution is defined as [5]:

Var(y) = E(y−E (y))2 = E
(
y2)− (E (y))2

E
(
y2)=Var(y)+(E (y))2

Expectation and variance in multivariate distribution is [5]:

E = E1(E2 . . .(Em))

Var = E1(E2 . . .(Em(Varm))+E1(E2 . . .(Varm−1(Em)))+

Var1(E2(Em−1(E)))
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E. Fisher’s Distribution

Fisher’s variable F(m1,m2) is distributed as [5]:

F(m1,m2) =
1

F(m2,m1)

where m1 and m2 is degree of freedomin Fisher’s distribution.
If we assume m1 = 1 and m2 = n−1, we get:

F (1,n−1) = n(n−1)

(
xi−X

)2

∑
n
i=1
(
xi−X

)2

Expectation of distribution is as follows [5]:

E(F (m1,m2) =
m2

m2−2
where m2 ≥ 3.

F. Optimization by using Lagrange Multipliers Method

Optimization technique of multivariables with equality con-
straint have the following general form [6]:

minimize f (X)

subject to g j(X) = 0, for j = 1,2, . . . ,m

where X = {x1,x2, . . . ,xn}T

where m≤ n. If m > n, then it cannot be solved.
The first step of this method is the construction of Lagrange

function that is defined as [6]:

L(X ,λ ) = f (X)+
m

∑
j=1

λ jg j(X) (5)

Theorem 1 ([6]): Necessary condition for a function f (X)
with constraint g j(X)= 0, where j = 1,2, . . . ,m such that it has
relative minimum at point x∗ is first partial derivative of La-
grange function defined as L = L{x1,x2, . . . ,xn,λ1,λ2, . . . ,λn}
has value zero.

Theorem 2 ([6]): A sufficient condition for f (X) to have
relative minimum (or maximum) at the quadratic, Q, defined
by:

Q =
n

∑
i=1

n

∑
j=1

∂ 2L
∂xi∂x j

dxidx j

evaluated at x = x∗ must be positive definite (or negative
definite) for all values of dx for which the constraints are
satisfied.

Necessary condition Q = ∑
n
i=1 ∑

n
j=1

∂ 2L
∂xi∂x j

dxidx j to be pos-
itive (or negative) definite for all admissible variations dx is
that each root of the polynomial pi, defined by the following
determinant equation, be positive (or negative).∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

L11− p L12 L13 . . . L1n g11 g21 . . . gm1
L21 L22− p L23 . . . L2n g12 g22 . . . g2n

...
...

...
. . .

...
...

...
. . .

...
Ln1 Ln2 Ln3 . . . Lnm− p gm1 gm2 . . . gmn
g11 g12 g13 . . . g1n 0 0 . . . 0
g21 g22 g23 . . . g2n 0 0 . . . 0

...
...

...
. . .

...
...

...
. . .

...
gm1 gm2 gm3 . . . gmn 0 0 . . . 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0

(6)
where Li j =

∂ 2L(x∗,λ )
∂xi∂x j

and gi j =
∂gi(x∗)

∂x j
Observe that equation

(6) is a polynomial of order n−m, in p.

III. RESULTS AND DISCUSSIONS

A. Mean of Regression Estimator in Double Sampling

Linear regression estimator can be defined as:

Y = α +βX

Y = α +βX (7)

Equation (7) is linear regression population average. If we
estimate linear regression from its sample, where a is an
estimator for α , and b is an estimator for β , so we obtain:

y = a+bx (8)
y = a+bx (9)

Equation (9) is a linear regression average equation in
sample. From equation (9), we obtain:

a = y−bx (10)

By substituting equation (10) to equation (8), we obtain
estimator regression equation as follows:

y = y+bx−bx

= y+b(x− x)

If the value of x is unknown, then to compute its estimator,
we can use x′ = ∑

n
i=1

xi
n′ . we obtain:

ŷ = y+b(x′− x) (11)

Equation (11) is mean estimator equation of linear regression
in double sampling.

