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Weight Optimization of Optimal Control Influenza
Model Using Artificial Bee Colony

Dinita Rahmalia and Teguh Herlambang

Abstract—Influenza is disease which can be contagious through
contact with infected individual. There are two types of control
strategies to bound the spread of disease: prevention action for
controlling susceptible and treatment for controlling infected.
Optimal control is used for minimizing the number of infected
individual, the cost of prevention action and the cost of treatment.
Due to the cost of objective function depends on weight, in this
research we will apply Artificial Bee Colony algorithm to optimize
weight minimizing cost of objective function. The simulations
show that the number of infected with control is lower than
without control. Furthermore, we also obtain optimal weight
related to cost of prevention action and treatment.

Index Terms—Artificial Bee colony, influenza model, optimal
control.

I. INTRODUCTION

NOWADAYS, there are many contagious diseases which
have been found. In contagious disease, there are sus-

ceptible individuals, infected individuals, and recovered in-
dividuals. Susceptible individual can be infected individual
after making contact with infected individual based on disease
transmission rate. Then, infected individual becomes recovered
individual when the symptoms of disease have lost. But, recov-
ered individual can return to susceptible when the immunity
has lost.

Influenza, commonly known as “the flu”, is an infectious
disease caused by influenza virus. The most common symp-
toms are high fever, runny nose, sore throat, muscle pains,
headache, coughing, and feeling tired. Usually, this virus
spread through the air from coughs or sneezes. It can also
spread by touching surfaces contaminated by virus [1].

The purpose of epidemics modeling is to provide policies
designed to control the spread of disease [2]. There are two
types of control strategies to bound the spread of disease:
prevention action for controlling susceptible and treatment for
controlling infected. Preventive action may be good sanitation
and healthy food. Treatment may be drug for healing the
disease. Optimal control is used for minimizing the number
of infected individuals, the cost of prevention actions and the
cost of treatments [3].

In the earlier research from Michalewicz, by heuristic
optimization like Genetic Algorithm (GA), we can determine
optimal control minimizing objective function based on natural
selection of chromosomes [4]. The Artificial Bee Colony
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(ABC) was introduced by Karaboga and Akay in 2009. ABC
is the optimization method which is inspired by the behavior
of bee colony. In the ABC algorithm, there are three types of
bees, namely employed bees, onlooker bees, and scout bees.
For every food source, there is only an employed bee. The
position of food source represents possible solution of the
optimization problem and the amount of nectar represents the
fitness of solution [5].

In optimal control problem, weight selection is applied by
trial and error [6]. Due to the cost of objective function that de-
pends on weight, in this research we will apply ABC algorithm
to optimize weight minimizing cost of objective function. In
previous research, Ant Colony Optimization (ACO) has been
applied on contagious disease [7]. The weight used are related
to the number of infected individuals, cost of prevention
actions and treatment for controlling the number of susceptible
individuals and infected individuals, respectively.

Simulations have been applied and we can obtain compar-
ison the number of individual with and without control. In
addition, we also obtain optimal weight related to cost of
preventive actions and treatment for controlling the number of
susceptible individuals and infected individuals, respectively.

II. ARTIFICIAL BEE COLONY

A. The Behavior of Bee

There are three groups in the ABC : employed bees,
onlooker bees, and scouts. For every food source, there is
only an employed bee. The position of food source represents
possible solution of the optimization problem and the amount
of nectar represents the fitness of solution.

The number of employed bees or the onlooker bees is equal
to the number of individual in the population. The employed
bees produce the position of food source depending on the
information and test the amount of nectar.

After all employed bees complete the search process, they
share the position of food source and the nectar information
with the onlooker bees by dance area. The onlooker bees test
nectar information and choose a position of food source with
the best probability.

The position of food source of which the nectar is aban-
doned by the bees is replaced with the new position of food
source by the scout bees.

B. Algorithm of ABC

The algorithm of ABC is as follows [5], [8]. Given objective
function f : X ⊆ RD → R where D is the dimension of the
search space. In the initialization step, generate initial solutions
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xi j, i= 1, . . . ,SN, j = 1, . . . ,D randomly and evaluate the fitness
f (xi j), for i = 1, . . . ,SN, j = 1, . . . ,D.