B. Variance of Regression Estimator in Double Sampling

After we obtain equation (11), substituting y from equation
(4) and value of b from equation (11), so we obtain another
model of mean estimator equation of linear regression in
double sampling . It is given by:

ŷ = Y +β
(
x−X

)
+ e+(β + ew)(x′− x)

= Y +β
(
x′−X

)
+ ew

(
x′−X

)
− ew

(
x−X

)
+ e

To obtain the variance of regression estimator, we use the
trivariate distribution theory. Mean of trivariate distribution is
as follows:

E
(

Ŷ
)
= E1

(
E2

(
E3

(
ŷ
)))

We assume:

E3

(
ŷ
)
= Y +β

(
x′−X

)
So we obtain E3

(
ŷ
)

, which is an unbiased estimator. Then

we determine E2

(
E3

(
ŷ
))

as follows:

E2

(
E3

(
ŷ
))

= E2
(
Y +β

(
x′−X

))
= Y +β

(
x′−X

)
For the next step, we assume x′ is not constant, we obtain:

E1

(
E2

(
E3

(
ŷ
)))

= E1
(
Y +β

(
x′−X

))
= Y (12)
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Equation (12) is an unbiased estimator of the trivariate
distribution.

Then, we get variance of trivariate distribution by the
formula :

Var
(

Ŷ
)
= E1

(
E2

(
Var3

(
ŷ
)))

+ E1

(
Var2

(
E3

(
ŷ
)))

+

Var1

(
E2

(
E3

(
ŷ
)))

(13)
Then we determine the second part of equation (13), so we

obtain:

E1

(
Var2

(
E3

(
ŷ
)))

= E1
(
Var2

(
Y +β

(
x′−X

)))
= 0

Third part of equation (13) is:

Var1

(
E2

(
E3

(
ŷ
)))

=Var1
(
Y +β

(
x′−X

))
= β

2E1
(
x′−E1(x′)

)2
= β

2 σ2
x

n′

Next, we determine:

E1

(
E2

(
Var3

(
ŷ
)))

= E1
(
E2
(
Var3

(
Y +β

(
x′−X

)
+ ew

(
x′−X

)
− ew

(
x−X

)
+ e
)))

= E1

(
E2
(
e− ew

(
x−X

)
+ ew

(
x′−X

))2
)

(14)

So that equation (14) becomes:

= E1
(
E2
(
e2))+E1

((
x−X

)2E2
(
ew

2))+
E1

((
x′−X

)2E2
(
ew

2))−E1
(
2
(
x−X

)
E2 (eew)

)
+

E1
(
2
(
x′−X

)
E2 (eew)

)
−E1

(
2
(
x−X

)(
x′−X

)
E2
(
ew

2))
(15)

Then, we solve each part of equation (15), the first part of
equation (15) is:

E1
(
E2
(
e2))= E1(e−E2 (e))

2 = σ
2
e =

σ2

n
Next, we solve the second part of equation (15) as follows:

E1

((
x−X

)2E2
(
ew

2))= σ2

n2(n−1)
E1F (1,n−1) =

σ2

n2(n−3)

Then, we solve the third part of equation (15) as follows:

E1

((
x′−X

)2E2
(
ew

2))= σ2

n′2(n−1)
E1F (1,n−1) =

σ2

n′2(n−3)

The fourth part of equation (15) is as follows:

E1
(
2
(
x−X

)
E2 (eew)

)
= 2E1

(
x−X

)
E1 (0) = 0

Next, the fifth part of equation (15) is given by:

E1
(
2
(
x′−X

)
E2 (eew)

)
= 2E1

(
x′−X

)
E1 (0) = 0

From the sixth part of equation (15), we obtain:

E1
(
2
(
x−X

)(
x′−X

)
E2
(
ew

2))
=2E1

(
X−X

)
E1
(
X−X

)
E2
(
ew

2)
=0

The result from all previous steps is:

E1

(
E2

(
Var3

(
ŷ
)))

=
σ2

n
+

σ2

n2(n−3)
+

σ2

n′2(n−3)
(16)

If the number of sample n is too big, then 1
(n−3) ≈

1
n and

equation (16) becomes:

=
σ2

n

(
1+

1
n2 +

1
n′2

)
From analysis result, equation (13) becomes:

Var
(

Ŷ
)
=

σ2

n

(
1+

1
n2 +

1
n′2

)
+β

2 σ2
x

n′
(17)

If n′→ ∞ and n→ ∞, then 1
n → 0 and 1

n′ → 0. In this case,
equation (17) becomes:

Var
(

Ŷ
)
= σ

2
y

(
1
n
−ρ

2
(

n′−n
nn′

))
(18)

Equation (18) is a variance equation of regression estimator
in population. If we estimate equation (18) in sample, then we
can write:

Var
(

ŷ
)
= S2

y

(
1
n
− r2 n′−n

nn′

)
(19)

Equation (19) is variance equation of regression estimator in
sample.

C. Sampling Optimization by using Lagrange Multipliers
Method

First step of optimization is determine the objective function
and constraint. The objective function is observation cost
function, that can be written as:

f = n′C1 +nC2

The constraint is the variance of regression estimator in
sample as follows:

g = S2
y

(
1
n
− r2 n′−n

nn′

)
− ε2

Z2
α/2

= 0

Then we construct Lagrange function as in equation (5):

L = n′C1 +nC2 +λ

(
S2

y

(
1
n
− r2 n′−n

nn′

)
− ε2

Z2
α/2

)

= n′C1 +nC2 +λS2
y

1
n
−λS2

yr2 1
n
+λS2

yr2 1
n′
−λ

(
ε2

Z2
α/2

)
(20)

Optimal condition for equation (20) is:

∂L
∂n′

=C1−λS2
yr2 1

n′2
= 0 (21)

∂L
∂n

=C2−λS2
y

1
n2

(
1− r2)= 0 (22)

∂L
∂λ

= S2
y

1
n
−S2

yr2 1
n
+S2

yr2 1
n′
− ε2

Z2
α/2

= 0 (23)
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From equation (21), we obtain:

λ =
C1n′2

S2
yr2 (24)

From equation (22), we obtain:

λ =
C2n2

S2
y (1− r2)

(25)

From equations (24) and (25), we obtain:

1
n′

=

√
C1 (1− r2)

r2C2n2 (26)

1
n
=

√
r2C2

C1n′2 (1− r2)
(27)

From equation (23), we get:

S2
y

1
n
−S2

yr2 1
n
+S2

yr2 1
n′

=
ε2

Z2
α/2

(28)

Then, substituting equation (27) to equation (28), we obtain:

S2
y

ε2

Z2
α/2

(
r

√
C2

C1 (1− r2)
− r2

√
r2C2

C1 (1− r2)
+ r2

)

=n′
S2

yr2 +S2
y

√(
C2
C1

)
r2 (1− r2)

ε2

Z2
α/2

= n′ (29)

By solving the above problem using Lagrange multipliers
method, we get equation (29) which is a formula for calculat-
ing the number of optimal plots on first phase. We can write
it as follows:

n′opt =

S2
yr2 +S2

y

√(
C2
C1

)
r2 (1− r2)

ε2

Z2
α/2

(30)

Next, by substituting equation (26) to equation (28), we
obtain:

S2
y
(
1− r2

)
+S2

y

√(
C1
C2

)
r2 (1− r2)

ε2

Z2
α/2

= n (31)

Equation (31) is the formula for calculating the number of
optimal plots on second phase. We can write it as follows:

nopt =

S2
y
(
1− r2

)
+S2

y

√(
C1
C2

)
r2 (1− r2)

ε2

Z2
α/2

(32)

D. Implementation of Sampling Optimization by using La-
grange Multipliers Method

The method is implemented by using simulation of image
interpretation data and field survey data. Image interpretation
data is the data forest picture obtained from observations with
remote sensing. The result of remote sensing is calculated by
software until we get the diameter, density, and number of
trees per plot, then we can also calculate tree volume per plot.
Then, we check the result of image interpretations in the field.