We repeat execution of the following steps:

1) Employed Bees Step
In the employed bees step, each employed bee generates
solution as follows:

vi j =

{
xi j +φi j

(
xi j− xk j

)
, i 6= k, if ri j < MR

xi j, otherwise (1)

Then we evaluate f (vi j), for i = 1, . . . ,SN, j = 1, . . . ,D.
If new solution vi j is better than xi j, replace xi j with vi j.

2) Onlooker Bees Step
Onlooker bees select one of solutions based on proba-
bility:

pi =
f itnessi

∑
SN
n=1 f itnessn

(2)

where in the minimization problem, the fitness can be
obtained from:

f itnessi =

{ 1
1+ f (xi)

, if f (xi)≥ 0
1+ | f (xi)| , if f (xi)< 0

(3)

3) Scout Bees Step
Determine the abandoned solution for the scout and
replace it with:

xi j = xmin
j +θi j(xmax

j − xmin
j ) (4)

where θi j ∼ U(0,1) then evaluate f (xi j), for i =
1, . . . ,SN, j = 1, . . . ,D.

4) Keep the Best Solution

III. OPTIMAL CONTROL OF SIR EPIDEMIC MODEL

We can classify influenza as SIR epidemic model [3]. At
the SIR epidemic model, there are three compartments of
individuals: susceptible, infected, and recovered. Susceptible
individual can become an infected individual after making a
contact with infected individual based on disease transmission
rate. Infected individual can become a recovered individual
when the symptom of disease have lost based on recovery
rate. Recovered individual can become a susceptible individual
when the immunity has lost based on the lost immunity rate.

At the susceptible compartment, recruitment rate and the
lost immunity rate can increase the number of susceptible
individuals. However, disease transmission rate and natural
death rate can decrease the number of susceptible individuals.

At the infected compartment, disease transmission rate can
increase the number of infected individuals. However, natural
death rate, death by disease rate, and recovery rate can
decrease the number of infected individuals.

At the recovered compartment, recovery rate can increase
the number of recovered individuals. However, natural death
rate and the lost immunity rate can decrease the number of
recovered individuals.

The compartment of SIR epidemic model can be seen on
Fig. 1.

Fig. 1. Compartment Diagram of SIR Epidemic Model.

A. Mathematical Model

The mathematical model of optimal control influenza model
can be described as follows:

Ṡ = Λ−βSI−µS+δR−u1S

İ = βSI−αI−µI− γI−u2I

Ṙ = γI−µR−δR+u1S+u2I

where S(0) ≥ 0, I(0) ≥ 0, R(0) ≥ 0 with the parameters:
recruitment rate Λ, disease transmission rate β , natural death
rate µ , death by disease rate α , recovery rate γ , and the
lost immunity rate δ . In addition, there are control function
of susceptible prevented u1 and control function of infected
treated u2.

The objective function which will be minimized is:

J(u1,u2) =
∫ T

0

(
A1I +A2

u2
1

2
+A3

u2
2

2

)
dt

with weight A1 > 0, A2 > 0, A3 > 0. From the model, we
want to minimize the number of infected individuals, the cost
of preventive actions, and the cost of treatments. The goal is
finding u∗1,u

∗
2 such that

J(u∗1,u
∗
2) = min{J(u1,u2) : (u1,u2) ∈U}

where U is the set of admissible controls defined by: U =
{(u1,u2) : 0 < u1 < 1,0 < u2 < 1} and u1,u2 are Lebesgue
measurable.

B. Pontryagin’s Maximum Principle

If u∗1, u∗2 is an optimal control corresponding state system,
there exist adjoint variables (λS,λI ,λR) which satisfy the
following [3]:

λ̇S =−
∂H
∂S

=−λS(−β I−µ−u1)−λIβ I−λRu1

λ̇I =−
∂H
∂ I

=−A1−λS(−βS)−λI(βS−α−µ− γ−u2)−λR(γ +u2)

λ̇R =−∂H
∂R

=−λS(δ )−λR(−µ−δ )
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where λS(T ) = λI(T ) = λR(T ) = 0, and the Hamiltonian is:

H =

(
A1I +A2

u2
1

2
+A3

u2
2

2

)
+

(
λS λI λR

) Λ−βSI−µS+δR−u1S
βSI−αI−µI− γI−u2I
γI−µR−δR+u1S+u2I


Furthermore, we can find optimal control u∗1,u

∗
2:

∂H
∂u1

= 0

A2u1−λSS+λRS = 0

u1 = min
(

1,max
(

0,
(λS−λR)S

A2

))
∂H
∂u2

= 0

A3u2−λII +λRI = 0

u2 = min
(

1,max
(

0,
(λI−λR)I

A3

))
C. Forward Backward Difference

To solve optimal control SIR epidemic model, we need
a discretization process using forward backward difference
approximation where initial conditions for the state equations
and terminal conditions for the adjoint equations.