To determine the potential of a forest, it is impossible to
observe all objects in forest. Thus, we need to take some
samples. In previous research of Fathia Amalia R. D, she takes
76 plot samples for first phase sampling which is in image
interpretation and 38 plot samples for second phase without
knowing whether the number of samples is optimum or not. In
this paper, we need to calculate the optimal number of samples
in image interpretation and in the field. Samples were observed
in the form of plots where the plot consists of several trees.

Data of previous observation result can be used for calculat-
ing the optimal number of samples which must be observed on
image interpretation and field. We use data from FMU Perum
Perhutani Madiun II, East Java, which includes data from
FSMU Dagangan and Dungus. For calculating the number of
optimal samples, we use the following parameters:

TABLE I
SUM AND AVERAGE OF TREE VOLUME.

hhhhhhhhhhhhhParameter (m3/0.1 ha)
Location

FSMU Dagangan FSMU Dungus

Sum of Vimage(n samples) ×Vf ield 18864.1143 40627.7806
Sum of Vimage (n samples) 831.99 1147.18
Sum of Vf ield 838.01 1131.31
Sum of V 2

image (n samples) 18701.9755 40802.37
Sum of V 2

f ield 19103.4571 42398.9871
Average of Vf ield 22.05289 29.77132
Average Vimage 22.60158 42.47013
Average Vimage (n samples) 21.89447368 30.18894737

Observation cost consists of two types: image observation
cost and field observation cost. Image observation cost is the
total of cost which is used to buy image, image processing
cost, and image map printing cost. Field observation cost is
included in transportation cost, employee salary and etc. So
that, we obtain the cost per hectare:

TABLE II
OBSERVATION COST.

hhhhhhhhhhhCost (Rp/ha)
Location FSMU Dagangan FSMU Dungus

Image Interpretation 22.145 22.148
Field 363.158 363.157

Then to determine the optimal number of samples in the
first phase (n′opt ) and second phase (nopt ), we calculate S2

y
value first by using formula in equation (3), and also calculate
r by using formula in equation (19). Next, we calculate n′opt
by using formula in equation (30) and calculate nopt by using
formula in equation (32).

We calculate all step by using Matlab, for location FSMU
Dagangan we obtain optimal number of samples that must be
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observed for first phase n′opt is 149 plots image interpretation
and number of samples that must be observed for the second
phase nopt is 14 plots field survey. With the same way, for
FSMU Dungus the number of optimal samples that must be
observed is 153 plots image interpretation and 20 plots field
survey.

IV. CONCLUSIONS

Based on analysis result and discussion, we obtain the
following conclusions:

1) Result from formula analysis in sampling and optimiza-
tion by using Lagrange multipliers method, we obtain
the number of optimal samples in the formula for first
phase (n′) and second phase (n) is:

n′opt =

S2
yr2 +S2

y

√(
C2
C1

)
r2 (1− r2)

ε2

Z2
α/2

nopt =

S2
y
(
1− r2

)
+S2

y

√(
C1
C2

)
r2 (1− r2)

ε2

Z2
α/2

where,
• S2

y : variance(y) from the second phase sample (n)
• r : correlation coefficient
• C1 : cost of first phase sampling
• C2 : cost of second phase sampling
• ε : error in estimation
• Zα/2 : value of random variables in standard normal

distribution
2) From the calculation results, the number of optimal sam-

ples in image interpretation and field survey with FSMU
Dagangan data, we obtain the number of optimal plots
that must be observed in image interpretation is 149
plots and in field survey is 14 plots. The other side, with
FSMU Dungus data we obtain the number of optimal
plots that must be observed in image interpretation is
153 plots and in field survey is 20 plots. So that, if
the number of samples is suitable with that calculation
result, then we obtain an optimal sampling.
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