The discretization of forward backward difference can be
described as follows: Set S0, I0, R0, λS,T = λI,T = λR,T = 0,
u1,0 = u2,0 = 0.

Sk+1−Sk

h
= Λ−βSk+1Ik−µSk+1 +δRk−u1,kSk+1

Ik+1− Ik

h
= βSk+1Ik+1−αIk+1−µIk+1− γIk+1−u2,kIk+1

Rk+1−Rk

h
= γIk+1−µRk+1−δRk+1 +u1,kSk+1 +u2,kIk+1

λS,T−k−λS,T−k−1

h
=−λS,T−k−1(−β Ik+1−µ−u1,k)−

λI,T−k(β Ik+1)−λR,T−k(u1,k)

λI,T−k−λI,T−k−1

h
=−A1−λS,T−k−1(−βSk+1)−

λI,T−k−1(βSk+1−α−µ− γ−u2,k)−λR,T−k(γ +u2,k)

λR,T−k−λR,T−k−1

h
=−λS,T−k−1(δ )−λR,T−k−1(−µ−δ )

A2u1−λSS+λRS = 0
A3u2−λII +λRI = 0

D. Overall Algorithm
In this algorithm, the weight used are A1, A2, A3 related

to the number of infected individuals, cost of preventive
actions and treatment for controlling the number of susceptible
individuals and infected individuals, respectively.

The algorithm of SIR function with the parameter A1,A2
and A3 can be constructed as follows :

SIR(A1,A2,A3)

Set S0, I0, R0, λS,T = λI,T = λR,T = 0, u1,0 = u2,0 = 0
For k = 0, . . . ,T −1 we compute

Sk+1 =
hΛ+hδRk +Sk

1+hµ +hβ Ik +hu1,k

Ik+1 =
Ik

1−hβSk+1 +h(α +µ + γ)+hu2,k

Rk+1 =
hγIk+1 +hu1,kSk+1 +hu2,kIk+1 +Rk

1+hµ +hδ

λS,T−k−1 =
λS,T−k +hλI,T−k(β Ik+1)+hλR,T−k(u1,k)

h(β Ik+1 +µ +u1,k)+1

λI,T−k−1 =
hA1 +βSk+1(−hλS,T−k−1)+hλR,T−k(γ +u2,k)+λI,T−k

1+h(−βSk+1 +α +µ + γ +u2,k)

λR,T−k−1 =
hλS,T−k−1(δ )+λR,T−k

h(µ +δ )+1

u1,k+1 = min
(

1,max
(

0,
(λS,T−k−1−λR,T−k−1)Sk+1

A2

))
u2,k+1 = min

(
1,max

(
0,

(λI,T−k−1−λR,T−k−1)Ik+1

A3

))

Then we calculate the objective function as fitness function
[9]:

J(u1,u2) =
T−1

∑
k=0

(
A1Ik +A2

u2
1,k

2
+A3

u2
2,k

2

)

The overall algorithm combining ABC and optimal control
influenza model is as follows:

(1) In the initialization step, generate initial solutions Ai =
(A1i ,A2i ,A3i), for i = 1, . . . ,n where n is the number of
weights related to the number of infected individuals,
cost of preventive actions and treatment randomly and
evaluate the fitness SIR(A1i ,A2i ,A3i), for i = 1, . . . ,n.

Repeat

(2) Employed Bees Step. In the employed bees step, each
employed bee generates solution as follows:

A′i = (A′1i
,A′2i

,A′3i
) =

{
Ai +φi (Ai−Ak) , if ri < MR

Ai, otherwise

where φi is a random number between (−1,1), ri is a
random number between (0,1), and MR is the modifica-
tion rate. Evaluate SIR(A′1i

,A′2i
,A′3i

), for i = 1, . . . ,n. If
new solution (A′1i

,A′2i
,A′3i

) is better than (A1i ,A2i ,A3i),
replace (A1i ,A2i ,A3i) with (A′1i

,A′2i
,A′3i

).
(3) Onlooker Bees Step. Onlooker bees select one of solu-

tions based on probability:

pi =
f itnessi

∑
n
i=1 f itnessi

, i = 1, . . . ,n

Where in the minimization problem, the fitness can be
obtained from:

f itnessi =


1

1+SIR(A1i ,A2i
,A3i )

, if SIR
(

A1i ,A2i
,A3i

)
≥ 0

1+
∣∣∣SIR

(
A1i ,A2i

,A3i

)∣∣∣ , if SIR(A1i ,A2i ,A3i)< 0
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(4) Scout Bees Step. Determine (A1i ,A2i ,A3i)
min and

(A1i ,A2i ,A3i)
max

(A1i ,A2i ,A3i)
min = argmin(SIR(A1i ,A2i ,A3i), i = 1..n)

(A1i ,A2i ,A3i)
max = argmax(SIR(A1i ,A2i ,A3i), i = 1..n)

Determine the abandoned solution for the scout and
replace it with:

(A1i ,A2i ,A3i) = (A1i ,A2i ,A3i)
min+

θi((A1i ,A2i ,A3i)
max− (A1i ,A2i ,A3i)

min)

where θi ∼U(0,1) then evaluate

SIR(A1i ,A2i ,A3i), i = 1, . . . ,n

(5) Keep the best solution in the iteration.

IV. SIMULATION RESULTS

Parameters used on ABC simulations are:
1) The number of bees: 20
2) Modification rate: 0.8
3) Maximum iteration: 50
Parameters used on influenza model are :
1) Recruitment rate Λ: 30
2) Disease transmission rate β : 0.05
3) Natural death rate µ: 0.01
4) Death by disease rate α: 0.03
5) Recovery rate γ: 0.7
6) The lost immunity rate δ : 0.005
The simulations of optimal control over the influenza model

can be seen at Fig. 3-Fig. 7 while Fig. 2 is the ABC simulation.

Fig. 2. Best fitness resulted by the ABC algorithm.

Figure 2 represents the first iteration, i.e. the bees choose
the position of food source as weight randomly. At the
optimization process, we update nectar information as fitness
function so that bees choose the weight resulting in a minimum
objective function.

Fig. 3. Numerical solution of the number of susceptible individuals for two
cases: with control and without control.

Figure 3 shows numerical solution of susceptible individuals
for two cases, i.e. with control and without control. At the
early time, the number of susceptible individuals with control
is lower than without control because of the preventive action
effect which decreases the number of susceptible individuals.
However, as time increases, the number of susceptible individ-
uals with control can be higher than without control because
of the recruitment rate effect and the lost of immunity effect.

Fig. 4. Numerical solution of the number of infected individuals for two
cases: with control and without control.

Figure 4 shows numerical solution of the number of infected
individuals. The number of infected individuals with control
is lower than without control because of the treatment effect
which decreases the number of infected individuals. Figure
5 shows the numerical solution of the number of recovered
individuals. The number of recovered individuals with control
is higher than without control because of both prevention
action and treatment effect which increase the number of
recovered individuals. Figure 6 shows the control function of
preventive actions. It shows that the preventive action must be
applied massively since early time. Figure 7 shows the control
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function of treatment. It shows that there is a time interval
where the treatment should not be applied massively.

Fig. 5. Numerical solution of the number of recovered individuals for two
cases: with control and without control.

Fig. 6. Control function of preventive actions.

V. CONCLUSION

ABC method can select an optimal weight by using an
optimal control of SIR epidemic model. From the simulation,
initially the bees choose the position of food source as weight
in a random fashion. At the optimization process, we update
nectar information as fitness function so that bees choose the
weight that results in minimum objective function. At the
SIR simulation, based on parameters: recruitment rate, disease
transmission rate, natural death rate, death by disease rate,
recovery rate, disease mutation rate, can be seen from the
comparison between the number of individuals for two cases:
with and without control. Furthermore, we also obtain an
optimal weight related to the number of infected individuals,
cost of preventive actions and treatment.
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